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Within the imaginary-time theory for nonequilibrium in quantum dot systems the calculation of dynamical
quantities like Green’s functions is possible via a suitable quantum Monte Carlo algorithm. The challenging
task is to analytically continue the imaginary-time data for both complex voltage and complex frequency onto
the real variables. To this end a function-theoretical description of dynamical observables is introduced and
discussed within the framework of the mathematical theory of several complex variables. We construct a feasible
maximum-entropy algorithm for the analytical continuation by imposing a continuity assumption on the analytic
structure and provide results for spectral functions in stationary nonequilibrium and current-voltage characteristics
for different values of the dot charging energy.
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I. INTRODUCTION

Dynamic observables play a crucial role in the Matsubara
voltage approach introduced by Han and Heary to address
steady-state nonequilibrium properties of models for quantum
dots.1 In a previous publication (hereafter referred to as
paper I)2 we showed the conditions under which the real-time
Keldysh and imaginary-time Matsubara-voltage approaches
are formally equivalent and how a proper analytical con-
tinuation must be performed. In paper I, this scheme was
applied to static quantities obtained from a continuous-time
quantum Monte Carlo (CT-QMC) algorithm3,4 combined with
a standard maximum-entropy (MaxEnt) approach5 to obtain
results for steady-state expectation values of quantum dot
models at finite bias.

We consider a single-impurity Anderson model for the
quantum dot system,2 with the Hamiltonian

Ĥ =
∑
αkσ

εαkσ c
†
αkσ cαkσ + εd

∑
σ

d†
σ dσ

−
∑
αkσ

tα√
�

(d†
σ cαkσ + H.c.)

+U (nd,↑ − 1/2)(nd,↓ − 1/2). (1)

This Hamiltonian describes a quantum dot device which
consists of the quantum dot orbital operator d†

σ of spin σ

and with source and drain leads, represented by conduction
electron operators c

†
αkσ with the continuum index k, the spin

index σ and the reservoir index α = L,R for the source (left)
and drain (right), respectively. The model is characterized by
few parameters6: the local energy or gate voltage εd , which
controls the number of electrons on the dot; the charging
energy U > 0 due to the small capacitance; and finally the
coupling of the dot to the leads, which can in many cases be
collected in two quantities, �L and �R .

Although some thermodynamic observables can be cal-
culated directly without analytic continuation of imaginary
frequency,2 only a restricted set of observables can be handled
in this manner. Unfortunately, the current operator 〈I 〉 is not

suitable, and the rather important question about the transport
through a quantum dot, both electrically and thermally driven,
must be addressed in a different manner. For simple quantum
dot geometries one can employ the result by Meir and
Wingreen,7 who showed that for single quantum dots and
not-too-different properties in the left and right leads, one
can express the current through the dot due to a finite external
bias eVB ≡ � via the density-of-states (DOS) Nσ (ε; �) on the
dot as

I (�) = I0

∑
σ

∫
dε[fL(ε) − fR(ε)]Nσ (ε; �), (2)

where fα(ε) denotes Fermi’s function for the left or right lead.
Note that the bias enters in two distinct ways: first, in the
Fermi functions through the chemical potential of the leads as8

μ ± �/2, and, second, through the DOS. Usually, for � → 0,
one ignores the latter dependency and can thereby recover the
results from linear-response theory. Note that Meir-Wingreen
formula is only applicable in case the hybridization to left and
right leads are proportional to each other, i.e., �L(ω) ∝ �R(ω).

Besides its relevance for calculating the current, the DOS
is an interesting quantity in its own right, and its dependency
as functions of frequency and bias is still a matter of debate.
In equilibrium, it is well-known that the DOS develops a very
sharp resonance, the so-called Kondo resonance, pinned at
ε = 0, which in linear response leads to the pinning of the
conductance to the unitary limit. The precise way that this
resonance dies under the influence of finite bias is actually
unknown, and different techniques provide different answers.

Within the Matsubara-voltage imaginary-time approach by
Han and Heary the nonequilibrium steady state is mapped to
an infinite set of effective equilibrium systems by introducing
a bosonic Matsubara voltage ϕm = 4πm/β.1,2,4,9 It has to be
analytically continued to a variable zϕ ∈ C in order to compute
the limit zϕ → � ± iδ to obtain the physical quantity at the
chosen bias �.

Considering dynamic observables, the simultaneous pres-
ence of the fermionic Matsubara frequency iωn, which must
be analytically continued to zω ∈ C to eventually obtain
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the corresponding real-frequency quantity, implies that a
double-complex-variable function G(z), with z := (zϕ,zω)T ∈
C2, must be studied. Without the presence of iϕm, i.e.,
within conventional Matsubara theory, Green’s functions are
analytic on the upper and lower half planes, H and H∗.
Due to the rapid decay of G(zω) as zω → ∞, a Lehmann
spectral representation with respect to the real axis is used.10

Conversely, from a knowledge of all Matsubara-frequency data
one can, in principle, infer the spectral function. Numerically,
this is known to be an ill-conditioned problem. An approach,
particularly suited for QMC data, is the MaxEnt technique.5

From a mathematical point of view, the branch cut on the
real axis represents the only set of points z0 ∈ C for which
the Green’s function is not holomorphic. The very location
of the branch cut gives rise to the spectral representation in
Matsubara theory; i.e., it yields, due the nonsingular structure
at ∞, a unique characterization of the analytic structure. In
order to perform an analytic continuation for the two-variable
function G(z) the natural question arises as to which minimal
set of quantities characterizes its analytic structure in a unique
fashion. Therefore, referral to mathematical results in the
analysis of several complex variables is necessary (see in
particular the discussion following Sec. III C1).4

In the original implementation of Han and his co-worker,1,9

analytic continuation on (zϕ,zω) produced rather smooth
spectra in good agreement with other numerical results.9,11

However, the employed methods were crude fit with ad hoc
smoothening and annealing to the numerical data without
regard to statistical analysis. In this work we provide math-
ematical foundation to multivariable analytic continuation and
develop systematic numerical implementation.

The paper is structured as follows. Since the mathematical
structure dealing with functions of several complex variables
is probably very alien to the reader, we start with a presentation
of the central results for spectral functions and transport
properties of the single-impurity Anderson model in steady-
state nonequilibrium in Sec. II. As compared to an earlier
publication,4 we improve our numerics by including several
analytic wedges of the Green’s function into the procedure.
We refer to this as a multiwedge approach, as opposed to the
earlier single-wedge approach. The underlying mathematical
framework is developed in the succeeding sections. Starting
from conventional one-dimensional complex analysis, Sec. III
provides an introduction to the basic concepts of theory of
several complex variables. We then use this theory to systemat-
ically analyze the analytical structure of the Matsubara-voltage
Green’s function and provide an axiomatic description of it.
In Sec. IV, an asymptotically exact continuity assumption is
employed to construct an integral representation for Matsubara
Green’s function G(iϕm,iωn). It allows us to include more in-
formation within the Bayesian inference process of the MaxEnt
method as compared to our previous approach in Ref. 4. The
resulting structure connects to the earlier suggestions by Han
and Heary.1,9 For future applications, an unbiased extension of
the integral representation beyond the continuity assumption
is proposed in Sec. V.

Figure 1 provides an overview of the paper as a flowchart.
It may serve as a guide. Mathematically less inclined readers
may skip the lightly shaded Sec. III and study the numerical
results in Sec. II, which are based on the continuity ansatz and

MaxEnt procedure described in Sec. IV and corresponding
appendixes. In the chart solid arrows denote numerical steps
in the computation. Open arrows denote formal analytical
steps required to derive the relations involved in the MaxEnt
procedure for analytic continuation.

All numerical results provided in the paper rely on a
highly precise continuous-time quantum Monte Carlo (QMC)
implementation which was introduced in Ref. 4. The data
provided by QMC simulations, see left box in Fig. 1, give rise
to a discrete grid of well-estimated imaginary-time Green’s
function values. Due to the structure of the Matsubara-
voltage formalism, however, these data, in general, belong to
different analytic sheets of the two-variable Green’s function
[Fig. 13(b)], due to the presence of an infinite set of branch
cuts. The analytic sheets are defined on so-called wedges in
the complex variable space C2. Depending on the considered
wedge, an analytic continuation within the sheet to real
frequencies and voltages may not have a direct physical
interpretation. However, QMC data from these sheets should
be used to reconstruct the physical real-time limit. For this
sake, the mathematical structure of the Green’s function’s
sheets is systematically investigated in Sec. III. Since it may
require a lot of effort to study the details of the latter, the reader
is recommended to first study the results section and possibly
skip Sec. III at first reading.

The results section (Sec. II) discusses numerical results
for the dot electron spectral function out of equilibrium and
consequent transport characteristics. It relies on a MaxEnt
procedure which infers a probability distribution based on a
linear relation (72) which is derived in Sec. IV but has to
be inverted. Since as in the conventional Wick rotation of
imaginary-time data,5 the inversion is an ill-posed problem,
the MaxEnt provides a most probable solution by means of
Bayes’ theorem. Central to the function-theoretical derivation
of the relation (72) is a continuity assumption to the real-time
structure of the theory, Eq. (65). It gives rise to the kernel
operator (73) which defines the inverse problem (72). It is
shown in Sec. IV that the continuity assumption improves the
MaxEnt algorithm for the determination of spectral functions
dramatically, as compared to the earlier approach introduced
in Ref. 4, such that nontrivial nonequilibrium spectra could be
obtained.

Let us now briefly discuss the more mathematically in-
volved Sec. III by means of the flowchart in Fig. 1. Since the
analytical derivation makes use of two-dimensional complex
analysis, it provides an introduction to that field, comparing
its fundamental notions to those of conventional function
theory. In particular, the theory of integral representations
of functions on domains of holomorphy is discussed. Such
functions may often be parametrized by their values on
the so-called Bergman-Shilov boundary. In an analogous
way, conventional complex analysis parametrizes functions
on domains by their boundary values using, e.g., Cauchy’s
integral equation. Also the concept of the conformal map
has the analogon of a biholomorphic map, which is widely
used for formal derivations in the present work. Section III
also systematically points out that wedges are the domains
of holomorphy for the two-variable Green’s function and
provides constraints to the Green’s function which give rise
to Vladimirov’s integral representation (43), which is central
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FIG. 1. Contents of the paper as a flowchart. Solid arrows represent numerical procedures within our approach. Open arrows represent the
formal steps necessary for a derivation of the MaxEnt kernel used for numerical results. Shaded areas are discussed in the corresponding sections.
The rather unconventional two-dimensional function theory with respect to the simultaneously variables (zϕ,zω) is explained by analogies (=̂)
with the conventional theory in the light-shaded area. It may be skipped at first reading. Concepts such as the biholomorphic maps are used
to obtain explicit equations. Dash-dotted lines denoting either Vladimirov’s formula or Cauchy’s integral equation put an emphasis on the fact
that the content of a domain (of holomorphy) is parametrized by its (Bergman-Shilov) boundary. In the numerical implementation it is thus an
inverse problem to reconstruct function values on the (Bergman-Shilov) boundary, which requires a MaxEnt approach.

to the constructed MaxEnt algorithm. The representation links
function values on the real-time boundary (the edge) of a
considered wedge to data within the wedge. The dash-dotted
lines in Fig. 1 represent such linear relations, which are
practically used in the reverse direction and thus bring along
an inverse problem.

II. RESULTS FOR SPECTRAL FUNCTIONS
AND TRANSPORT

In the following, we present results obtained from analyzing
data using the CT-QMC algorithm described in Ref. 4 based
on the “multiwedge” MaxEnt scheme we present in this
paper. We present data for the particle-hole symmetric case,
εd = 0. Figure 2 provides an example for the raw simulation
output. It has to be analytically continued with respect to
both Matsubara voltage and frequency. This was accomplished
using MaxEnt applied to the functional relation between
Matsubara-domain data and spectral function developed in
Sec. IV. As discussed in Ref. 4, the Green’s function is
analytical in certain cones in the four-dimensional variable
space. Previously, we used only the cone closest to iϕm = 0
for providing information to the MaxEnt. This turned out
to be not sufficient to generate reliable and reproducible
spectra. As discussed in detail in Sec. IV and Appendix E,
we here assume a certain property of the Green’s function,
namely that its real part at the meeting point of the cones is
independent of the cone it was approached from. This makes

it possible to map data in different cones by means of linear
transformations into the actual data space and hence improve
the accuracy of the MaxEnt tremendously. We introduced
this earlier in the introduction as multiwedge approach. A
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FIG. 2. (Color online) Effective-equilibrium data as obtained
from CT-QMC simulations4 for U = 8�, e� = 0.1�, β = 5�−1. The
integer number m specifies the respective index of the Matsubara volt-
age ϕm = 4πm/β. The discontinuity at ωn = ϕm/2 is the principal
branch cut which will, in particular, be discussed in Sec. III D.
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FIG. 3. (Color online) Spectral function of the dot electrons as
inferred for the nonequilibrium weak-coupling case U = 2�, e� =
�, β = 5�−1, compared to second-order perturbation theory.

comparison of the single-wedge and multiwedge approaches
is provided at the end of this section. We must emphasize that
the validity of this crucial property underlying the multiwedge
approach cannot be proven rigorously; however, the results
obtained can be taken as evidence that its violation does not
influence the physical structures too much. Furthermore, in
Sec. V we provide a route to improve on this approximation
systematically, at the expense of a more complex algorithm.

We concentrate on the evolution of the spectral functions
as a function of Coulomb parameter U and bias voltage
�. Using the relation (2) we also calculate I (V ) charac-
teristics and compare them to results obtained with other
techniques.

A. Weak-coupling regime

The resulting nonequilibrium spectral function for U = 2�,
β = 5�−1,e� = �, obtained by evaluating A(ω) = Ã(�,ω),
where Ã is some two-dimensional MaxEnt-inferred quantity,
is displayed in Fig. 3. A good agreement with the second-order
perturbation theory provided by Ref. 12 is observed.

However, the maximal value of the resonance is slightly
smaller than predicted by perturbation theory. This could well
be due the fact that MaxEnt tends to infer a conservative
estimate close to the default model. The latter is also included
in Fig. 3 as a dotted line; it is a Lorentzian whose width is
determined by the Bayesian procedure outlined in Appendix E.
For the weak-coupling case, the width is essentially the one of
the true spectrum, as expected.

B. Intermediate-coupling regime

Figure 4 shows spectral functions computed at U = 4�

and inverse temperature β = 5�−1 for different bias voltages
�. An excellent agreement with second-order perturbation
theory is obtained for the cases e� = 0.125� and e� = �,
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FIG. 4. (Color online) Nonequilibrium spectral functions for U = 4� and inverse temperature β = 5�−1 of the leads, as compared to
second-order perturbation theory. Line legends are the same as in Fig. 3.
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FIG. 5. (Color online) Nonequilibrium spectral functions for U = 6� and inverse temperature β = 5�−1, as compared to second-order
perturbation theory. Line legends are the same as in Fig. 3.

and it is reasonable for e� = 0.5�. Although one should
not expect it to be very different, the quasiparticle resonance
in the MaxEnt result for e� = 0.25� is overshooting e� =
0.125� and disagrees with the almost unchanged second-order
perturbation theory. This is presumably a systematic MaxEnt
artifact, possibly related to the default model.

The normalization of the MaxEnt spectra is reasonably
close to one. In particular, at the small voltages, and for larger
frequencies some side bands form which tend to increase
the total spectral weight unphysically. However, the good
description of the low-energy physics seems to be unaffected
by this type of artifact. Note that again the optimal width of
the default model is the same as the one for the final spectrum.

Inferred spectral functions for an even stronger interaction
U = 6� are displayed in Fig. 5 for intermediate to large bias
voltage. For the equilibrium situation we already are in a
regime with a distinct three-peak structure with an Abrikosov-
Suhl resonance (ASR) at ω = 0 characteristic for the Kondo
regime. An estimate for the equilibrium Kondo scale gives
TK ≈ 0.1�. Again, the general low-energy behavior agrees
reasonably well with the results from perturbation theory—
which should still be valid for this value of U—and the weight
at e� = 0.25� is again overestimated. At e� = 0.5� one now
observes a distinctly larger broadening of the ASR as compared
to perturbation theory, and at � = � a clear double-peak
structure is visible. This structure is compatible with a Kondo
peak splitting. However, due to the approximations involved,

we feel unable to decide at present whether this feature is
actually a prediction of the Matsubara-voltage theory itself. It
is interesting to note that here the default model is strongly
renormalized for small bias, while at large bias the default
model, apart from the double peak structure around ω = 0,
again is already a reasonable estimate for the full spectrum.

As before, the spectral weight in the now developing Hub-
bard bands is strongly enhanced as compared to perturbation
theory, pointing towards an overestimation of the integral
weight by MaxEnt. On the other hand, the position is in good
agreement with perturbation theory.

Figure 6 shows a similar set of curves for interaction
strength U = 8�. As compared to the lower values of U , a
similar behavior of the algorithm is observed. The perturbative
prediction for the ASR is again essentially reproduced in the
cases e� = 0.1� and e� = �. The ASR is, however, again
broadened as a function of the bias voltage and appears to
split eventually at e� = �. Again, intermediate voltages have
a much stronger weight of the quasiparticle peak, and the
difference between e� = 0.1 and e� = 0.2 is even larger than
for lower values of the interaction. If those artifacts are due to
the MaxEnt, they might be at least partially removed by using
more appropriate default models or an annealing procedure,
i.e., using spectra for smaller bias as defaults for larger.
Such a procedure can be successfully applied when lowering
temperatures (see the next section). The increased interaction
again broadens the spectra as compared to smaller values of U .
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FIG. 6. (Color online) Nonequilibrium spectral functions for U = 8� at inverse temperature β = 5�−1, as compared to second-order
perturbation theory. Line legends are the same as in Fig. 3.

However, the MaxEnt procedure does not clearly predict the
correct Hubbard peak positions at ±U/2. A possible reason
for this is the partially rather slow decay behavior of the kernel
function which was derived for the MaxEnt. It may result in
decreased resolution in the high-frequency range, as compared
to a conventional MaxEnt procedure for the Wick rotation.

Spectra for interaction strength U = 10� are displayed in
Fig. 7. Again, the solution is very similar to the perturbative
prediction, and still a splitting of the ASR at larger bias voltages
is observed. The MaxEnt resolution issue for the Hubbard
bands is again observed.

C. Approaching lower temperatures

For data at lower temperature, namely β = 10�−1, the
behavior of MaxEnt solutions is similar to the one described
above. Nevertheless, sharper structures, such as the Kondo
peak, which emerge at lower temperatures, make the MaxEnt
procedure more challenging. A common way to deal with
this problem is the so-called “annealing procedure.”13,14 Here,
a fine-temperature grid is imposed in order to freeze out
low-energy features step by step. The procedure starts with
a featureless default model at very high temperatures. At
lower temperature, the MaxEnt result of the next higher
temperature is used as default model, and so forth, until the
target temperature is reached.

We found earlier4 that it is of great use also within the
two-dimensional analytic continuation problem. Also in the
present extension of the approach in Ref. 4, the MaxEnt yields
more well-behaved solutions if a higher temperature is used
as default model. This was investigated by a simple single-
step annealing procedure, using results from a β = 5�−1 run.
In fact, the occurrence of unphysical normalization-violating
sidebands may already be avoided in some cases for this rather
rough temperature grid. Figure 8 shows two examples in which
the one-step annealing procedure was able to improve the
results significantly.

D. Transport properties

Using the Meir-Wingreen equation (2), we are able to
compute transport properties based on spectral functions
resulting from the MaxEnt analytic continuation procedure.
Figure 9 compares results obtained at Coulomb interaction
strengths U = 4� and U = 6� to real-time quantum Monte
Carlo data from Ref. 15.

The low-temperature data were obtained without the em-
ployment of an expensive annealing procedure: The most
distinct feature of the low-temperature data is an increase
in current at low voltages for β = 10�−1 and U = 6�.
It is obtained whether the single-step annealing procedure
described above is employed or not.
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FIG. 7. (Color online) Nonequilibrium spectral functions for U = 10� at inverse temperature β = 5�−1, as compared to second-order
perturbation theory. Line legends are the same as in Fig. 3.

As compared to the real-time QMC calculations, we obtain
a good agreement at interaction strength U = 4�. The only
significant deviation is at e� = 0.25, the value at which we
observed the overshooting of the quasiparticle peak in the
spectral function earlier on. At higher interaction U = 6�, the
current predicted by our method appears to be systematically
higher at voltages e� > 0.2�, for both temperatures. This is
again consistent with the observation that, with increasing U ,
the ASR is probably overshooting its actual value for values
within the range 0.125� < e� � 0.5�.

In the following, we discuss the low-voltage region of
both cases, U = 4� and U = 6�. As shown in the previous
section, in the case β� = 5, the quasiparticle weight is
underestimated in the voltage range e� � 0.125� for the
reason that iϕm = 0 data cannot be taken into account
for the analytic continuation. This is compatible with the fact
that the current is underestimated as compared to the β� = 10
data, as well as the real-time QMC data.

Figure 10 shows current-voltage curves for different values
of U at β� = 10. In any case, an S-shaped current-voltage
characteristics is obtained, the first increase of which is due to
the ASR, and the second of which is due to the Hubbard bands.
The reduced weight of the ASR at increased interaction brings
about an earlier departure of the U = 8� curve as compared

to the curves at U = 4� and U = 6�. The same is true for the
U = 6� curve as compared to the case U = 4�.

E. Comparison to the single-wedge approach from a practical
point of view

We briefly illustrate the practical benefit of using the present
algorithm as compared to the single-wedge approach proposed
in our earlier publication.4 A comparison of the two analytic
continuation methods is shown in Fig. 11, for β = 10.0�−1,
U = 6�, and e� = 0.5�.

While it is straightforward to implement, the previously
proposed single-wedge method has a grave disadvantage: Due
to the underlying geometrical structure of the single wedge,
one has to provide a rather large number of Monte Carlo
data, also from large Matsubara frequencies, to the MaxEnt
procedure to include nontrivial information about spectral
functions at nonzero bias voltage. Unfortunately, doing this
usually drives the MaxEnt into a numerically unstable regime.
As a consequence, slightly different selections of input data
may yield very different spectral functions which, however,
can often be identified as unphysical. Therefore, one has to
introduce some ad hoc criteria4 to filter such bogus spectral
functions. The same holds true for the selection of the opening
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FIG. 8. (Color online) Lower-temperature spectral functions as inferred for U = 4�, β = 10�−1 with or without an annealing step. The
default model for the single-step procedure is taken from temperature β = 5�−1.
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FIG. 9. (Color online) Transport characteristics as compared to
real-time QMC data from Ref. 15.

angle of the single wedge; there is no a priori way to select
an appropriate wedge opening angle for a given system.
Consequently, from one simulation one can obtain a collection
of different results from the single-wedge analytic continuation
method introduced in Ref. 4. The left panel in Fig. 11, for
example, shows that by slightly changing (“+1” data point or
“ + 6” data points), the “fine-tuned” selection from the same
QMC input data set, the final result is different and often
erroneous. Also note that for the fine-tuned choice of the QMC
input configuration to the MaxEnt, a numerically equivalent
covariance measurement of the QMC data again yields an
unphysical spectrum.

In contrast, our multiwedge approach is numerically stable
over a wide range of input data selections. It also does not re-
quire an a posteriori tuning of some parameter like the opening
angle of a single wedge. As usual, only the principal branch
cuts of the Green’s function must not be crossed by the selected
data set. This profound improvement in stability comes at
the price of a computationally much more involved MaxEnt
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FIG. 10. (Color online) Current as a function of the voltage for
different interaction strengths.
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FIG. 11. (Color online) Comparison of the single-wedge ap-
proach from Ref. 4 and the multiwedge approach at U = 6�,
β� = 10, e� = 0.5�.

procedure. Furthermore, to understand and be able to control
how it works an explicit knowledge of function theory of
several complex variables is mandatory. The two-dimensional
(2D) spectral function is very much interlinked with the global
structure of the Green’s function by partially encoding the
branch cut structure. As a consequence, the default model
has to be constructed including this prior knowledge and
all functions occurring in the MaxEnt procedure have to be
handled properly with respect to their function-theoretical
meaning. This especially means that the behavior at infinity of
the central object in the 2D continuation, the 2D generalized
spectral function Ã(ϕ,ω), has to be modeled very carefully,
a requirement which is unimportant for a conventional 1D
continuation, as well as the from the point of view of the
single-wedge continuation. The spectrum shown in the right
panel in Fig. 11 is the result of this procedure. The previously
mentioned selection of the default model was accomplished
by adjusting the default model parameters until the posterior
probability as determined by the MaxEnt was maximal. Note
that the numerical representation of the kernel is not fully
optimal yet; but even at this stage, the result is much more
reliable than that from the single-wedge method.

Let us add a final remark for practical purposes based on
the properties which were just elaborated. When implementing
our MaxEnt approaches to the double analytic continuation
within the Matsubara-voltage formalism, it is best to start with
the single-wedge approach and validate equilibrium spectral
functions (� = 0) as done in Ref. 4 in order to verify that QMC
statistics are incorporated properly. The step to nonzero �, i.e.,
nonequilibrium, is then to implement the multiwedge kernel,
which contains single-wedge kernels as building blocks, and
plug it into the MaxEnt program. This second step also requires
a higher level of knowledge regarding the function-theoretical
structures involved. Also note that the present algorithm
leaves much room for improvement, since there are many
numerical aspects which are still far from being optimal in
our implementation: Previously mentioned was the numerical
representation of the kernel. A second important problem
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is a careful annealing procedure for successively lowering
temperatures. A third and major problem as one approaches
the Kondo limit is the further incorporation of corrections to
the multiwedge approach, as elaborated in Sec. V.

In the next section of the paper, mathematically involved
details of the structure of the Green’s function are analyzed
systematically. It comes along with an introduction of the
relevant concepts of the theory of several complex variables.
Those are, in particular, needed for the derivation of the
MaxEnt inverse problem, Eq. (72), which leads to the results
discussed in the present section. The latter mathematical
derivation is provided in Sec. IV. It may be convenient to
skip Sec. III on first reading and directly go to the MaxEnt
derivations and discussions of Sec. IV.

III. SEVERAL COMPLEX VARIABLES AND THE
GREEN’S FUNCTION

We want to provide a detailed physicist’s introduction to
the basic mathematical structures of functions with several
complex variables, essential for a full understanding of the
Green’s function within the Matsubara-voltage formalism. In
particular, we attempt to answer the question by deciding
which means of intuition from conventional function theory
is appropriate or misguiding in the context of dynamic
expectation values.

As the next step we describe the analytic structure of
dynamic correlation functions G(zϕ,zω) appearing as a funda-
mental object in the Matsubara-voltage formalism (see paper
I for details) by means of the function theory for multiple
complex variables. Uniqueness of the mathematical procedure
involved in the analytical continuations is proven and the
connection to MaxEnt approaches for the inference of spectral
functions is made.

A. Holomorphy of functions of several complex variables

In order to discuss the notion of holomorphy in the context
of functions with several complex variables we partially follow
the book by Vladimirov.16

A function G of one complex variable is holomorphic at
a point z0, if and only if the Cauchy-Riemann differential
equation

∂G

∂z̄ω

∣∣∣∣
z0

= 0 (3)

is satisfied. The notion for holomorphy of functions of several
complex variables is a natural extension of this definition: A
function f (z), with z ∈ Cd , is holomorphic with respect to z

at the point z(0) if and only if it is holomorphic with respect to
each individual variable,

∂f

∂z̄i

∣∣∣∣
z(0)

= 0, i = 1, . . . ,d. (4)

Note that in the following we always denote vectors in Cd (d >

1) by an underlined symbol such as z. Hartogs’ fundamental
theorem asserts that definition (4) is also equivalent to the
Weierstraß definition of holomorphy for several variables. The
latter calls a function holomorphic at z0 if and only if there ex-
ists an open neighborhood M of z(0), such that for all z ∈ M the

function f may be written as an absolutely convergent power
series f (z) = ∑∞

|α|=0 aα(z − z(0))α . α denotes the multi-index

for the monomial zα := ∏d
n=0 zαn

n , and |α| := ∑d
n=0 αn. An

analytic complex function of several variables is holomorphic.
The notion of holomorphy implied by Eqs. (4) is thus as

natural and intuitive as in the 1D case.

B. Domains of holomorphy and biholomorphic transformations

The major qualitative difference between single- and
multivariable complex analysis is contained in the notion
of a domain and the geometric equivalence among holo-
morphic functions arising from classes of domains. This
has far-reaching consequences to the theory itself, such as
the construction of integral representations. In the context
of our formalism we aim at integral representations. We
thus first comment on the basic structures on which integral
representations operate. Furthermore, we point out the most
prominent differences to conventional function theory. The
notion of a domain in single-variable complex analysis is
replaced with the notion of a domain of holomorphy in
multivariable complex analysis; the notion of a conformal
map is replaced by the notion of a biholomorphic map. We
will address the most prominent differences by first reminding
the reader of basic structural properties of 1D complex analysis
and then introducing the corresponding terminologies of the
more-dimensional theory.

1. One-dimensional function theory

In 1D complex analysis, domains are defined as open
connected subsets of C. For the time being, we restrict the
discussion to simply connected open sets, i.e., open connected
sets with no holes.

Conformal maps between domains U , V , namely functions

m : U → V, z �→ m(z), (5)

which are holomorphic and invertible (one to one), provide
links between certain classes of domains. The Riemann
mapping theorem states that conformal maps between any
simply connected U �= C,∅ and the unit disk exists. That is, all
simply connected domains �= C,∅ are conformally equivalent:
Their structures of holomorphic functions map one to one to
each other and are conformally diffeomorphic. Generalizing
the concept of holomorphy to Riemannian surfaces, conformal
maps exist only for surfaces of the same topological genus.
The uniformization theorem finds that for simply connected
Riemann surfaces (topological genus 0) up to conformal
equivalence three classes exist:

(i) the unit disk D1 = {z ∈ C : |z| < 1},
(ii) the complex plane C,

(iii) the Riemann sphere C ∪ {∞}.
These three surfaces form the so-called moduli space of

genus 0, defined as the space of conformally inequivalent
Riemann surfaces of genus 0. In general, the size of the moduli
space of a Riemann surface of genus g grows as a function of g.
Each modulus represents an equivalence class of holomorphic
functions. Conformal equivalence plays an important role in
physical applications such as 2D potential flows around airfoils
or conformal quantum field theory.
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One natural consequence of the conformal equivalence of
all nonempty simply connected domains U � C1 is that there
always exists a function which is not analytically continuable
beyond the domain: The function

f0(z) =
∞∑

α=0

zα! (6)

is holomorphic on the unit disk but may not be analytically
continued to larger domains.16 Using a conformal map m

from the unit disk to U , which exists due to the Riemann
mapping theorem, one finds the function f0 ◦ m−1 which
cannot be analytically continued beyond U . One also calls
the unit disk the domain of holomorphy of f0, i.e., the largest
domain for which f0 is holomorphic. U is the domain of
holomorphy of f0 ◦ m−1. For a given domain G, if there exists
any function f for which G is the largest possible domain in
which f is holomorphic, the domain is called a domain of
holomorphy.

In general, any domain is also a domain of holomorphy in
conventional complex analysis. Due to the simple structures
arising from these far-reaching equivalences, the conventional
function theory of one complex variable is widely considered
to be a finalized field of mathematical research.

2. Multidimensional function theory

The two final statements of the last section are completely
incorrect for several complex variables Cd , d � 2.

In several complex variables,
(i) a domain is not necessarily a domain of holomorphy;

(ii) domains of holomorphy are usually not biholomorphi-
cally equivalent.

An example of a domain which is no domain of holomorphy
is the hollow sphere (see paragraph b below), because all
analytic functions in the hollow sphere can be analytically
continued to the sphere. As compared to 1D function theory,
the emerging structures are thus very rich. Depending on
the domain geometry, very different sheaves of holomorphic
functions17 will arise.

(a) Biholomorphic maps. The tool of a biholomorphic map,
as mentioned in the second point, is the generalization of a
conformal map to several complex variables. If a holomor-
phic mapping m : U → U ′, with U,U ′ ⊂ Cd is invertible,
it is called a biholomorphic map. Two domains U , U ′ are
biholomorphically equivalent, if and only if such a map exists.
They will have an equivalent sheaf of holomorphic functions.
Biholomorphic maps do not necessarily preserve angles.
Therefore, they are usually not conformal. Nevertheless, with
respect to the holomorphic structure, they are the natural
generalization of conformal maps on C, because they are
complex diffeomorphisms: The inverse of a biholomorphic
map is also holomorphic.16

(b) Domains of holomorphy and holomorphic envelopes.
A striking example of a domain ⊂ C2 which is not a domain
of holomorphy is given by the hollow sphere M := {z =
(z1,z2)T ∈ C2 : 1

2 <
√

|z1|2 + |z2|2 < 1}. In sharp contrast to
the single-variable case, one can show that any holomorphic
function f : M → C may be analytically continued to the unit
sphere. The unit sphere is, in fact, a domain of holomorphy
and is thus named the holomorphic envelope of M (Ref. 16).

This extends to the famous result by Friedrich Hartogs
that isolated singularities are always removable for analytic
functions Cd → C, d � 2 (Hartogs’ lemma). While isolated
singularities play an essential role in the residue calculus in
the d = 1 case, the d � 2 case is, due to Hartogs’ result, of
an entirely different nature. As we see in Sec. III C the theory
of integral representations of complex functions for d � 2 has
consequently a very different character as compared to the
d = 1 case.

Since ordinary domains such as the hollow sphere are rather
friendly as far as analytic continuation is concerned, mathe-
maticians restrict to the systematic study of corresponding
envelopes of holomorphy, i.e., the domains of holomorphy.
One can show that a domain is a domain of holomorphy if and
only if it is a so-called pseudoconvex domain. Pseudoconvexity
is a certain generalization of convexity from Rd to Cd

(Ref. 16). For this reason, the fundamental domains of
holomorphy in our application, the wedges, are indeed convex
(cf. Sec. III D).

(c) Biholomorphic equivalence. In order to provide a
classification of domains of holomorphy in Cd , d � 2, the
fruitful strategy from d = 1, namely using biholomorphic
equivalences, is adopted. Nonempty simply connected do-
mains of holomorphy � Cd are usually not biholomorphically
equivalent. There are many different types of holomorphic
structures, depending on the domain geometry.

A prominent example of biholomorphically inequivalent
domains of holomorphy is given by the unit ball |z| < 1 and the
bicylinder D1 × D1 in C2. The unit ball in higher dimensions
is with regard to the holomorphic structure in no way related to
the unit disks and carries, in fact, a rather singular holomorphic
structure.

C. Integral representations

As one might have already guessed from Hartogs’ lemma
and the domain dependence of the mathematical structures,
finding an analogy to Cauchy-like integral representations,
yielding, for example, the spectral representation of our two-
variable Green’s function, turned out to be a cumbersome
task.

At present, one knows several, more or less general,
possibilities to construct such representations, even with dif-
ferent dimensions of the integration manifolds. The Bochner-
Martinelli representation16 is, for example, probably the most
general integral representation, but the integration manifold is
2d − 1-dimensional.

For our practical purposes, a minimal integration space
dimension is, of course, most desirable to reduce the number
of fitting variables when reconstructing the function by a
MaxEnt-like Bayesian inference technique.

1. The Shilov boundary

In d = 1 complex analysis, Cauchy’s integral represen-
tation reconstructs all values of a simply connected open
domain of finite radius using the limit values on the topological
boundary, as long as the boundary values are continuous. That
is, the structure on the topological boundary determines the
structure of the interior.
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∂D

D

(a) Cauchy (d = 1)

S

D

(b) Bergman-Weil (d = 2)

FIG. 12. Comparison of Cauchy and Bergman-Weil integral
representation theories. Integrations run over (a) the full topological
boundary ∂D and (b) the Bergman-Shilov boundary S ⊂ ∂D of an
analytic polyhedron, respectively.

For d > 1, the topological boundary can, in this sense,
be reduced to an often much smaller set, the so-called
distinguished or Bergman-Shilov boundary.18 In the 1930s,
Stefan Bergman discovered the distinguished boundary in
the context of C2 for bounded domains with piecewise
smooth boundaries. He found that under certain regularity
conditions, an integral representation with respect to an only
2D manifold S of all intersections of the smooth boundaries
was possible, using the so-called Bergman kernel function. A
precise geometric and analytic description of these results is
provided in great detail in Chap. XI of Ref. 22. A pictorial
comparison of the resulting Bergman-Weil representation to
the Cauchy formula is provided in Fig. 12. These concepts
where independently discovered by Shilov in the 1940s in the
rather different context of commutative Banach algebras.18

(a) Generalization. In the modern terminology, the Shilov
boundary, as a generalization of the Bergman-Shilov boundary,
may be defined for any compact space with respect to
an algebra of continuous complex-valued functions on the
space.18 If we, for example, find physical constraints imposing
certain conditions to the set of holomorphic functions, the
Shilov boundary with respect to these functions may be
reduced to a smaller set. If a sufficiently elaborate kind of
integral representation is used, this may enable us to again
reduce the number of linear fit parameters significantly in the
Bayesian inference problem.

(b) Examples. For the domains with piecewise smooth
boundaries which Bergman investigated, S is given by the
unification of all possible intersections between the smooth
boundary hypersurfaces as long as certain regularity conditions
hold. We return to our two examples from Sec. III B 2 c,
the bicylinder and the unit sphere, and comment on their
Bergman-Shilov boundaries.

The bicylinder, D1 × D1, is one of the most easily acces-
sible domains of holomorphy, because it simply factorizes
into two D1 disks in C. A minimal integral representation of
a holomorphic function which is continuous on the closure
D1 × D1, is simply given by the product of two conventional
Cauchy representations (see Theorem 2.2.1 in Ref. 19),

f (z) = 1

(2πi)2

∫∫
S1×S1

d2ζ
f (ζ )∏

k(zk − ζk)
. (7)

Therefore, the Bergman-Shilov boundary of D1 × D1 is given
by the only 2D toroidal subset S1 × S1 = ∂D1 × ∂D1 of the
3D topological boundary ∂(D1 × D1) = ∂D1 × D1 ∪ D1 ×

∂D1. Similarly, integral representations of domains which are
direct products of C1 domains can be constructed from the
conventional Cauchy integral formula.

It was already mentioned in Sec. III B 2 c that the unit sphere
in C2 is not biholomorphically equivalent to the bicylinder. In
contrast to the two connected smooth boundary hypersurfaces
of the bicylinder, the boundary hypersurface of the unit sphere
is not even a smooth hypersurface in Bergman’s notion.
One can show that here the Bergman-Shilov boundary is, in
fact, identical to the topological boundary. Thus, any integral
representation for holomorphic functions in domains such as
the unit sphere must invoke at least three real integrals. It is
an example of the strong distinguishments which have to be
made between certain classes of domains of holomorphy.

D. Holomorphic structure of the Green’s functions

As a next step, we systematically analyze the mathematical
structure of the Green’s function arising in the Matsubara-
voltage approach. The bare Green’s function with respect to
the two variables iϕm, iωn reads1

G0(iϕm,iωn) =
∑
α=±1

�α/�

iωn − α(iϕm − �)/2 − εd + i�sgnnm

.

(8)

Here, sgnnm := sgn(ωn − αϕm/2). Performing the analytic
continuations iωn → zω, iϕm → zϕ , the sign function in the
denominator results in an ambiguity, as far as the definition of
domains, for which G0 is holomorphic, is concerned.

Choosing a branch cut structure which corresponds to the
continuation

sgn(ωn ± ϕm/2) → sgn(Im zω ± Im zϕ/2) (9)

appears to be most sensible from both a mathematic and a
physical point of view.

From the former perspective, in contrast to other choices
the resulting domains are also domains of holomorphy and are
thus “maximal” with respect to the holomorphic structure. The
four domains of holomorphy are given by C2 separated into
wedges by the two branch cut hyperplanes Im zω ± Im zϕ/2 =
0 [see Fig. 13(a)]. From the latter, it is just the imaginary
part of the linear combinations of zω and zϕ , appearing in
the denominators of perturbative expressions in U , which
yields the crucial sign-switching δ functions generating the
nonanalytic terms separating the domains for which G is
holomorphic. See, e.g., Appendix B of paper I.

Consequently, for a finite interaction U �= 0, the appearance
of a branch cut must be expected for any new kind of linear
combination of zω and zϕ in the denominators of the integrands
in the perturbation expansion. For example, second-order
perturbation theory from Ref. 1 indicated that particle-hole
bubbles create higher-order branch cuts Im zω − γ

2 Im zϕ = 0,
with γ ∈ Z odd, due to the structure of convolutions which
are involved. In a later publication11 it was pointed out that
vertex corrections seem to introduce yet another branch cut
for Im zϕ = 0. The physical retarded Green’s function is then
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FIG. 13. (Color online) Branch cut structure of the Green’s function. The fully interacting structure is obtained from the perturbative
expansion in U/�.

given by

Gret(ω) = lim
zω→ω+i0+

limδϕ→0+ + limδϕ→0−

2
G(� + iδϕ,zω);

(10)

i.e., one has to average over the two possible limits with respect
to δϕ .

Note that the latter subtlety was not taken into account in
the direct continuation using the cone Cε in Ref. 4 and also
not in the initial approach in Ref. 1.

1. Resulting mathematical assumptions

The following assumptions are being made for the mathe-
matical structure of the Green’s function.

(1) By means of holomorphy, we obtain conelike con-
straints for the combinations of imaginary parts, as depicted
in Fig. 13(b). More precisely, we require G to be a solution
of the Cauchy-Riemann equations (4) for any z(0) except for
those z(0) for which

Im z(0)
ω = γ

2
Im z(0)

ϕ or Im z(0)
ϕ = 0, (11)

with some γ ∈ 2Z + 1. Those z(0) define the branch cut hy-
perplanes and delimit the wedges for which G is holomorphic.

(2) We require the interacting Green’s function G(z) to be
bounded, i.e.,

sup
z∈C2

|G(z)| < ∞. (12)

(3) We assume that the Green’s function G(z) is uniquely
defined by the discrete function values G(iϕm,iωn), which are
obtained from the effective-equilibrium computations. That is,
we require that the continuation to a multisheeted holomorphic
function,

G(iϕm,iωn) → G(zϕ,zω), (13)

is unique.
The second assumption is justified by the structure of the

convolution equations in perturbation theory and the boundary
conditions that terms eiϕmβ/2 and eiωnβ , evaluate to 1 and −1
before the analytic continuations are carried out.

A proof of the third statement, which is, of course, crucial
for the physical theory itself, will be provided in Appendix A.
It is based on assumptions 1 and 2 and assumption 3′, which
sharpens the requirements on the z → ∞-asymptotics:

(3′) Given arbitrary x(0) ∈ R2 \ {0} and ζ ∈ C, we have

lim
ζ→∞

|ζG(ζx(0))| < ∞ ⇔ x(0)
ω �= ±x(0)

ϕ /2. (14)

In other words, G(z) is required to decay like a usual Green’s
function as a function of ζ , where z = ζx(0), if and only if x(0)

satisfies the regularity condition x(0)
ω �= ±x(0)

ϕ /2.

2. Justification of assumption 3′

Assumption 3′ may be justified as follows.
Consider the absolute value of the free Green’s function (8),

|G0(zϕ,zω)| �
∑
α=±1

�α

�

1

|(zω − α(zϕ − �)/2 − εd + i�sgnIm (zω − αzϕ/2)|.

It is obvious that it decays ∝ 1
ζ

when zϕ = ζx(0)
ϕ and zω = ζx(0)

ω

for the nonsingular combinations of x(0)
ϕ and x(0)

ω . It does not
decay at all in the singular cases x(0)

ω = ±x(0)
ϕ /2.

It is easy to check that interaction U > 0 does
not change this high-energy structure. Let us exam-
ine the second-order self-energy expression [Eq. (15) in

235140-12



IMAGINARY-TIME QUANTUM . . . . II. ANALYTIC ... PHYSICAL REVIEW B 87, 235140 (2013)

Ref. 1]:

�(2)(z) = U 2
∑
αi

[
3∏

i=1

∫
dεi

�αi

�

]

× fα1 (1 − fα2 )fα3 + (1 − fα1 )fα2 (1 − fα3 )

zω − (α1 − α2 + α3) zϕ−�

2 − ε1 + ε2 − ε3

,

with fαi
= f (εi − αi�/2).

Due to the structure of the denominator, we see that on top
of the singular directions of the bare Green’s function, x(0)

ω =
±x(0)

ϕ /2, we also have the singular directions x(0)
ω = ± 3

2x(0)
ϕ .

Consequently, assumption 3′ is incorrect for the second-
order self-energy. Nevertheless, when inserted into Dyson’s
equation,

G(2)(z) = G0(z)

1 − G0(z)�(2)(z)
, (15)

we see that for the directions x(0)
ω = ± 3

2x(0)
ϕ the limiting

behavior of G0 is adopted, i.e., the behavior (14).
Note that the uniqueness proof of the appendix also

holds when directly applied to the self-energy, because the
singular directions of the second-order perturbation theory,
x(0)

ω = ± 3
2x(0)

ϕ , are not required to be regular in the proof. This
is because the direction x(0)

ω = ± 3
2x(0)

ϕ also defines a branch
cut (assumption 1).

E. Tubular cone domains (“wedges”)

As we have seen, the structure of G0 combined with the
structure of convolutions in the perturbation theory with re-
spect to U indicates that the numerous branch cut hyperplanes
divide C2 into several, in fact infinitely many, wedges of the
form T C = R2 + iC. C is by definition a convex cone with its
vertex at zero. See also the pictorial discussion in Ref. 4. Due
to the convexity of C, T C is pseudoconvex and thus a domain
of holomorphy.16 In the mathematical classification scheme,
domains like these are called tubular cone domains.

1. Geometry of the cones

We briefly introduce certain notions of the description
of the analytic geometry of cones in Rd . This is necessary
to thoroughly follow the mathematical formulas which are
involved in the description of the analytic structure of T C . The
cone C with vertex at zero is formally defined by the scaling
property x ∈ C ⇒ ∀ λ > 0 : λx ∈ C.

Its dual cone C∗ is defined via the standard scalar product

(ξ,x) :=
d∑

k=1

ξkxk; ξ,x ∈ Rd , (16)

by

C∗ := {ξ ∈ Rd | ∀ x ∈ C : (ξ,x) � 0}. (17)

C∗ represents the space of positive semidefinite linear func-
tionals on C when the functional form (16) is considered.
The dual cone is important because the construction of kernel
functions often involves Fourier transforms.

A convex cone is a cone for which the straight line between
any pair of points within the cone is also contained by the cone.

We also use the analytic continuation of the scalar product (16)
with respect to x. We continue x → z holomorphically in (16):

(ξ,z) :=
d∑

k=1

ξkzk; ξ ∈ Rd ,z ∈ Cd . (18)

2. Analytic structure and biholomorphic equivalence classes

Tubular cones and domains are well-known objects in the
theory of several complex variables, because they naturally
arise in certain fields of mathematics. As a consequence,
many efforts were put in for a detailed understanding of their
structure. In the prominent physical example, axiomatic quan-
tum field theory, the cones represent forward and backward
light cones, in 4D spacetime, d = 4. A celebrated result was
Bogolyubov’s edge-of-the-wedge theorem.20 Mathematical
examples include Fourier analysis, functional analysis, the
theory of hyperfunctions, and the theory of partial differential
equations.

A key component of the wedge is given by its edge, namely
the real subspace associated with the vertex of the cone.
Because in our case the vertex is located at zero, the edge
of the wedge T C can be formally identified with an oriented
copy of the real subspace,

EdgeT C := Rd + i0C, (19)

where 0C is an infinitesimal vector within the cone C. Although
there exist, depending on the direction approaching the origin
within C, several infinitesimals 0C , the Edge is well-defined
through (19), because all infinitesimals in C are obviously
equivalent with respect to holomorphic continuation in T C .
T C may be regarded as a generalization of the upper half
plane.

Let C,C ′ be arbitrary convex cones in Rd , C �= C ′. T C

and T C ′
are in general not biholomorphically equivalent.

This means that the sets of holomorphic functions living
on them are structured differently. Wedges within the space
C2 are fortunately an exception to this rule: T C and T C ′

are biholomorphically equivalent for any combination C,C ′.
See also the introductory notes in the corresponding part
of the second volume of Ref. 21. In C2, biholomorphisms
between T C and T C ′

may be constructed easily using com-
plexified rotations and dilations of R2: Consider that the
real (nonsingular) matrix M : R2 → R2, x �→ ( a b

c d )x maps
C to C ′, i.e., C ′ = MC. The corresponding biholomorphism
between T C and T C ′

is obtained from the complexified map
M̃ : C2 → C2, z �→ ( a b

c d )z. It is easy to see that T C ′ = MT C

and that M is holomorphic and invertible.
If the complexified linear map is a rotation, we also call

it a biholomorphic rotation when we want to emphasize the
biholomorphic character of the mapping.

Note that the helpful notion of the Bergman-Shilov bound-
ary is not directly applicable to T C , because T C is unbounded.
However, as discussed next, sequences of bounded domains
approaching T C from its interior may be used to understand
the holomorphic structure on T C .
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Bn

TC

Sn

Dn

Edge∩Sn

Bn−1

FIG. 14. (Color online) An artist’s impression of asymptotically
filling the wedge T C with the sequence Dn. Dn is a domain with
piecewise smooth boundaries created by intersecting with a growing
bicylinder Bn, creating the analytic polyhedra Dn. The corresponding
sequence of Bergman-Shilov boundaries improperly converges to the
set Edge ∪ {∞}. Therefore, the sheaf of holomorphic functions on T C

is solely characterized by its edge values and its asymptotic behavior
z → ∞.

3. Bergman-Weil representations

A sequence of bounded domains Dn ⊂ T C , limn→∞ Dn =
T C , with piecewise smooth boundaries like in [Fig. 12(b)]
may be easily constructed, such that the edge of the wedge
contains a part of the Bergman-Shilov boundary Sn of Dn

and such that the other subsets of Sn disappear to ∞ as
n → ∞. In our case, d = 2, an explicit construction of such a
sequence may be obtained by intersecting T C with a growing
bicylinder Bn := Rn(D1 × D1), Dn := Bn ∩ T C , with radius
Rn ∝ n. The procedure is sketched in Fig. 14. One finds
that the sequence of Bergman-Shilov boundaries improperly
converges to

S∞ := EdgeT C ∪ {∞}, (20)

where “∞” informally denotes the point or merely a list
of points which emerge when T C is, depending on the
holomorphic structure, compactified suitably. At first glance,
each direction for approaching ∞ might yield a different point
in {∞}. The points “∞” carry the additional information which
is necessary to turn the structure on EdgeTC

into a unique
description of the holomorphic structure on T C .

The Bergman representation for an analytic polyhedron
in C2 may be obtained by the following, rather technical,
procedure, whose details are not particularly relevant but
enable us to investigate rather explicitly the structure of a
suitably large class of holomorphic functions on a wedge.
An excellent pedestrian’s introduction to it is provided by
Bergman’s original monograph, Ref. 22. The book also
provides a comprehensive introduction to the Bergman-Shilov
boundary and biholomorphic maps, using the example of
analytic polyhedra. Equations of the form

ζ (k) = f(k)(z,λk), (21)

with λk ∈ �k ⊂ R,k = 1, . . . ,K , where f(k)(z,λk) are λ-
parametrized families of analytic functions of z, shall define the
analytic polyhedron. Each equation yields a surface in z space

for a given λ and a hypersurface hk in z space as λ is varied
continuously. The mutual intersections Skl = hk ∩ hl yield the
Bergman-Shilov boundary surface S = ⋃

k,l Skl . Skl is then
parametrized by a function z = g(kl)(λk,λl). A holomorphic
function f on the analytic polyhedron may then be written
with respect to the Bergman-Shilov boundary of the latter
using the Bergman kernel function

Bkl =
∣∣∣∣∂

(
g

(kl)
1 ,g

(kl)
2

)
∂(λk,λl)

∣∣∣∣( fl(z1,z2,λl)fk
(
z1,g

(kl)
2 ,λk

)(
g

(kl)
1 − z1

)(
g

(kl)
2 − z2

)
− fk(z1,z2,λk)fl

(
z1,g

(kl)
2 ,λl

)(
g

(kl)
1 − z1

)(
g

(kl)
2 − z2

) )
. (22)

The integral representation with respect to f |S then reads

f (z) = − 1

8π2

∑
k �=l

∫
λk,λl

f
(
g

(kl)
1 ,g

(kl)
2

)
Bkl

f(k)(z,λk)f(l)(z,λl)
(23)

and can be applied directly to our Dn domains.
An explicit test on whether a Bergman integral repre-

sentation for G0 on the Dn = Bn ∩ T C domains is feasible
yields that the subsets of Sn which go to ∞ may not be
neglected for G(z) functions. This is because G0(z) has a
nonzero limit as z → ∞ if one goes along the cross-shaped
submanifold Re zω = ±Re zϕ/2 and keeps Im z constant. Due
to the independence of Im z this problem occurs for each of
the wedges. Hence, the Bergman kernel function (22) is only
of limited use for us. We thus do not go into further details of
this rather clumsy computation here.

The formal use of the sequence Dn enables us to see
very explicitly that the Edge of T C is with respect to the
representation (22) the only carrier of structural information
which involves finite values of z. The rest of the information,
then uniquely defining the holomorphic structure on T C , is
encoded in the several possible classes of limiting behavior as
z approaches infinity.

4. Cauchy-Bochner integral representation

As a straightforward consequence of this, assuming a
certain limiting behavior of the considered set of functions on
T C , integral representations with respect to the EdgeRd + i0C

may be derived. Even more generally, a constraint on the
function class which also limits the Edge behavior, can be
imposed in such a way that the Edge function yields a unique
description. The several possible z → ∞ behaviors are then,
using the information from the constraint, encoded in the Edge.
This appears to be linked deeply to the extension of the notion
of the Bergman-Shilov boundary to the notion of the Shilov
boundary mentioned in the course of Sec. III C1: Considering
a subset of the sheaf of holomorphic functions on a certain
(compactified) domain may cause the Shilov boundary to
“shrink.”

We now discuss one of the earliest developments going
beyond simply restricting the considered function set such
that a naive extrapolation of Bergman representations, like in
Fig. 14, holds. It was another extension of the Cauchy integral
formula with respect to tubular cones by Salomon Bochner.
He considers a function f which is holomorphic on T C and
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satisfies the constraint

‖f (x + iy)‖ � Mε,f (C ′)eε|y|, (24)

which has to hold for any compact cone C ′ ⊂ C and for any
ε > 0, where Mε,f (C ′) is a suitably chosen real number. ‖ · ‖
is a norm which integrates out the x variable, ‖f (x + iy)‖2 :=∫

ddx |f (x + iy)|2 (Ref. 16).
Inequality (24) constrains the limiting behavior z → ∞ in

a sufficiently strong way such that an integral representation
with respect to the Edge may be constructed.

Namely, the Cauchy-Bochner representation then allows a
function f satisfying (24) to be written as

f (z) = 1

(2π )d

∫
ddx ′ KC(z − x ′)f (x ′ + i0C), (25)

with the Edge values f (x ′ + i0C). Here, the so-called Cauchy
kernel16 of the cone C, defined as

KC(z) :=
∫

C∗
ddξ ei(ξ,z), (26)

was introduced. It is straightforward to compute the Cauchy
kernel for our wedges with this formula: see the Appendix of
Ref. 4. For our purposes, we provide a general but easily
applicable expression for further numerical and analytical
computations in Sec. III G.

Unfortunately, as in the Bergman approach, a numerical test
of Eq. (25) for f = G0 using an arbitrary wedge for which G0

is holomorphic shows that the Cauchy-Bochner representation
(25) is also incorrect for G0. As a consequence, we find that
the Green’s function does not satisfy (24). This is compatible
with the fact that the left-hand side of (24) diverges in the case
f = G0, no matter which C ′ is considered.

Nevertheless, as we will see, the Cauchy-Bochner kernel
(26) will serve as a building block for the construction of an ex-
act integral representation for a different class of holomorphic
functions which, in fact, contains the holomorphic branches of
our Green’s function G(z) on the respective wedges. As such,
it is essential as a connection of real-time and imaginary-time
structure of the Green’s function.

5. The tubular octant H× H and biholomorphic equivalence
to the bicylinder

Due to the biholomorphic equivalence of all T C in C2

any of our wedges which arise for the Green’s function may
be mapped biholomorphically to the tubular octant H × H =
R2 + i (R+ × R+), where H is the upper half plane of C.
This domain may itself be mapped biholomorphically to the
bicylinder D1 × D1 via a piecewise Möbius transformation of
the coordinates. Hence, all wedges of the Green’s function are
biholomorphically equivalent to the bicylinder. Let us denote a
corresponding biholomorphism by mC : T C → D1 × D1. We
would like to comment on this due to the striking simplicity
of the bicylinder and of domains which are direct products
of C1 domains with respect to the construction of integral
representations. From the point of view of this construction,
the tubular octant may be regarded as the simplest representant
of the biholomorphic equivalence class of all wedges in C2.

Due to the premises of the Cauchy integral formula, a
usage of the representation (7) for the biholomorphically

(1, 1)

mC(Edge)

S1 × 1

S1 × S1

p∞
1 × S1

FIG. 15. (Color online) On the distinguished boundary surface
of the bicylinder, the picture of EdgeT C under the componentwise
Möbius transformation mC is delimited by the dash-dotted lines
p∞. A discontinuity of G|T C ◦ m

−1
C occurs at the intersection point

(1,1) of the two circles and prevents a Cauchy representation from
being applicable. The violation of the Cauchy-Bochner condition (24)
appears to be related to the occurrence of the discontinuity.

transformed sheaf of holomorphic functions is feasible in case
the transformed Green’s function G|T C ◦ m

−1
C is continuous

on its topological boundary ∂(D1 × D1). Note that under
the biholomorphic transformations, S1 × S1 is mapped to the
edges of the T C wedges. The “∞” in T C maps to “∞” in
H × H under biholomorphic transformation, and that again
maps biholomorphically, using the componentwise Möbius
transformation zk−i

zk+i
to the points p∞ := {1} × S1 ∪ S1 × {1}.

Note that the points p∞ ⊂ ∂(D1 × D1) are also part of the
distinguished boundary torus S1 × S1.

The boundary behavior of the transformed Green’s function
G|T C ◦ m

−1
C is not continuous at the intersection point (1,1)

of the two circles p∞, due to the properties of G0|T C at ∞
leading to singular directions, as summarized in assumption 3′
of Sec. III D. An illustration may be found in Fig. 15.

Therefore, using the biholomorphic equivalence to the
bicylinder is not immediately helpful for the construction
of an integral representation of the Green’s function G.
Nevertheless, it is essential in the application of Vladimirov’s
approach, which is the subject of the next section.

F. Vladimirov’s integral formula

Vladimirov provided a generalization of the so-called
Herglotz-Nevanlinna representation for the upper half plane
to tubular cone domains. His investigations were motivated
by applications in the field of linear passive systems in
mathematical physics.4,21,23 Due to its generality, the approach
is applicable to the analytic wedges of the interacting Green’s
function G.

1. Herglotz-Nevanlinna representation (d = 1)

We discuss the conventional Herglotz formulas. Herglotz’
representation theorem considers holomorphic functions in the
open unit disk D1 which have a positive real part, the so-called
Carathéodory functions.24–26 By separating a phase factor out
of the function one can also consider functions with positive
or negative imaginary part, and so on. Since the open unit
disk can be conformally mapped to the upper half plane H,
using the Möbius transformation z−i

z+i
, as mentioned above, the

representation can under certain circumstances be also used
for H.
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By considering Carathéodory functions, Herglotz’ theorem
only imposes assumptions on the positivity of the real
(imaginary) part of the function. In contrast to Cauchy’s
integral formula, no assumptions about the behavior of the
Carathéodory functions on the boundary of the disk are made,
such as the continuity.

The theorem states that every Carathéodory function f can
be represented by

f (z) = iIm f (0) +
∫ 2π

0

eit + z

eit − z
dσ (t) , (27)

where dσ is a non-negative finite measure.24

Regarding a different set of functions, a formally very
similar representation is the so-called Poisson formula, which
is the analog of the Cauchy formula to the real analysis of
harmonic functions (solutions of Laplace’s equation), and can,
in fact, be derived from it. It provides an integral kernel for the
solution to the Dirichlet problem for the Laplace equation on
the unit disk in R2. For a continuous function f : ∂D1 → R it
makes it possible to construct a harmonic function u : D1 → R
as follows (see pp. 169ff. in Ref. 27):

u(z) = 1

2π
Re

∫ 2π

0

eit + z

eit − z
f(eit ) dt . (28)

A comparison of Eqs. (27) and (28) shows that the measure
dσ of the Herglotz formula is, in fact, defined by the (possibly
singular) boundary limit of the holomorphic function.

As a natural extension of the Poisson formula, the Schwarz
integral formula reconstructs a holomorphic function f on the
closed unit disk from the real part of its boundary values, up
to a constant imaginary offset. It reads (p. 171 in Ref. 27)

f (z) = iIm f (0) + 1

2π

∫ 2π

0

eit + z

eit − z
f (eit ) dt . (29)

Apparently, the only formal difference between Eqs. (28) and
(29) is the different measure.

Due to the conformal equivalence, for a holomorphic
function f on the closed upper half plane Im z � 0, under
the assumption that there is an α > 0 for which |zαf (z)| is
bounded, one has the Schwarz representation in the following
form:

f (z) = 1

πi

∫ ∞

−∞

Re f (x + i0+)

x − z
dx . (30)

Note the formal equivalence to the spectral representa-
tion of a conventional Matsubara Green’s function, G(z) =∫

dx 1
−π

Im G(x+i0+)
z−x

.
Similarly, the Poisson kernel for the closed upper half

plane is

Py(x) = y

x2 + y2
, (31)

yielding the representation

u(x + iy) = 1

π

∫ ∞

−∞
Py(x − t)f(t) dt , (32)

with f ∈ Lp(R).
The full Herglotz-Nevanlinna representation of arbitrary

analytic functions with positive real part for the open upper

half-plane reads23

f (z) = z + i

πi

∫
dμ (x ′)

(x ′ − i)(x ′ − z)
− 1

π

∫
dμ (x ′)
1 + x ′2 − iaz + b.

(33)

Here, μ is given by the boundary-value distribution of Re f :

μ = Re bv f, (34)

where the operation bv denotes the boundary value distribution
of the function and μ(x) “=” Re f (x + i0+). The linear
coefficient

a = Re f (i) − 1

π

∫
dμ (x ′)
1 + x ′2 , (35)

and the constant term b = Im f (i).
For example, in the case of the function f (z) = i/πz, μ is

the Dirac measure μ(x) = Re bvf = δ(x) and the coefficients
a = b = 0. The case μ(x) = −aδ(x) is not permitted by
construction.

At first glance, Eqs. (30) and (32) and the connection to
the Herglotz-Nevanlinna representation (33) seem to be rather
straightforward applications of the Cauchy integral formula.
However, attempting the multidimensional generalization, we
found that in our case, d > 1, the Cauchy-Bochner way of
invoking KC for a representation, Eq. (26), is not valid for
the noninteracting Green’s function G0|T C ; see Sec. III E 4.
Remarkably, as found in Sec. III E5, taking assumption 2 from
Sec. III D in to account, we find that when transformed to
the bicylinder, the Green’s function G|T C ◦ m

−1
C is closely

related to a Carathéodory function, but the Cauchy-Bochner
representation is invalid.

These subtleties are apparently reflected by the central
assumption (24) of Cauchy-Bochner representations.

2. Functions with positive real or imaginary part in T C

Note that the representation (33) can be also used for
bounded functions on the upper half plane. This can be seen
by formally introducing a shift in f which makes the real part
of the function of consideration positive definite.

While the signs of its real and imaginary parts will vary,
the Green’s function G|T C is, in fact, a bounded function,
assumption (12). This is why Vladimirov’s integral represen-
tation for functions with positive imaginary part turned out to
be applicable.4 Let us denote the set of holomorphic functions
with positive imaginary parts on T C by H+(T C). Due to the
biholomorphic equivalence of the Green’s function’s wedges
to the bicylinder, one may think of H+(T C) as a generalization
of the Carathéodory functions. Note that in the literature,
sometimes functions with positive real and sometimes func-
tions with positive imaginary parts are considered, resulting in
marginal differences in the equations.

3. Vladimirov’s kernel functions for T C

We now study the generalization of the Herglotz-
Nevanlinna representation to d-dimensional wedges.21,23

Vladimirov’s approach may be found for positive real parts in
Ref. 23 and for positive imaginary parts in Ref. 21. Because our
original work4 referred to Ref. 21 we would like to switch to
considering the class of functions with positive imaginary part,
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H+(T C), in the following. Let us first introduce Vladimirov’s
generalizations of the Poisson and Schwarz kernels, using the
Cauchy kernel KC from Eq. (26) as a starting point.

The (generalized) Poisson kernel for the wedge T C is
defined by21

PC(z) := |KC(z)|2
(2π )dKC(2iy)

; z = x + iy. (36)

In case of the tubular octant, it is the product of usual
Poisson kernels; however, it is no longer simply proportional
to the imaginary part of the Cauchy kernel. The (generalized)
Schwarz kernel with respect to a point z(0) = x(0) + iy(0) ∈
T C is given by

SC(z,z(0)) := 2KC(z)KC(z(0))

(2π )dKC(z − z(0))
− PC(x(0),y(0)). (37)

For a measure μ(x) we call

PC[ dμ ](z) :=
∫

dμ(x)PC(z − x) (38)

the Poisson integral with respect to μ.

4. Vladimirov’s theorem

We already pointed out that in the case d � 3 two arbitrary
different wedges, T C and T C ′

, are usually not biholomorphi-
cally equivalent. In particular, the wedge T C is not necessarily
biholomorphically equivalent to Hd when d � 3. Hence,
one may expect the structural similarity to the Carathéodory
functions to break down more easily in higher dimensions. This
is the reason why Vladimirov’s d-dimensional generalization21

of Herglotz’ theorem is stated in a comparably cryptic way
which will simplify considerably in our case d = 2, for the
reasons above.

Theorem: (Vladimirov, 1978/79). The following conditions
for a function f ∈ H+(T C) are equivalent for a cone C ⊂ Rd

and μ(x) := Im f (x + i0C):
(1) The Poisson integral PC[ dμ ] is pluriharmonic in T C ;
(2) the function Im f (z), z = x + iy ∈ T C , is represented

by the Poisson formula

Im f (z) = PC[ dμ ](z) + (a,y), (39)

for some a ∈ C∗, where C∗ is the dual cone of C;
(3) for all z0 ∈ T C , under the assumption that C is regular,

the Schwarz representation

f (z) = i

∫
Rd

SC(z − t,z0 − t) dμ (t) + (a,z) + b (40)

holds, with b = b(z0) = Re f (z0) − (a,x0). �
Note that pluriharmonic functions are the natural multi-

dimensional generalization of harmonic functions. A regular
cone C in our context is a cone for which 1/KC is nonsingular
in T C . In the cases d = 1,2,3 all pointed cones are regular.23

Using the equivalence of all T C in the case d = 2, in Ref. 4
we verified that the first statement of the theorem is true for
G|T C . This is so because it is known from the literature (see
Ref. 23, p. 134) that the Poisson integral is pluriharmonic for
any function H+(Hd ). Due to the biholomorphic equivalence
of all T C to H2 in C2, the two integral representations provide

ϑ

ratio r

Cr,ϑ

Cr,0
opening

FIG. 16. An arbitrary cone C with 0 as vertex can be parametrized
by an opening ratio r and an orientation angle ϑ . The rotation Rϑ

which maps Cr,0 to Cr,ϑ induces a biholomorphism between T Cr,0 and
T Cr,ϑ .

exact relations for all holomorphic sheets of the interacting
Green’s function. A parametrization of the Green’s function
with respect to their Edge values is gained by this. In our case,
the validity of the representation is due to the biholomorphic
equivalences first shown by Korányi and Pukánsky’s work on
the polycylinder.28

Note that the linear growth term a is zero for the Green’s
function, because it is bounded, as required by assumption
(12).

G. Application to the Green’s function

It turns out to be reasonable to specify a given cone domain
arising from the branch cut structure by an angle ϑ and an
opening ratio r (see Fig. 16). It is sufficient to consider the case
ϑ = 0 first, because relations for finite ϑ may be reconstructed
from biholomorphic rotations, as explained in Sec. III E 2.

1. Kernels for ϑ = 0

For the case ϑ = 0, a computation of the kernels KCr,ϑ

and PCr,ϑ
has been provided in the appendix of Ref. 4 already,

where the opening ratio r was named ε for technical reasons.29

We used the definition

Cr,ϑ :=
⋃

λ∈(−r,r)

{(x1,x2) ∈ R2 | x2 > 0 ∧ x1 = λx2} (41)

and computed the Cauchy and Poisson kernels via Eqs. (26)
and (36). The resulting Cauchy kernel is

KCr,0 (z) = −2r
∏

μ=±1

1

rz2 − μz1
, (42)

and the resulting Poisson kernel is

PCr,0 (z) = r

π2

∏
μ=±1

ry2 − μy1

(rx2 − μx1)2 + (ry2 − μy1)2
. (43)

We have not used an explicit formula for the Schwarz kernel
(37) yet, because the occurrence of the reference point z(0)

appears to introduce additional technical complications. The
shape of Eq. (43) is so simple because it can be computed from
the tubular octant, whose Poisson kernel is the product of usual
Poisson kernels. A simple real-valued 2 × 2 matrix acts as the
biholomorphism which converts the two representations.
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2. Operator notation

In order to put a stronger emphasis on the functional-
analytic nature of the integral representations which interrelate
edge and wedge values of the Green’s function, let us introduce
an operator notation for the Poisson integral and also for the
biholomorphic rotations.

Let us denote the set of all a priori admitted Green’s
functions on T C by GC . By “a priori admitted” we mean
those analytic functions G|T C : T C → C for which axiom
2 from Sec. III D holds (T C has to comply with axiom
1). Furthermore, let us denote the corresponding space of
boundary value distributions (edge functions) G|T C (x + i0C)
by EC .

In order to focus on the Poisson kernel, we introduce the
corresponding spaces of imaginary parts, G(I )

C and E (I )
C . We

denote by the operator PC the linear map

PC : E (I )
C → G(I )

C ,
(44)

Im G(x + i0C) �→
∫

dx2 PC(z − x)Im G(x + i0C).

Note that the Schwarz kernel (37) does not directly yield a
comparable map from EC to GC , due to the occurrence of the
z(0) reference point.

Furthermore, the rotation Rϑ , which maps the cone Cr,0

to the cone Cr,ϑ , induces a biholomorphic map R̃ϑ : T Cr,0 →
T Cr,ϑ (see Sec. III E 2). At this point we would again like
to emphasize that the biholomorphism does not connect the
different branches of the Green’s function on the wedges. It
merely yields a counterpart of a given holomorphic branch on
a biholomorphically equivalent wedge which can be formally
operated with. It is in that sense that is analogous to the concept
of a conformal map. This biholomorphism maps functions f ∈
GCr,0 to functions f ∈ GCr,ϑ

. This can be similarly represented
by the linear operator

Rϑ : GCr,0 → GCr,ϑ
, (45)

f (z) �→ f
(
R̃−1

ϑ (z)
)
. (46)

The operatorRϑ also naturally extends to a linear map from
ECr,0 to ECr,ϑ

, which we denote by the same symbol Rϑ .

3. Kernel functions at finite ϑ

Consequently, for finite ϑ , the Poisson kernel operator of
T Cr,ϑ is

PCr,ϑ
= RϑPCr,0R−1

ϑ . (47)

Equivalently, the Poisson kernel function of T Cr,ϑ is given by

PCr,ϑ
(z) = PCr,0

(
R−1

ϑ z
)
. (48)

In practical computations, the function can be evaluated
combining Eq. (43) and the rotation matrix

R−1
ϑ =

(
cos ϑ − sin ϑ

sin ϑ cos ϑ

)
. (49)

4. Edge properties of G0

Since we essentially reduced the structure of the Green’s
function to the edge values of their holomorphic branches, it
seems worthwhile to investigate the edge structure of G0, and

later also the perturbative structure of the theory in U , more
carefully. See Sec. III I for the deeper analysis.

The edge limit of the bare Green’s function (8), as a function
of the edge orientation ϑ , is given by

G
(edge)
0 (ϑ ; x) =

∑
α=±1

G
(edge),α
0 (ϑ ; x), (50)

where

G
(edge),α
0 (ϑ ; x) = �α/�

xω − α(xϕ − �)/2 − εd + i�sgnϑ

(51)

and

sgnϑ := sgn

(
cos ϑ − α

2
sin ϑ

)
. (52)

Apparently, the edge function only changes as a function
of ϑ whenever cos ϑ ± sin ϑ/2 crosses zero. This reflects the
equivalence of all directions

x + i0ϑ := x + i

(
sin ϑ

cos ϑ

)
0+ (53)

when approaching the edge within a holomorphic branch T C ,
as discussed in Sec. III E 2. The edge function changes
whenever ϑ crosses a branch cut, namely for the following
singular orientations in the interval [0,2π ):

ϑ
(sing)
1 = arctan 2; ϑ

(sing)
2 = π − arctan 2;

(54)
ϑ

(sing)
3 = π + arctan 2; ϑ

(sing)
4 = 2π − arctan 2.

These are the angles corresponding to the four half lines
emerging from the origin in Fig. 13(a). The orientations ϑ

(sing)
i

are also identical to the singular directions of assumption 3′ in
Sec. III D.

There is another subtle feature of the edge behavior of the
bare Green’s function. The real part,

Re G
(edge)
0 (ϑ ; x) =

∑
α=±1

�α

�
[xω − α(xϕ − �)/2 − εd ]

[xω − α(xϕ − �)/2 − εd ]2 + �2
,

(55)

is completely ϑ independent. As a consequence, for any branch
of G0, the edge limit Re G0(x + i0C) is identical.

Another property is that, following the instructions (10) to
obtain the physical limit as far as the orientation of the limiting
procedure is concerned, the function

Ã0(x) := − 1

π
Im G0(x + i0ϑ=0) (56)

is positive definite:

Ã0(x) =
∑
α=±1

�α/π

[xω − α(xϕ − �)/2 − εd ]2 + �2
. (57)

In particular, the noninteracting spectral function

A0(ω) = Ã0(�,ω). (58)

Again one can see in Eq. (57) that Ã0 does not decay to zero
as a function of x → ∞ along the singular directions ϑ

(sing)
i

(x(0) in axiom 3′, Sec. III E 2. This is because the singular
directions are an essential feature of the edges and lead to a
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discontinuity at ∞ when one compactifies the edge as shown
in Fig. 15.

H. Bayesian inference of spectral functions

In Ref. 4 we used Vladimirov’s integral representation
in order to reconstruct a function Ã, which was defined by
Eq. (56) for the interacting system. We chose a cone domain
with orientation zero, T Cε,0 , and assumed the constrained
Green’s function G|T Cε,0 to be analytic for sufficiently small
cone opening ratios ε. This was justified, because the higher-
order branch cuts of particle-hole character [see Fig. 13(b)]
occur only in high-order terms in U . The vertex-correction
type of branch cut pointed out in Ref. 11 was ignored.

Then the standard MaxEnt procedure5 for inferring spectral
functions from quantum Monte Carlo data could be adopted
to the inference of Ã and therefore the spectral function.

The procedure was found to work well in the equilibrium
limit, � = 0. However, entering the nonequilibrium regime,
the ill-posedness of the inverse problem increased. Similar to
the intertwined geometric dependencies between the function
structures on edge and wedge coming to the surface in the
appendix’s uniqueness proof, a geometric dependency of the
quality of Bayesian inference was found.

Decreasing the parameter ε provided a limit to a holo-
morphic function (leaving aside the vertex-correction branch
cut) on the one hand, but on the other hand increased the
ill-posedness of the inverse problem for a finite-� spectral
function. A discussion of how this is reflected by the structure
of the Poisson kernel function may be found in Ref. 4.

Apparently, the problem is very much related to restricting
to the sheet T Cε,0 only taking G(iϕm,iωn) data from the sheet
into account and discarding the others.

The only possible way to alleviate the increasing ill-
posedness is to provide a link between the holomorphic
branches of the Green’s function, being able to take into
account data from not one but several wedges in order to
perform the analytic continuation (10).

I. Bogolyubov’s edge-of-the-wedge theorem

A candidate of such a link was provided by Bogolyubov’s
famous edge-of-the-wedge theorem in the context of axiomatic
quantum field theory. It considered the analytic continuation of
Wightman functions16 in order to establish certain dispersion
relations. From a mathematical point of view, it also introduced
a generalization of the very notion of analytic continuation.16

There are several versions of the theorem. A simple version
which captures the essential idea may be found in the book
by Hörmander on partial differential operators.30 It roughly
considers two functions f ± which are holomorphic on the tube
cones T ±C , where C is a convex open cone with vertex at zero.
Consequently, the edges of T C and T −C are “infinitesimal
neighbors.” If the functions have the same boundary value
distributions, f +(x + i0C) = f −(x − i0C) =: f0, then f0 is
an analytic function. f0 provides an analytic continuation of
both f + and f −.

In its more general formulations, the theorem actually
demands the functions f ± to be holomorphic only locally

at the edge and establishes certain facts about the domain in
which f0 is analytic (global edge-of-the-wedge theorem).

An extension to several cones whose edges meet in a single
point is Martineau’s theorem. As in Bogolyubov’s theorem,
locally, holomorphic functions may be found which constitute
analytic continuations of pairs of functions living on wedges.
Again, the edge values of the considered set of functions have
to be interrelated in a more or less direct way.

IV. SYSTEMATIC EXTENSION OF THE CONTINUATION
PROCEDURE BY USE OF EDGE RELATIONS

In the previous section, we systematically analyzed the
function-theoretical structure of the Green’s function with
regard to the two complex variables zω and zϕ . The former
comes along with the analytic continuation of the fermionic
Matsubara frequency iωn associated with the dynamical
properties of the effective-equilibrium systems. The latter
comes along with the analytic continuation with respect to
the Matsubara voltage. A fundamental property of the Green’s
function with regard to the two variables is the branch cut
structure shown in Fig. 13(b). It separates the holomorphic
sheets of the Green’s function which live on wedges. Their
edges meet in a branch point. For a holomorphic sheet, we were
able to derive an integral representation of the Green’s function
with regard to two real variables, using kernel functions such
as the one in Eq. (43). By this, the function’s values on the
wedge are represented linearly by boundary values on its
edge and vice versa. The physical limit (10) of the theory
corresponds to approaching the branch point in Fig. 13(b)
along a certain direction. In order to use data from several
wedges for physical results, it is thus necessary to find more
or less explicit relations between function values on edges of
different wedges. The so-called edge-of-the-wedge theorem
(Sec. III I) provides some insight along this line. In order
to construct an explicit functional-analytic approach to the
analytic continuation which would enable us to extend the
numerical implementation of the MaxEnt approach, it is only
of indirect use, however.

It is clear that any simple relation between edges of the
different branches of the Green’s function provides a rather
direct link between integral representations of the respective
wedges. Based on a continuity approximation to function
values at the branch point around which the edges are aligned,
the present section derives the MaxEnt procedure which was
used to infer the numerical results of Sec. II.

A. Continuous real part at branch point

The relation is an exact identity of the bare Green’s function.
Namely, Re G0(x + i0ϑ ) is identical for any edge orientation
ϑ of the bare Green’s function; see Eq. (55). It is easy to verify
that same is true for the second-order self-energy (15) and also
for the functions which are parametrized by Han and Heary’s
original fitting approach in Ref. 1.

We have

Re G0(x + i0ϑ ) = Re G0(x + i0ϑ ′
), (59)

Re �(2)(x + i0ϑ ) = Re �(2)(x + i0ϑ ′
), (60)
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for all ϑ,ϑ ′ ∈ [0,2π ). This structure is similar to the conven-
tional Green’s function causality relation

G(z∗) = G(z)∗. (61)

There, we consequently have

Re G(ω + i0+) = Re G(ω − i0+). (62)

However, in our case we only know for sure the symmetry

G(z∗
ϕ,z∗

ω) = G(zϕ,zω)∗. (63)

From Eq. (63) only the edge relation

Re G(x + i0ϑ+π ) = Re G(x + i0ϑ ), ϑ ∈ [0,π ) (64)

can be derived. That is, conjugate wedges T C , T −C carry the
same real parts of G(z) on their edges.

B. Range of the continuity assumption

We now investigate to what extent the relations (59) and (60)
also hold for higher-order contributions to the fully interacting
Green’s function G(z), i.e., to what extent we a priori expect
the approximation

Re G(x + i0ϑ ) ≈ Re G(x + i0ϑ=0) (65)

to hold. It is insightful to study the algebraic properties of
a conventional Green’s function G(z) first. Subsequently, the
two-variable function G(z) is discussed with respect to its
formal structure and regarding empirical findings from the
continuous-time QMC simulation data.

1. Conventional Green’s function

As a simple example, let us consider the summation of the
Dyson series10

G = G0 − G0�G = G0 − G0�G0 + G0�G0�G0 · · · .

(66)

The entities G(z), G0(z), and �(z) satisfy the causality relation
(61). For the equation to hold, the product (and the sum) of
two Eq. (61)-satisfying quantities A(z), B(z) shall also satisfy
Eq. (61). This is obviously the case, because

Re (AB)(ω + i0+) = Re A(ω + i0+)Re B(ω + i0+)

−Im A(ω + i0+)Im B(ω + i0+)

= Re A(ω − i0+)Re B(ω − i0+)

−[−Im A(ω − i0+)][−Im B(ω − i0+)]

= Re (AB)(ω − i0+).

The same can be shown for the imaginary part. It is crucial to
recall that the mutual conjugation of imaginary partsof upper
and lower functions has been used explicitly for closedness
of Eq. (61) under multiplication. In other words, the set of
functions with only the property (62) is not closed under
multiplication.

2. Two-variable Green’s function

The closedness under multiplication is, in general, violated
for functions with solely a continuous real part on the branch
point. This is due to the fact that no statement about the
imaginary part is made, and in the case of the causality relation

(61), conjugateness of the imaginary parts is needed for
closedness of the real part’s continuity under multiplication.
For instance, one can easily verify that G0(z)G0(z) yields
different real parts on the edges. The same can be shown for
G0(z)−1.

C. Structure of the residual term

Nevertheless, as discussed in this paragraph, we are able
to show that the continuity assumption (65) is recovered for
a certain energy range. Additionally, empirical findings for
the structure of CT-QMC data, as discussed in Appendix B,
partially support the assumption by observing continuity
relations between edge functions. Last but not least, the
assumption is justified a posteriori for a rather large collection
of wedges via the obtained numerical results (see Sec. IV E for
further discussion). It is found in Sec. IV E that including upper
(and lower) wedges, |ωn| > |ϕm/2| (and |ωn| < −|ϕm/2|) into
the considered collection of wedges causes the numerical
procedure to fail. Otherwise, it converges. This observation is
compatible with a strong violation of the continuity assumption
at the principal branch cuts Im zω = ±Im zϕ/2.

It is insightful to study how the resulting difference of two
given edge functions is structured, namely to study the local
residue

R(ϑ,ϑ ′)(x) := Re G(x + i0ϑ ) − Re G(x + i0ϑ ′
) (67)

for arbitrary values ϑ,ϑ ′ ∈ [0,2π ) as a function of x ∈ R2.

1. Angular structure

Obviously, due to Eq. (64) we have

R(ϑ,ϑ) ≡ R(ϑ,ϑ+π) ≡ 0 (68)

for all ϑ . R(ϑ,ϑ) ≡ 0 if ϑ and ϑ ′(+π ) belong to the same
wedge.

2. Structure due to continuity of imaginary-time data

Using the empirical fact that the CT-QMC data �(iϕm,iωn)
are continuous as a function of ϕm and ωn, we can derive
certain continuity relations for R(ϑ,ϑ ′). They are provided in
Appendix B.

3. High-energy structure

Let us also consider the high-energy limit

|x| � max{�,|U |,|�|,|εd |}. (69)

For this, |G(x + i0ϑ )| is significantly larger than zero only if
xω ≈ ±xϕ/2, according to point 3′ in Sec. III E2. The “+” and
“−” cases imply a separation of energy scales. For both of
these two energy scales, the closedness under multiplication
is recovered.

One can easily see the recovery of the multiplicative
structure in the high-energy limit by investigating the bare
Green’s function (50). The “+” and “−” energy scales are
given by the α = − and α = + addends (51) in Eq. (50),
respectively. Each of the addends satisfies the multiplication
rule, because the absolute value of their imaginary part remains
the same for all ϑ at fixed x. The same is true for the sum of
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the corresponding
∑

i αi = ∓1 addends in the second-order
self-energy (15).

Therefore, we conclude that

lim
x→∞ R(ϑ,ϑ ′) = 0 for all ϑ,ϑ ′, (70)

in contrast to the limiting behavior of G itself.

4. Consequences for the analytic structure

Hence, although the assumption (65) is apparently only
approximate, the error R(ϑ,ϑ ′)(x) is introduced by assuming the
relation is correct around 0 in the x space. It is remarkable that
the intermediate-coupling numerical data presented in Sec. II
appear to be rather precise in the low-energy region, although
the violation terms are a priori expected to be strong at low
energies.

From the a priori perspective, the assumption (65) gives
a correct picture of how the wedges are related in the high-
energy range. When assuming the relation, additional low-
energy degrees of freedom have to be introduced in order to
reobtain an exact continuation theory (cf. Sec. V). Empirical
data discussed in Appendix B indicate that these degrees of
freedom are comparably well behaved.

D. Functional-analytic consequences of the
shared-real-part assumption

We will see that the continuity assumption (65) leads to
a complete description of the function G(z) on all wedges
only as a function of the single edge Im G(x + i0ϑ=0). This
is extraordinarily attractive from a numerical point of view,
because by this, the number of degrees of freedom when doing
the MaxEnt inference is not increased, but all imaginary-time
theory data G(iϕm,iωn) may be taken into account, without
any a priori constraint. As in the single-wedge approach of
Ref. 4, the spectral function can still be directly extracted from
the MaxEnt result. We will see that for functions which comply
with the assumption, it in fact alleviates the ill-posedness of
the inverse problem, as desired.

1. Construction of the kernel

Starting from Eq. (65) we can derive a representation
of the Green’s function with respect to Im G(x + i0ϑ=0) in
the following way. First, we introduce the Hilbert transform
operator H as

(Hf )(x) := 1

π
P
∫

dx ′
2

f (x1,x
′
2)

x2 − x ′
2

. (71)

Then we can use condition 3′ (Sec. III D) in order to apply the
Hilbert transform for computing real and imaginary parts from
each other on the boundary of certain H-isomorphic complex
lines.

One can show that

Im G|T Cr,ϑ = − 1

π
Qr,ϑ Im G(x + i0ϑ=0), (72)

where we introduced the operator

Qr,ϑ := Pr,ϑRϑHR−1
ϑ H. (73)

Q(edge)
ϑ

Rϑ

Im
G
(x

+
i0
ϑ )

R−1
ϑ

(65)
Eq.

Im G(x + i00) −HH

FIG. 17. (Color online) Action of the operator −Q(edge)
ϑ . It

translates between functions living on edges of wedges with two
different angular orientations. The orientation ϑ is the one of the
considered data wedge, and 0 is the orientation of the physical limiting
procedure (10). Initially acting on the physical edge function, the
consecutive formal operations which comprise −Q(edge)

ϑ either change
the angular rotation or leave it invariant, as indicated by the respective
arrows.

Let us also introduce a symbol for the right part of the operator
sequence,

Q(edge)
ϑ := RϑHR−1

ϑ H. (74)

The action of −Q(edge)
ϑ on Im G(x + i0ϑ=0) is depicted in

Fig. 17: First, the Hilbert transform H with respect to the
xω variable yields Re G(x + i0ϑ=0). Then, via Eq. (65) it is
identified with Re G(x + i0ϑ ). In order to obtain Im G(x +
i0ϑ ) one formally has to transform to the biholomorphic
equivalent of G|T Cr,ϑ in the domain T Cr,0 via the operator
R−1

ϑ = R−ϑ . The inverse Hilbert transform −H yields the
imaginary part of the edge value of the function T Cr,0 → C,
z �→ (R−1

ϑ (G|T Cr,ϑ ))(z). Transforming the function back to the
edge of T Cr,ϑ using Rϑ yields the result Im G(x + i0ϑ ).

Using the Poisson kernel Pr,ϑ [Eq. (48)], the Green’s
function is obtained in the desired wedge T Cr,ϑ . The entire
procedure is contained in Qr,ϑ .

2. Feature of Q(edge)
ϑ : Decoding branch cut geometry from single

edge function

The operator Q(edge)
ϑ is a map of pure “edge” character.

Therefore, it is worthwhile to study it separately.Q(edge)
ϑ is well-

defined for any square-integrable function f (x), no matter
which orientation ϑ is considered.

Considering an edge function which is compatible with
the Green’s function properties 1,2,3′ (Sec. III D), Q(edge)

ϑ is
not defined for the singular orientations (54). For example, a
straightforward calculation shows that applying Q(edge)

ϑ step
by step to G0(x + i0ϑ=0) yields exactly the formula (50),
with the switching behavior (52) whose value is undefined
for the orientations (54). The missing square-integrability of
the edge functions along these directions is the corresponding
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mathematical reason. In particular, whenever Q(edge)
ϑ crosses a

singular orientation of Im G0(x + i0ϑ=0), it exactly generates
the jump in Im G0(x + i0ϑ ) as a function of ϑ .

Consequently, assuming Eq. (65) is correct, both the
holomorphic structure and the complete information about
the entire branch cut structure, namely the exact geometry
of the branch cuts, are encoded in the single edge function
Im G(x + i00). The same is true for the (ϑ = 0)-edge limit of
the second-order self-energy, Im �(2)(x + i00), due to Eq. (60).
It is always square-integrable, except for the directions xω =
−3/2xϕ , xω = −xϕ/2, xω = xϕ/2, and xω = 3/2xϕ , namely
for the geometry of the second-order branch cuts.

For practical computations, we find that an exploitation of
symmetries of Q(edge)

ϑ is mandatory. Those are translational
invariance and scale invariance, but no rotational invariance:
For the translation operator

(Tx ′f )(x) := f (x − x ′) (75)

and for the homogenous scaling operator

(�λf )(x) := λ2f (λx), λ > 0, (76)

we have [
Q(edge)

ϑ ,Tx

] = 0, (77)[
Q(edge)

ϑ ,�λ

] = 0, (78)[
Q(edge)

ϑ ,Rϑ ′
] �= 0. (79)

The proof of these commutator relations is provided in
Appendix C. Note that because directional scaling implies
a shear and therefore nonconserved angles in the shapes of
Im G(x + i00), it is no symmetry of the operator, in contrast
to uniform scaling.

E. Numerical implementation of Qr,ϑ

The numerical implementation of the kernelQr,ϑ is nontriv-
ial. Assuming that G(x + i00) is sufficiently smooth, we can
represent it by superimposing localized test functions which
span the space of edge functions.

1. Integral structure of the mapping

Qr,ϑ introduces a quadruple integral. The first two integrals
are the two principal value integrals which come with the
Hilbert transforms. The second ones are included by the
Poisson kernel Pr,ϑ . The integrations are formally very similar
to a sequence of convolutions A ∗ (B ∗ (C ∗ e)), where e

is an edge function. A crucial point is that, due to the
distributional nature of both the principal values and the
edge functions, the associativity rule cannot be expected to
hold for these convolutions (see Sec 4.2 in Ref. 30): The
principal value and our type of edge functions [functions
with singular directions, Eqs. (54)] are no distributions with
compact support. Therefore, it is impossible to simply contract
some “inner integrals” within Qr,ϑ analytically in order to
obtain a simple kernel function for Qr,ϑ . The use of a set
of test functions which spans the space of edge functions is
mandatory.

2. Construction of the test functions

The test functions would preferably be structured in a way
which allows the quadruple integral in the operator Qr,ϑ to be
solved essentially analytically. Using the translation operators
TX, Eq. (75), and scaling operators �1/ε, Eq. (76), we define
the functions

fX,ε := TX�1/εf, (80)

with

f (x) := 1

π2

∏
α=±1

1

(xω − αxϕ/2)2 + 1
. (81)

They turn out to be a good choice as test functions: First, we
have the Dirac δ distribution

lim
ε→0

fX,ε = δ(x − X) (82)

as a limit. Second, due to the symmetries (77) and (78),
the use of scaling and translation operators yields—regarding
the action of the integrals in Q(edge)

ϑ —the much more simple
expression

(Qr,ϑfX,ε)(x) = (
Pr,ϑTX�1/ε

(
Q(edge)

ϑ f
))

(x) (83)

rather than (Pr,ϑ (Q(edge)
ϑ TX�1/εf ))(x) as a matrix element of

Qr,ϑ . Third, the simple pole structure of Eq. (81) allows us
to compute most of the integrals analytically. Note that the
simpler looking symmetric Lorentzian function 1

x2
ω+x2

ϕ+1 is, in

fact, no good alternative to f , because the poles with respect to
zω or zϕ contain square roots of zϕ or zω, respectively. Similar
problems arise for localized Gaussians.

The directional arbitrariness xω ± xϕ/2 arising in Eq. (81)
from choosing a product of 1D Lorentzians in Eq. (81) is still
to be discussed. For example, one could also have chosen it to
be xω ± xϕ , adjusting the normalization factor from 1

π2 to 2
π2

in order to assert Eq. (82). A conceptional advantage of our
choice of f is, however, that for any domain T Cr,ϑ , for which
G is holomorphic, we have r � 2. Consequently, due to the
pole structure of Eq. (81), f is holomorphic in the domain
T Cr,0 ⊂ T C2,0 , whose edge is the starting point of the Qr,ϑ

transform. Nevertheless, a certain ambiguity remains which
could be technically useful.

3. Computation of the matrix elements

We found it feasible to calculate at least the first three
integrals of the right-hand side of expression (83) analytically,
using a computer algebra system. In order to compute the
fourth integral, an adaptive numerical quadrature can be used.

The result of the analytical integration of the first two
integrals, namely (−Q(edge)

ϑ f )(x), is shown in Fig. 18 for
selected edge orientations. We find that (−Q(edge)

ϑ f )(x) is a
rational function which changes continuously as a function of
ϑ , in contrast to the transformation behavior of Im G0(x +
i00). Note that since Q(edge)

ϑ is scale-invariant Eq. (78),
the transformation behavior of the Dirac δ distribution is
analogous to that in Fig. 18. Consequently, the transformed δ

distribution on the edge R + i0ϑ is not a function but rather a
distribution with a relatively complicated structure. Therefore,
the limit δ → 0 in Eq. (83) cannot be taken before the last two
integrals from the Poisson kernel Pr,ϑ are computed.
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xϕ

xω

1
2π2

−Q(edge)

ϑ
f (x)

(a) ϑ = 0

xϕ

xω

−Q(edge)

ϑ
f (x)

0

(b) ϑ = π/4

xϕ

xω

−Q(edge)

ϑ
f (x)

(c) ϑ = π/2

xϕ

xω

−Q(edge)

ϑ
f (x)

− 1
2π2

(d) ϑ = 3π/4

xϕ

xω

−Q(edge)

ϑ
f (x)

(e) ϑ = π

FIG. 18. (Color online) Transformation behavior of the test function f (x) as a function of the edge-to-edge map −Q(edge)
ϑ for different values

of ϑ . Function values are shown within the range [−5,5] × [−5,5]. Due to translational and scale invariance, it represents the edge-to-edge
transformation behavior of a Dirac δ function under the continuity assumption (65).

In the special case ϑ = π/2, Fig. 18(c), the asymptotic
behavior of the result decays ∝ 1

|x| when x → ∞, in contrast to

the original test function behavior f (x) ∝ 1
|x|2 . This is because

the Hilbert transforms are taken with respect to mutually
orthogonal directions in R2, here.

The angles between 0 and π/2 interpolate smoothly
between the extremal cases of the unperturbed well-localized
f (x) at ϑ = 0 and the long-range function at ϑ = π/2. The
solution at ϑ = π is again strongly localized and equals
−f (x). The behavior in the interval [π,2π ) is analogous due
to symmetry reasons.

4. Implementation

As mentioned above, the third integral of the operator
sequence (83) can still be computed analytically. However,
each integration of the sequence adds additional poles to the
resulting function, and more and more complex distinguish-
ments have to be done in order to decide whether a pole is on
the upper or the lower half plane and whether it contributes or
not to certain residue sums.

Because translational and scale invariance do not seem to be
as useful concepts as applied toPr,ϑ , not only the extra variable
r appears in the computation of the remaining expressions, but
also the shift X and the scale λ of the test function (80). For the
third integral, one can still determine the poles and residues
before doing the latter substitution with the computer algebra
system, however.

At present, very lengthy expressions result for the last
integrand. As a consequence, the last integral was evaluated
numerically for each matrix element. The limit δ → 0 can
only be taken numerically. An algebraic determination of
the poles of this expression is cumbersome, because high-
order polynomials appear in the denominator of the resulting
expressions. Nevertheless, numerical computations indicate
that the limit δ → 0 yields well-defined functions after the
fourth integration. Once an algebraic expression is found, the
expression for the limit δ → 0 would be more simple than
the intermediate terms. As already stated in the beginning of
this section, we compute the fourth integral with an adaptive
numerical integration routine in practice. In the numerical
MaxEnt implementation, one can adjust δ as a function of
x, denoted by δx , depending on how well a specific region of
the edge should be resolved.

When defined according to the interacting branch cut
geometry, Qr,ϑ is simply called Q in the following. Details on
the numerical representation ofQ are provided in Appendix D.
A detailed description of implementation and setup of the
MaxEnt method using Q is given in Appendix E.

5. Details of the MaxEnt procedure

The quality of the results of the MaxEnt method using
the Q mapping critically relies on a careful a posteriori
identification of the high-energy structure of the physical
edge function Ã(xϕ,xω) along its singular directions. The
information is incorporated into the default model as described
in Appendix E. In brief, we first determine the most probable
lateral width of the default model (E3). In the same fashion, a
second step optimizes the low-energy structure of the default
model, by a posteriori determining the most probable low-
energy bandwidth, i.e., the quantity σ̃def in Eq. (E4) with the
highest posterior probability. In Eq. (E4) we set the low-energy
scale to R = 5�. In tested examples, no strong dependence of
the inferred results on R was observed. In future applications,
however, in order to increase accuracy, it may be advantageous
to also perform an optimization with respect to the posterior
probability of R.

Let us provide an example of how the method works for
the weak-coupling case, i.e., for parameters U = 2�, β =
5�−1,e� = �. The final results for the spectral function were
already presented in Fig. 3. It turns out that the applicability
of the Q approach is limited a posteriori by bad behavior of
the inferred spectral functions to input data with ωn > |ϕm/2|
for n � 0. This condition corresponds to not crossing the
principal branch cut γ = ±1 in Fig. 13(b), when coming
from the retarded Green’s function (edge orientation ϑ = 0).
Apart from this restriction, there appears to be no further
problem with the approach. Consequently, at least for weak
coupling, the central continuity assumption of the Q approach
is practically solely violated with respect to the branch cuts
γ = ±1. The violation already occurs at very small values of
the many-body interaction, U � 2�. However, it vanishes at
U = 0, since the continuity assumption is exact for G0. This
observation is compatible with the observed strong violation
of the assumption within the Dyson series which was reported
in Sec. IV B.

We therefore can use all Matsubara data of our Monte Carlo
simulation subject to ωn > |ϕm/2|. For the inverse temperature
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FIG. 19. (Color online) Comparison of χ 2 as a function of the
MaxEnt regularization parameter for single-wedge kernel Pr,ϑ and
multiwedge kernel Q at weak interaction U = 2�,β = 5�−1, and
e� = � as a function of the regularization parameter α. For the same
input set, the single-wedge approach clearly fails to converge due to
the presence of higher-order branch cuts.

β = 5�−1, these extend from n = 1 to n = 8 for ωn with
m = ±1, . . . , ± 5 for ϕm. As a first test, we show in Fig. 19 the
performance of the MaxEnt method for both the single-wedge4

and the multiple-wedge approaches for the given data set.
Because data from the comparably widely opened wedge ωn >

|ϕm/2| are used in the single-wedge approach, it implicitly
assumes the interacting Green’s function to be analytic for
Im zω > |Im zϕ/2|. Apparently, this wrong assumption makes
it impossible to obtain a reasonable fit with a positive definite
Ã(x). Consequently, the χ2 value of the procedure does not
drop below 106Ndata, and the MaxEnt fails to converge. In
sharp contrast, values of χ2/Ndata ≈ 1 may be reached with
the MaxEnt with respect to Q. Also, controls such as the
MaxEnt error rescaling merit do not indicate the presence of
any abnormalities.

Thus, for the Q mapping, a well-behaved MaxEnt solution
is obtained. As further discussed in Appendix E, the quality
of the solution very much relies on appropriately including
the prior knowledge on singular directions of the Green’s
functions inC2 into the default model of the edge function. For
this purpose, within a set of smooth default models with the
correct singular directions as x → ∞, a most probable one
is identified within the Bayesian framework of the MaxEnt
method. The thus identified default model for the edge function
is displayed in Fig. 20(a). Using this default model, the
well-behaved edge function Ã(xϕ,xω) shown in Fig. 20(b) is
obtained. An overall moderate sharpening of the edge function

along the crosslike structure is observed as a result of this final
step of the Bayesian inference procedure.

With such appropriately optimized default models, the
results presented in Sec. II were obtained from weak to
intermediate coupling strengths. Throughout, the only major
data range constraint, ωn > |ϕm/2| was found, which prohibits
crossing the principal branch cut due to violations of the
continuity assumption. On occasion, for stronger correlation
strengths, values with small ωn had to be discarded in order
to obtain a converging MaxEnt solution, i.e., a solution which
meets the continuity assumption constraints. At the compara-
bly small inverse temperature β = 5�−1 used, calculations
require only moderate computer resources, mainly due to
the comparably small QMC data space of approximately 50
imaginary-time-theory data points. In general, the amount of
data will grow quadratically as a function of inverse temper-
ature, due to the simultaneous presence of Matsubara voltage
and Matsubara frequency. Additionally, at low temperatures,
sharp features in the spectral function and hence the edge
function Ã will have to be resolved, requiring an enhanced
grid refinement. Altogether, matrix sizes in the MaxEnt will
increase substantially when the temperature is decreased. In
particular, the computational effort for the generation of an
appropriate kernel matrix (cf. Appendix D) grows dramatically
and the memory consumption of the MaxEnt itself poses a
limitation at lower temperatures at the present stage of code
development. Additionally, it is well known that the resolution
of low-temperature features with the MaxEnt method requires
a careful Bayesian analysis based on higher-temperature data,
i.e., an “annealing procedure,” involving a sequence of QMC
plus MaxEnt runs for a reasonably fine temperature grid.5,13

V. PERSPECTIVE: UNBIASED MULTIWEDGE APPROACH

From a mathematical point of view, the underlying con-
tinuity assumption of the multiwedge approach, i.e., the
mapping Q, is only approximate, because in higher orders
of perturbation theory, terms which do not characterize the
full collection of wedges, but rather just isolated wedges
or subcollections of wedges, are generated. These terms are
manifested in discontinuities of the real part of the Green’s
function at the branch point Im z = 0.
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FIG. 20. (Color online) Application of the MaxEnt procedure for the Q mapping to the nonequilibrium weak-coupling case U = 2�,
β = 5�−1,e� = �, with CT-QMC data as input. The default model has been identified via its maximal posterior probability.
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In order to extend theQ approach to the full nonequilibrium
Kondo regime U � 2π�, e� ∼ TK , β−1 ∼ TK , one has
to take these contributions into account. This requires the
consideration of the full analytic structure of the theory, i.e.,
the full set of edge functions.

As a consequence, extra terms have to be added to the
representation of G(zϕ,zω) within the MaxEnt procedure.
Obvious candidates for such degrees of freedom are the
residual imaginary parts of edge functions

R̃n(x) := Im G(x + i0ϑn ) − π
(
Q(edge)

ϑn
Ã

)
(x), (84)

for the edge of the nth wedge with orientation ϑn. Because
the Q mapping is exact at high energies ‖x‖, the terms R̃n(x)
are essentially localized within a finite radius around 0. This
range is expected to be of the order of magnitude of the energy
scales �, U , εd , and e�.

Regarding the inverse problem, for data in the nth wedge,
one has the exact representation

Im G(iϕm,iωn) = (Prn,ϑn
R̃n)(iϕm,iωn) + π (QÃ)(iϕm,iωn),

(85)

where rn is the opening ratio of the respective data wedge.31

The MaxEnt procedure must determine R̃n and Ã simultane-
ously. Practically, the terms R̃n would act as “valves” for the
conceptual imperfection of theQmapping within the Bayesian
information flow.

It is an interesting question if the formally infinitely many
2D variable vectors in practice lead to a dramatic increase in
the fit space or not. Due to locality of the terms R̃n(x), the
effort is probably less than for the Ã function, which itself
encodes many aspects of the analytic structure. Furthermore,
the rather large Poisson kernel matrix elements at low energies
will possibly lead to a comparably good MaxEnt performance
in the determination of R̃n(x), as long the opening ratio ϑn of
the nth wedge is comparably large.

Because the functions R̃n(x) cannot be expected to be
positive, it is necessary to introduce a shift to a positive
function, such as for the spectral functions of the static
observables in paper I. The terms R̃n(x) are presumably
most dominant for wedges next to the noninteracting Green’s
function’s branch cuts. A very careful Bayesian analysis,
including an appropriate set of choosable default models
constructed from a priori information, is probably required
for a successful application of the exact approach (85). It
is also possible that the perturbative structure of the theory
reorganizes terms R̃n in subcollections of wedges which
result in a more moderate MaxEnt problem than Eq. (85).
In particular, the branch cut at Im zϕ = 0 probably leads to
a nonzero limit limn→∞ R̃n, where the limit n → ∞ shall
consider a sequence of wedges with ϑn→∞ = 0 or ϑn→∞ = π .

VI. SUMMARY

We systematically studied the mathematical structure of
the dot-level Green’s function and the Bayesian inference
of nonequilibrium spectral functions and transport properties
from effective-equilibrium quantum Monte Carlo data within
the Matsubara-voltage theory. Furthermore, a continuity as-
sumption on the analytic structure was introduced which

strongly improved the numerics of the MaxEnt approach of
an earlier publication.4

Formal parts of the paper introduced the essential concepts
of the function theory of several complex variables and con-
nected to the respective mathematical literature. Using insights
from perturbation theory, the Green’s function was charac-
terized axiomatically with regard to its function-theoretical
structure. As the fundamental domains of holomorphy, so-
called wedges (tubular cones) emerged. The Green’s function
is composed of sheets which are holomorphic on the wedges
enclosed by branch cuts. Within each wedge, the Matsubara
data of the Green’s function uniquely map to a real-time
limit on the so-called edge of the wedge. For this purpose,
an explicit integral representation was constructed. However,
depending on the considered wedge, the edge structure does
not necessarily have a direct physical interpretation.

In an earlier publication,4 we had been unable to compute
reliable nonequilibrium spectral functions from a MaxEnt
procedure based on integral representations within wedges,
due to rather strong assumptions on the analytic structure and
weak assumptions on the physical structure. The assumptions
had limited us to a single wedge with a rather small opening
ratio, on which the Green’s function is not strictly analytic
but which directly includes the physical limit procedure on its
edge. While as compared to the present work the numerical
effort of the MaxEnt procedure was rather low, due to the
wedge structure and simple kernel structure, we had not been
able to consider most available quantum Monte Carlo data
within the MaxEnt procedure. The hereby implied loss of
information from available simulation data had not affected
the equilibrium spectra but the nonequilibrium spectra, due to
the kernel structure.

In order to overcome these previous limitations, we intro-
duced a continuity assumption to the real-time structure of the
Green’s function, i.e., its structure at the branch point around
which the edges of the wedges associated to the branches of
the Green’s function are aligned. The assumption includes
structures generated by the earlier fit approach introduced
in Ref. 1, which was motivated by perturbation theory.
Mathematically, the assumption led to a uniform description of
data from all branches of the Green’s function and gave rise to
a linear operator Q which, while hard to implement, enhanced
the MaxEnt procedure to a larger set of quantum Monte Carlo
data.

We found that the continuity assumption appears to be
valid for a very broad range of data, up to intermediate cou-
pling strengths, eventually yielding reasonable nonequilibrium
MaxEnt results for spectral function and transport properties,
which are dramatically improved as compared to the results
of Ref. 4. However, as the nonequilibrium Kondo regime is
approached, we expect the continuity assumption to break
down eventually. For this parameter regime, the method could
be extended along the line discussed in Sec. V.
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APPENDIX A: UNIQUENESS OF THE ANALYTIC
CONTINUATION OF DYNAMICAL QUANTITIES

In the following, we would like to show that the continua-
tion of Matsubara data G(iϕm,iωn) to the multisheeted holo-
morphic function G(z) is unique; i.e., we prove assumption
3 in Sec. III D, relation (13). We derive the uniqueness using
the axiomatic statements 1, 2, and 3′ of Sec. III D. Since the
proof involves some elementary geometry, it is accompanied
by several sketches.

We may focus our attention to a single-wedge T C which
is defined by subsequent branch cuts from Eqs. (11). The
data G(iϕm,iωn) which are located in the wedge are our
starting point, (ϕm,ωn)T ∈ C. Without loss of generality we
can assume that we have entire lines of data, G(iϕm,iωI ),
ωI ∈ R, because arbitrary continuous imaginary ωI may
be computed by Fourier transform in the ϕmth effective
equilibrium theory, having again (ϕm,ωI )T ∈ C. Let us denote
the effective equilibrium data range by

E0 := {i(ϕm,ωI )T |m ∈ Z,ωI ∈ R} ∩ T C. (A1)

These lines of known data of the unknown function G(z)
in the wedge T C are depicted in Fig. 21. They constitute 1D
lines in the 4D wedge T C for which the function G|T C shall
be reconstructed.

We prove, step by step, the uniqueness of the continuation
of the imaginary-time data by applying biholomorphic maps
and the identity theorem of complex analysis. The central
idea is to extend larger and larger subsets for which a unique
continuation is obtained.

1. Reconstruction of edge values using complex lines which
are isomorphic to H

Due to assumptions 1 and 2, we found that the Green’s
function G|T C may be reconstructed from their edge values,
using Eqs. (39) and (40). Therefore, it suffices to show that we
can reconstruct all edge values of the function G from the data
G|E0 .

E0

TC

FIG. 21. (Color online) The wedge to be considered. The dash-
dotted lines denote the data yielded by imaginary-time theory.

R−ϑT
C

R−ϑ

∼= H

ϑ

TC

FIG. 22. (Color online) A single line contained by the cone C may
after biholomorphic rotation R−ϑ and subsequent complexification be
interpreted as the upper half plane H of C.

We first show that one may reconstruct a certain set of
single lines through zero on the edge. Each of these lines is
defined by an angle ϑ . All function values on the line may be
reconstructed if the angle ϑ is contained by the cone C.

The proof of the latter statement is the following. Consider
a single line in the cone C, given by the angle ϑ . A
biholomorphic rotation in the sense of Sec. III E2 can then
be applied in such a way that the line is horizontal and may,
after complexification, be interpreted as the upper half planeH
ofC; see Fig. 22. The real line is then associated to a horizontal
line on the edge of R−ϑT C .

The biholomorphic equivalent to the yet-unknown function
is now G̃(z) = G(R−1

−ϑz). Note that the line (0,iλ)T in R−ϑT C ,
λ > 0, contains infinitely many known values of G̃(z). These
are denoted by the crosses in Fig. 22. Extending to the upper
half plane (0,H), one may apply the identity theorem of
complex analysis for reconstructing G̃(z) on the whole plane
(0,H). In particular, the boundary values G̃(0,R + i0+) are
recovered. This proves the statement of this section.

(a) Identity theorem

Let us comment on the satisfaction of the assumptions of
the identity theorem. Since (0,∞) is the accumulation point of
the known data points on (0,H), i.e., of the “series of crosses
in Fig. 22,” given by (0,H) ∩ R−ϑE0, we have to show that
G̃(0,1/z) may be extended to an analytic function at z = 0.
Once this is possible, the function is uniquely determined by
the set of function values.

Combining assumptions 1 and 3′, we know that G(ζx(0)) (in
the sense of assumption 3′) behaves like a conventional Green’s
function, because the singular case coincides with a branch cut
which is by construction not contained by the wedge. Due to
this rapid decay one may extend G̃ to the lower half plane such
that G̃(0,z∗) = G̃(0,z)∗ and is holomorphic at z = ∞. This can
be done explicitly using a spectral representation with respect
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FIG. 23. Uniquely reconstructed range Edge(recon,0)
T C of G(z)|T C on

the edge of T C following from the partial argument of Appendix A1.
The wiggly lines in the boundary mean that the area extends to
infinity.

to the boundary values of Im G̃(0,z) on the real axis. The
spectral representation exists due to the 1/z asymptotics which
lets the line integral contribution vanish on the infinitely large
semicircle attached to the real axis. Note that this construction
is also compatible with the symmetry relation G(−iϕm, −
iωn) = G(iϕm,iωn)∗.

As a consequence, the identity theorem is applicable for
G̃(0,z) at z = ∞ such as it is for regular Matsubara Green’s
functions.

One may also think of G(ζx(0)), ζ ∈ H as a meromorphic
function of ζ ∈ C, because it may, due to boundedness and
1/ζ asymptotics, be approximated arbitrarily well by a mero-
morphic function, such as in an infinite Padé expansion. Since
meromorphic functions on C are holomorphic on the Rie-
mann sphere, the identity theorem holds at the accumulation
point ∞.

(b) Resulting reconstruction of edge values

Sweeping through all possible angles ϑ which are contained
by the cone C, the uniquely reconstructed edge behavior of
G|T C is given by the area depicted in Fig. 23.

It is obviously given by

Edge(recon,0)
T C := C ∪ (−C). (A2)

2. Extending the unique range to the entire edge

In order to show that the function values of G|T C are also
uniquely defined by G|E0 for the complement of Edge(recon,0)

T C ,
the argument has to be extended in a similar way. The trick
is to consider yet another set of H-isomorphic subspaces and
then apply the argument of the last section to a larger set of
data.

(a) Extending the known data range within the wedge

The first step is depicted in Fig. 24. In contrast to before,
we consider a constant angle ϑ0 and various lines which
start at different points on the boundary of the cone with the
orientation ϑ0.

After biholomorphic rotation to the wedge R−ϑ0T
C we can

again complexify the lines

l̃ỹ(0) := {iỹ(0) + i(0,λ)T ,λ > 0}; ỹ(0) ∈ ∂C (A3)

ϑ0TC

ϑ0ϑ0

∼= H

∼= H

∼= H

R−ϑ0
TC

R−ϑ0

FIG. 24. (Color online) Enhancing the formal holomorphic re-
construction within the wedge.

to

L̃ỹ(0) := iỹ(0) +
(

0
H

)
. (A4)

The isomorphy of L̃ỹ(0) to H and assumption 3′ again enable
us to apply the identity theorem to the crossed data in Fig. 24,
namely to the infinite sequence (G ◦ Rϑ )|(R−ϑE0)∩L̃

ỹ(0)
.

By this, the transformed Green’s function G̃ = G ◦ Rϑ0 is
reconstructed for all points of the set,

D :=
⋃

ỹ(0)∈∂C

L̃ỹ(0) = (R−ϑ0T
C) ∩

(
iR
C

)
. (A5)

For simplicity, we may now just look at a subset of D,
namely,

Ẽ1 := R−ϑ0E0 +
(

0
R

)
. (A6)

It enables us to see that the values of G are now known on the
set

E1 := E0 + Rϑ0

(
0
R

)
. (A7)

(b) Full reconstruction of the edge

With the information from E1 one may reinterpret the pro-
cedure associated with Fig. 22 and described in Appendix A 1.
The dashed lines of known data now contain an additional real
dimension along the direction Rϑ0 (0,1)T .

We can use each point λRϑ0 (0,1)T (λ ∈ R) of this new
degree of freedom as an offset of the lines used in Appendix A 1
and reapply the entire procedure. Using the resulting affine
subspaces, the Green’s function may be reconstructed on
further regions of the edge which are affine to the one in
Fig. 23, namely,

Edge(recon,λ)
T C := Edge(recon,0)

T C + λRϑ0 (0,1)T . (A8)
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Rϑ0
(0, 1)T

0

TC

Edge of

FIG. 25. (Color online) Reconstructing the Green’s function on
the complete edge. The reconstructed area Edge(recon,0)

T C [see Fig. 23
and Eq. (A2)] may be extended by affine transformations along the
Rϑ0 (0,1)T direction using the information from the set E1.

Applying the argument to all λ ∈ R reconstructs the entire
edge and hence the entire Green’s function G|T C , because⋃

λ∈R Edge(recon,λ)
T C = EdgeT C .

This “affine procedure” is sketched in Fig. 25.

APPENDIX B: EMPIRICAL PROPERTIES OF THE
RESIDUAL TERM

The empirical observation that the quantum Monte Carlo
data are continuous as a function of iωn, as one crosses higher-
order branch cuts, yields the following structure. Let ϑ0 be the
orientation of the corresponding branch cut. Then, due to the
observed continuity, we have

G(iρ sin(ϑ0 − δ),iρ cos(ϑ0 − δ))

= G(iρ sin (ϑ0 + δ),iρ cos(ϑ0 + δ)), (B1)

for any ρ > 0.
Using the identity theorem along the directions ϑ0 ± δ, one

find that the relation

R(ϑ0−δ,ϑ0+δ)(ρ sin(ϑ0),ρ cos(ϑ0)) = 0 (B2)

holds for any ρ > 0. Consequently, the continuity in Mat-
subara space induces a continuity relation in the edge space.
Similarly, one could construct relations for the derivatives of
G which help constrain R(ϑ,ϑ ′)(x).

APPENDIX C: COMMUTATOR RELATIONS OF Q(edge)
ϑ

We derive the commutator relations (77), (78), and (79).

1. Translational invariance

Let us consider the action of Q(edge)
ϑ = RϑHR−1

ϑ H on a
function Ã(x,y) which is translated by the operator TX, where
we set X = (X,Y )T . We also write x := (x,y)T .

As a first step, we apply the Hilbert transform,

(HTXÃ)(x) = 1

π
P
∫

dỹ
Ã(x − X,ỹ − Y )

y − ỹ

= 1

π
P
∫

dỹ
Ã(x − X,ỹ)

(y − Y ) − ỹ
. (C1)

Using the short-hand notation c := cos ϑ , s := sin ϑ , we then
have

(
R−1

ϑ HTXÃ
)
(x) = 1

π
P
∫

dỹ
Ã(cx + sy − X,ỹ)

(−sx + cy − Y ) − ỹ
. (C2)

In the next two steps one obtains

(
Q(edge)

ϑ TXÃ
)
(x) = 1

π2
P
∫

d ˜̃y
1

sx + cy − ˜̃y︸ ︷︷ ︸
→(C5)

P
∫

dỹ

× Ã(

→(C6)︷ ︸︸ ︷
(cx − sy)c + s ˜̃y − X ,ỹ)

−(cx − sy)s + c ˜̃y − Y︸ ︷︷ ︸
→(C7)

−ỹ
. (C3)

By substituting X = 0 and then applying TX from the left, one
finds(
TXQ(edge)

ϑ Ã
)
(x) = 1

π2
P
∫

d ˜̃y
1

s(x − X) + c(y − Y ) − ˜̃y
P
∫

dỹ

× Ã([c(x − X) − s(y − Y )]c + s ˜̃y,ỹ)

−(c(x − X) − s(y − Y ))s + c ˜̃y − ỹ
.

(C4)

In order to verify that the expressions (C3) and (C4) are, in fact,
equal, we consider the following system of linear equations:

sx + cy − ˜̃y = sx0 + cy0 − y∗, (C5)

(cx − sy)c + s ˜̃y − X = (cx0 − sy0)c + sy∗, (C6)

−(cx − sy)s + c ˜̃y − Y = −(cx0 − sy0)s + y∗c, (C7)

in matrix form:⎛⎝−1 s c

s c2 −sc

c −sc s2

⎞⎠
︸ ︷︷ ︸

=:M

·
⎛⎝ ˜̃y

x

y

⎞⎠ −
⎛⎝ 0

X

Y

⎞⎠

=
⎛⎝−1 s c

s c2 −sc

c −sc s2

⎞⎠
︸ ︷︷ ︸

=:M

·
⎛⎝y∗

x0

y0

⎞⎠. (C8)

The equations correspond to the idea of substituting the
terms in Eq. (C3) as denoted there in such a way that y∗ is the
new integration variable,

∫
d ˜̃y → κ

∫
dy∗ , where κ is some

regular prefactor from the integral transformation, and such
that the external variables x and y are replaced with x0 and y0.
We will see that the resulting form will exactly be Eq. (C4).

The system (C5)–(C7) can be solved by inversion of the
matrix M: One has

M−1 =
⎛⎝ 0 s c

s 1 0
c 0 1

⎞⎠, (C9)
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det M = −1, and consequently the well-defined solution

y∗ = ˜̃y − (sX + cY ), (C10)

x0 = x − X, (C11)

y0 = y − Y. (C12)

The integral transformation constant κ = 1, and performing
the substitutions (C5)–(C7) in Eq. (C3) yields Eq. (C4), when
y∗ is again renamed ˜̃y.

Therefore, [Q(edge)
ϑ ,TX] = 0.

2. Scale invariance

Similarly, we show the scale invariance (78). We have(
Q(edge)

ϑ �λÃ
)
(x) = λ2

π2
P
∫

d ˜̃y
1

sx + cy − ˜̃y

×P
∫

dỹ
Ã(λ[(cx − sy)c + s ˜̃y],λỹ)

−(cx − sy)s + c ˜̃y − ỹ

(C13)

= 1

π2
P
∫

d ˜̃y
1

sx + cy − ˜̃y/λ

×P
∫

dỹ
Ã((cλx − sλy)c + s ˜̃y,ỹ)

−(cx − sy)s + c ˜̃y/λ − ỹ/λ

(C14)

= λ2

π2
P
∫

d ˜̃y
1

sλx + cλy − ˜̃y

×P
∫

dỹ
Ã((cλx − sλy)c + s ˜̃y,ỹ)
−(cλx − sλy)s + c ˜̃y − ỹ

(C15)

= (
�λQ(edge)

ϑ Ã
)
(x). (C16)

3. Absence of rotational invariance

We provide a simple example for which [Q(edge)
ϑ ,Rϑ ′ ] �= 0.

We consider the bare Ã0, Eq. (57). Setting ϑ = ϑ ′ = π/2,
we find(
Q(edge)

π/2 Ã0
)
(x) =

∑
α=±1

α�α/π

[xω − α(xϕ − �)/2 − εd ]2 + �2
, and

(C17)(
Rπ/2Q(edge)

π/2 Ã0
)
(x)

=
∑
α=±1

α�α/π

[xϕ − α(−xω − �)/2 − εd ]2 + �2
. (C18)

On the other hand,(
Rπ/2Ã0

)
(x) =

∑
α=±1

�α/π

[xϕ − α(−xω − �)/2 − εd ]2 + �2
, and

(C19)(
Q(edge)

π/2 Rπ/2Ã0
)
(x)

=
∑
α=±1

−α�α/π

[xϕ − α(−xω − �)/2 − εd ]2 + �2
. (C20)

Hence, Q(edge)
π/2 Rπ/2Ã0 = −Rπ/2Q(edge)

π/2 Ã0, and therefore

[Q(edge)
π/2 ,Rπ/2] �= 0.

APPENDIX D: NUMERICAL REPRESENTATION OF THE
MULTIWEDGE MAP Q

In this Appendix, a recipe for the numerical computation
of the quadruple integral Q is given. The application to the
test function (80), fX,δ , for a function value at (iϕm,iωn)
is computed. The first three integrals can be computed
analytically by use of a computer algebra system. A numerical
quadrature method can be used for the approximation of the
remaining integral.

1. Analytic computation of first three integrals

Using the translational and scale invariance of the edge-to-edge contribution Q(edge)
ϑ , only the action of Q(edge)

ϑ on our test function

f (x,y) = 1

π2

1

(y − x/2)2 + 1

1

(y + x/2)2 + 1
(D1)

has to be computed, yielding the results shown in Fig. 18. For brevity we set y = xω and x = xϕ . The first principal integral can
be eliminated by straightforward application of the residue theorem:

(Hf )(x,ỹ) = P
∫

dy
π−1

ỹ − y
f (x,y) = − 8

π2

(x2 − 12 − 4 ỹ2)ỹ

(16 ỹ4 + 32 ỹ2 − 8 ỹ2x2 + 16 + 8 x2 + x4)(x2 + 4)
. (D2)

As a next step, introducing the short-hand notation s = sin ϑ and c = cos ϑ and imposing the rotation operator R−1
ϑ , one obtains(

R−1
ϑ Hf

)
(k,l) = subs

(
x → kc + ls,ỹ → lc − ks; (Hf )(x,ỹ)

)
. (D3)

Here, “subs” denotes the operation of a variable substitution. In order to apply the second Hilbert transform, it is necessary to
determine the poles of the corresponding integrand

g(k, ˜̃y; l) := π−1

˜̃y − l

(
R−1

ϑ Hf
)
(k,l) = 8

(k2c2 + 10 kcls + l2s2 − 12 − 4 l2c2 − 4 k2s2)(lc − ks)

π3(k2c2 + 2 kcls + l2s2 + 4)

× (4 l2c2 − 6 kcls + 4 k2s2 + 4 + 4 kc2l − 4 k2cs + 4 l2sc − 4 ls2k + k2c2 + l2s2)−1(− ˜̃y + l)−1 (D4)
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with respect to the integration variable l. One finds that the
function has the following seven poles in the complex plane:

l1 := ˜̃y, (D5)

l2,3 := −kc + 2ks ± 2i

s
, (D6)

l4,5 := −kc + 2ks ± 2i

s + 2c
, (D7)

l6,7 := kc + 2ks ± 2i

−s + 2c
. (D8)

The Hilbert transform can now be evaluated through the
residue sum(
HR−1

ϑ Hf
)
(k, ˜̃y) =

7∑
n=1

Re [2πiResl=lng(k, ˜̃y; l)]θ (Im ln).

(D9)

The Heaviside function θ (x) ensures that only poles from the
upper half plane are taken into account for the evaluation of
the contour integral which corresponds to the principal value
integral. An explicit evaluation of the residue sum (D9) can
be accomplished with a computer algebra system. A dramatic
increase in complexity is coming along with the constraints
Im ln > 0 which depend on the wedge orientation angle ϑ .
In fact, six separate cases emerge as a function of ϑ . They
can be parametrized by three overlapping different cases,
namely (A) terms which are proportional to sgn(s), (B) terms
which are proportional to sgn(2c + s), and (C) terms which
are proportional to sgn(2c − s), discriminating between the
different signs of Im ln. The term(
RϑHR−1

ϑ Hf
)
(x,y) = subs (k → xc − ys, ˜̃y → yc + xs;(

HR−1
ϑ Hf )(k, ˜̃y)

)
(D10)

is then best reorganized into rational functions as coefficients
of the sign functions,(

Q(edge)
ϑ f

)
(x,y) = (

RϑHR−1
ϑ Hf

)
(x,y)

= A(x,y)sgn(s) + B(x,y)sgn(2c + s)

+C(x,y)sgn(2c − s).

(D11)

This explicit split is necessary for the study of the interplay
of the rational functions A(x,y), B(x,y), and C(x,y) in a
computer algebra system.

(a) Rational coefficients of the transformed edge test function

The rational functions

A(x,y) = Aenum(x,y)

Adenom(x,y)
, (D12)

B(x,y) = Benum(x,y)

Bdenom(x,y)
, (D13)

C(x,y) = Cenum(x,y)

Cdenom(x,y)
(D14)

have the following polynomials as enumerators and denomi-
nators:

Aenum(x,y) = −8

[(
− 1 + x2 + 1/4 y2 − 41

16
xy

)
c4

− 13

16

(
12

13
xy + x2 + 12

13
− 28

13
y2

)
sc3

+
(

1 + 13

8
xy − 1/2 y2

)
c2 + 1/16 s(−4 + x2

−4 xy − 12 y2)c − 1/16 y(−4 y + x)

]
, (D15)

Adenom(x,y) = π2(x2 + 4 − 4 xy + 4 y2)K(x,y), (D16)

Benum(x,y) = −8

[(
− 1 + x2 + 1/4 y2 + 41

16
xy

)
c4

+13

16
s

(
− 12

13
xy + x2 + 12

13
− 28

13
y2

)
c3

+
(

1 − 13

8
xy − 1/2 y2

)
c2

− 1/16 s(−4 + x2 + 4 xy − 12 y2)c

+ 1/16 y(4 y + x)

]
, (D17)

Bdenom(x,y) = (x2 + 4 xy + 4 y2 + 4)π2K(x,y), (D18)

Cenum(x,y) = −3 (−1/3 y2 − 3 + x2)yxc4

− s[(−3 x2 + 4)y2 − 5 x2 + 4 + x4]c3

+3 (−10/3 + x2 − 2/3 y2)yxc2

+[(−3 x2 + 4)y2 − x2 + 4]sc + yx(y2 + 1),

(D19)

and

Cdenom(x,y) = (x2 + 4)π2K(x,y). (D20)

For the denominators, we introduced the shared polynomial

K(x,y) = [y4 + (−3 − 6 x2)y2 + 3 x2 − 4 + x4]c4

− 4(3/2 + x2 − y2)xsyc3

+ [−2 y4 + (2 + 6 x2)y2 + 4 + x2]c2

− 4(1/2 + y2)xsyc + y2 + y4. (D21)

(b) Composition of the rational coefficients

In contrast to the actual edge functions Q(edge)
ϑ f , the

coefficients A(x,y), B(x,y), and C(x,y) are comparably ill
behaved. For example, one obtains

B(x,y)|ϑ=0 = −8
x + y

π2(x2 + 4)(x2 + 4 xy + 4 y2 + 4)

1

x
.

(D22)

Apparently, the function diverges for x → 0. The functions
A(x,y) and C(x,y) are similarly structured. However, the
actual edge functions, as displayed in Fig. 18, have no such
singularities, but do rather represent smooth deformations of
the test function when the wedge orientation angle ϑ is tuned.
As a consequence, the real singularities are canceled as the
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rational functions are added up in Eq. (D11). For a consistent
further evaluation of the action of Q on the test function it is
thus necessary to study each of the full combinations (D11)
separately. There are six possible combinations, namely the
sectors

(a) 0 � ϑ � arctan 2, (D23)

(b) arctan 2 � ϑ � π − arctan 2, (D24)

(c) π − arctan 2 � ϑ � π, (D25)

(d) π � ϑ � π + arctan 2, (D26)

(e) π + arctan 2 � ϑ � 2π − arctan 2, (D27)

(f) 2π − arctan 2 � ϑ � 2π. (D28)

For example, the expression for the sector (a) reads(
Q(edge)

ϑ f
)|(a)(x,y) = A(x,y) + B(x,y) + C(x,y). (D29)

(c) Contraction with the Poisson kernel

As a next step, one of the integrals introduced by
Vladimirov’s Poisson kernel (47) is evaluated analytically. For
this, the pole structure of both the Poisson kernel (48) and the
edge-transformed test function have to be analyzed.

(i) Pole structure of edge-transformed test functions.
In fact, we are interested in the pole structure of the
scaled and then translated edge-transformed test functions
(TX�1/δQ(edge)

ϑ f )(x ′,y ′) from Eq. (83). The poles and also the
residues of these functions are, however, easily calculated from
the poles and residues of (Q(edge)

ϑ f )(x,y). This is the crucial
advantage of translational and scale invariance of Q(edge)

ϑ .
For example, in sector (a), the following poles of

(Q(edge)
ϑ f )(x,y) with respect to x are obtained: x1,2 = ±2i,

x3,4 = sy ± 2i, x5,6 = −2y ± 2i, x7,8 = 2y ± 2i. The cor-
responding residues are r1,2 = 1

2π2y
, r3,4 = − 1

2π2y
, r5,6 =

1
4π2

−1∓iy

(y2+1)y , r7,8 = 1
4π2

1∓iy

(y2+1)y . The resulting residues of

(TX�1/δQ(edge)
ϑ f )(x ′,y ′) are then given by

r ′
i = 1

δ
subs

(
y → y ′ − Y

δ
; ri(y)

)
, (D30)

where the center of mass of the test function is X = (X,Y ).
They are associated to the poles of (TX�1/δQ(edge)

ϑ f )(x ′,y ′),
which are similarly given by

x ′
i = X + δsubs

(
y → y ′ − Y

δ
; xi

)
. (D31)

In order to obtain the true residues with respect to the x ′
contraction with the Poisson kernel, one only has to evaluate
the Poisson kernel at the poles (48) and multiply r ′

i with the
value.

(ii) Pole structure of Poisson kernel. The pole structure
of Vladimirov’s Poisson kernel is rather straightforward to
compute; however, rather lengthy expressions result for the
poles. Similar to above, the residues have to be multiplied
by the function values of the edge-transformed test function
(TX�1/δQ(edge)

ϑ f )(x ′,y ′) at the pole of the Poisson kernel. Poles
of the rotated Poisson kernel Pr,ϑ (ϕm,ωn; x ′,y ′) with respect

to x ′ are

x ′
1,2 = s − cε

sε + c
y ′ ± i

η1 + εη2

sε + c
, (D32)

x ′
3,4 = cε + s

c − sε
y ′ ± i

η1 − εη2

sε − c
. (D33)

We introduced the short-hand notations η1 = ϕmc − ωns,
η2 = ϕms + ωnc. The associated residues of Pr,ϑ are easily
determined.

(iii) Residue sum for the x ′ integral. An algebraic expression
for the residue sum corresponding to the x ′ integral can be
generated symbolically by evaluating

I3(ϕm,ωn; y ′) =
∫

dx ′ Pr,ϑ (ϕm,ωn; x ′,y ′)︸ ︷︷ ︸
“Poisson”

× (
TX�1/δQ(edge)

ϑ f
)
(x ′,y ′)︸ ︷︷ ︸

“edge”

=
“edge”∑

x ′
i

Re [2πiPr,ϑ (ϕm,ωn; x ′
i ,y

′)r ′
i ]θ (Im x ′

i)

+
“Poisson”∑

x ′
i

Re
[
2πi

(
TX�1/δQ(edge)

ϑ f
)
(x ′

i ,y
′)

× Resx ′=x ′
i
Pr,ϑ (ϕm,ωn; x ′,y ′)

]
θ (Im x ′

i).

(D34)

However, it yields rather lengthy formulas, because the
integrations with respect to x ′ have to be done separately, for
each of the sectors (D23) to (D28). The growth in complexity
is also due to the amount of parameters which increased
dramatically by introducing the Poisson kernel and inserting
the translations TX and scaling �1/δ of the edge functions. It
is possible to export the expressions resulting from Eq. (D34)
from the computer algebra system to a file of Fortran code
which is 500 kilobytes in size. Similar to the procedure
described in Appendix D 1 b for the second integral, the
expression (D34) includes removable discontinuities.

2. Numerical quadrature of the fourth integral

Due to the vast complexity of expression (D34), the last
remaining integral,

I4(ϕm,ωn) =
∫

dy ′ I3(ϕm,ωn; y ′), (D35)

is evaluated numerically, making use of the exported Fortran
code. Adaptive integration routines from the GNU Scientific
Library are imposed.33 Because the resulting matrix elements
give rise to an inverse problem, it is compulsory to achieve a
high integration accuracy. By definition, the integrand is most
distinguishedly structured in the area y ′ ≈ Y , on a scale δ.
Special attention has to be drawn to the appropriate integration
of this range.

The high-frequency tails (−∞, − R] and [R,∞) need to
be integrated out separately, where R is the integration range
of the conventional quadrature. For some parameter values of
δ, X, etc., problems with the convergence of these high-energy
integrals may occur, due to floating point precision. Choosing
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FIG. 26. Example for I3 as a function of y ′, using ϕm = 2.0, ωn =
2.0, with test function location X = 0.0, Y = 4.0, and test function
width δ = 10−3. The interacting branch cut geometry is used for the
determination of r and ϑ .

a finite interval extending to ± max(106,|X| × 103,|Y | × 103)
is then usually sufficient for numerically satisfactory data.

A typical shape of the integrand I3 is shown in Fig. 26. The
structure at y ′ ≈ Y is not necessarily δ-shaped, but depending
on the values of ϕm and ωn it may rather look like the Hilbert
transform of such. The integral may be computed at each
point (X,Y ) of the Ã discretization lattice for all values of the
simulation data (iϕm,iωn) on a computer cluster. In practice,
the computation of the matrix elements has to be done only
once for each temperature β, regardless of the bias voltage.
This is because an adjustment of the Ã grid is not necessary in
the latter case.

In future applications, one should aim at symbolically
programming the residue sum of the fourth integral and then
take the limit δ → 0 analytically.

APPENDIX E: MAXENT IMPLEMENTATION FOR DATA
FROM MULTIPLE WEDGES

In this Appendix, the implementation of the MaxEnt
algorithm for the Q-mapping is described. Details on the
computation of the numerical representation of Q were
provided in Appendix D.

The local test function width δx for the map Qr,ϑ can be
adjusted to the local grid resolution when the function Ã(x) is
discretized. The inverse problem for the inference of spectral
properties using assumption (65) is, by construction,

Im G(iϕm,iωn) = (Qr,ϑ Ã)(iϕm,iωn). (E1)

The values r,ϑ are those which specify the T Cr,ϑ branch of G

in which the vector (iϕm,iωn)T is located, as defined by axiom
1 of Sec. III D. The spectral function of the dot electrons can
then again be gained by evaluating along the physical line,

A(ω) = Ã(�,ω), (E2)

of the inferred (ϑ = 0)-edge function. See Ref. 4 for
details.

(a) Discretization of Ã(xϕ,xω)

The single-wedge MaxEnt-based analytic continuation
problem proposed in Ref. 4 only required a rather straight-
forward discretization of the function Ã(xϕ,xω). In contrast,
for the multiwedge mapping, the discretization of the edge
function has to pay tribute to the strong intertwining of edge
structure and branch cut structure which is revealed by Q(edge)

(cf. Sec. IV D2).
Especially, it turns out that the limiting behavior along

the singular directions of Ã has to be captured numerically.
In terms of the multiwedge approach, the singular directions
dominate the mathematical structure. In our experience, also
the lateral structure of Ã(x) along the singular directions
has to be resolved. We constructed a grid as follows. Let
x̃

(i)
1 and x̃

(j )
2 be two variables which are discretized on ith

and j th logarithmic grid points around zero, respectively.
Then the grid x(i,j ) =

√
5

20 ( 8 10−4 5 )x̃(i,j ) yields an appropriate
discretization of the edge, because the given matrix maps
the double-cone R+ × R+ ∪ R− × R− and its complement to
the wedges defined by the singular directions. The numerical
test function width δx can then be adjusted to the local grid
resolution.

Also the high-energy structure of the Green’s function has
to be taken into account explicitly, because along the singular
directions it does not decay. In practice, it seems to be impor-
tant to have a very large logarithmically discretized fit region,
for which in practice a xϕ/� region of at most [−800,800]
is subject to modifications by the MaxEnt algorithm and a
xω/� region of at most [−400,400]. The singular-direction
contributions beyond this range also prove not to be negligible,
in a test with the bare Green’s function (see also the G0

benchmark below). In order to take them into account, their
contribution up to very large energies (xϕ ≈ 105�) is computed
assuming a G0-like structure along the directions, positioning
adequately weighted δ spikes along it and substracting the
corresponding contributions from the raw data, as done for the
negative-spectral-function contributions of static observables
in the first paper.

(b) Kernel structure

The kernel Qr,ϑ may exhibit rather sharp structures with
respect to the Ã function space. In particular, this may be the
case in regions where the to-be-determined Ã is expected to
be very smooth and physically noninteresting. Consequently,
for these regions, the MaxEnt discretization grid would be
chosen rather coarse-grained. These potentially disturbing
structures can already be seen from the formal structure of
Pr,ϑ , which features strong anisotropies. The convolution with
the (transformed) test functions Q(edge)

ϑ fX,δ is, in general,

no cure for this problem, because Q(edge)
ϑ fX,δ is even more

sharply structured, on the scale δ, which is of the order of the
discretization scale (see Fig. 18).

In order to discuss this in more detail, some matrix elements
ofQr,ϑ are plotted in Fig. 27. The orientation of the considered
data point in Matsubara space defines the orientation of
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(a) m = 1, n = 0 (βΓ = 5.0)
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FIG. 27. (Color online) Cut through Qr,ϑ in Ã space for different
pairs of iϕm and iωn, at β� = 5.0. The wedge opening ratios r and
wedge orientations ϑ (Fig. 16) are chosen according to the interacting
branch cut geometry. The “nonequilibrium” line represents the
location of the dot-electron spectral function for a system with
source-drain voltage e� = 0.5�. Wiggly structures at higher energies
result from the increasingly coarse-grained Ã grid.

the structure which emerges in the kernel with respect to
the (xϕ,xω) coordinates of Ã space. A major qualitative
difference to the structure of the single-wedge kernels Pr,ϑ

is the emergence of distinguished negative regions. They
are generated by the combinations of Hilbert transforms
within the edge-to-edge map Q(edge)

ϑ . As such, they are a
direct consequence of the branch cuts. The negative and
positive regions spread over a comparably wide range and will
compete in the process of Bayesian inference, in which several
(iϕm,iωn) pairs and differently overlapping combinations of
positive/negative regions are involved. The wide range of the
regions appears to result from superimposing the 1/x tails of
Q(edge)

ϑ fX,δ which are dominant for ϑ ≈ π/2 and ϑ ≈ 3π/2
and absent for ϑ ≈ 0, as well as ϑ ≈ π . Note that since the
continuity assumption (65) becomes exact for larger energies,
this feature can be expected to be contained in the kernel of

an optimal continuation theory of Green’s functions within the
Matsubara voltage formalism.

The kernel structure moreover indicates that due to the
leverage of the single-wedge constraint (as it applied to the
MaxEnt calculations in Ref. 4), the nonequilibrium spectral
function could now well be resolved. In the following, the
interacting branch cut geometry is always used for the operator
Qr,ϑ . For brevity, the accordingly defined operator is shortly
written as Q, since r and ϑ are now well determined.

(c) Noninteracting Green’s function as benchmark

The fundamental assumption of this chapter, Eq. (65),
is exact for G0 [Eq. (55)]. As a consequence, we use the
noninteracting Green’s function as a benchmark for our
multiple-wedge numerical analytic continuation procedure,
already assuming the interacting branch cut geometry for the
construction of Qr,ϑ , which is certainly also valid for G0.
At present, from a numerical point of view, the method is
composed of two technically challenging consecutive steps.
First, the kernel and its high-energy convolution with the
Green’s function have to be evaluated numerically up to a
certain precision. Second, an appropriate default model has to
be defined and the MaxEnt must converge to a good estimate
in a controlled way.

In order to test the performance of the first step, we
can take the exact solution as default model and run the
MaxEnt with the discretized kernel. By construction, due to
the design of Bryan’s algorithm,34 MaxEnt changes of the
Ã(xϕ,xω) function will directly correspond to the numerical
errors in the computation of the kernel matrix elements:
Evidence for changes of the exact solution is taken from
the exact data due to numerical imperfections in the kernel.
Without integrating out the sharp structures of the kernel
properly for these regions, serious artifacts are obtained even
for larger test function broadnesses δx . This can be seen
in the “historic” MaxEnt data shown Fig. 28. Here, δx is
chosen adaptively with respect to the local kernel resolution,
namely δx = 0.3 × (localkernelgridresolution). The MaxEnt
is able to modify the Ã function on a large grid varying
over the ranges xϕ ∈ [−800,800], xω ∈ [−400,400]. As the
local kernel resolution is increased, averaging out its structure
within the Ã grid, an increasingly appropriate discretization of
the kernel is obtained. In the computations shown in Fig. 28,
realistic covariance weights for the imaginary-time data were
assumed. If numerical errors �

√
10−13 were included into the

realization of the kernel, there would probably be stronger
deviations from Ã0(xϕ,xω) than observed. For some single
points the δx is so small that the adaptive quadrature of the
fourth integral in Q does not converge. This can be seen best
in Fig. 28(d), because here the kernel discretization grid is eight
times finer than the Ã(xϕ,xω) discretization grid. Similarly, in
the nonequilibrium situation, � �= 0, the function Ã0 is not
significantly altered by the 8 × 8-averaging kernel. This was
tested explicitly also for large bias voltages, such as e� = �.

The performance of the second step can be tested by using
a kernel realization which succeeded in the first step and then
performing runs with a modified default model. Because the
noninteracting Ã0(xϕ,xω) function has the correct singular
behavior as x → ∞ we investigate the dependence of the
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(d) 8 × 8 averaging

FIG. 28. Successive improvement of kernel quality by averaging
out the local kernel structure within the local Ã grid resolution. Data
are shown for U = 0, � = 0, β� = 5, n = 0, . . . ,9, m = −3, . . . ,3
and a realistic mock diagonal covariance matrix C = diag ( 10−13

�2 ).
The abscissa denotes xϕ/�, the ordinate denotes xω/�, grayscale
denotes Ã(xϕ,xω) in units of �−1.

MaxEnt results on the following default models:

D̃σdef (xϕ,xω) = 1

2π

∑
α=±1

σdef[
xω − α

2 (xϕ − �)
]2 + σ 2

def

. (E3)

As compared to Ã0(xϕ,xω), the width of the Lorentzians is
varied. Using the best-quality kernel, i.e., 8 × 8-averaging [see
Fig. 28(d)], increasing the default-model width quickly results
in spurious features in the low- to intermediate-energy region,
even thoughQ represents an exact relation between data and Ã

and the numerical representation of Q is sufficiently accurate.
This is shown in Fig. 29. Away from the low-energy region
also for σ = 1.5� a good agreement with Ã0 is obtained,
i.e., a sharpened structure along the cross-shaped directions
with an approximately correct amplitude [as compared to
Fig. 28(a)]. The strong sensitivity of especially the low-energy
range on the default model may be interpreted as a result
of the subtle interplay of positive and negative regions of
high-amplitude kernel matrix elements for different (iϕm,iωn).
The structure of the matrix elements was discussed above
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FIG. 29. Sensitivity to the default model, using the same param-
eters and scales as in Fig. 28(d).
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FIG. 30. MaxEnt results for flat low-energy default models (E4),
R = 5. As compared to Fig. 29(b), the quality of low-energy data is
increased significantly, due to the correct high-energy behavior of the
default model. Scales are as in Fig. 28(d).

and plotted in Fig. 29. As shown in Fig. 29 a problem often
encountered for not well-chosen default models is apparently
an increase of spectral weight in the low-energy region |x| ≈ 0,
which exceeds the color scale used in the plots by up to a
factor of three, even for moderate deviations of σdef from �.
This is unfortunate, because not only for spectral functions
unphysically high values may be deduced, but also the overall
weight of the spectral function is too large. However, since
the kernel Q imposes an exact relation on G0 and is resolved
well enough, this unfortunate aspect is identified as a pure
MaxEnt (“second step”) artifact. As such, it is no conceptual
problem of the Q approach and can, in principle, be removed
by developing a more sophisticated MaxEnt algorithm which
imposes the physical constraints as prior information. In
fact, this issue can be significantly reduced by a careful but
straightforward analysis of the posterior probabilities within a
set of smooth default models.

From our data we can conclude that default models with
the shape (E3) are apparently not of much use for functions
whose high-energy behavior along the singular directions is
a Lorentzian with width �. Once the high-energy structure is
known to be such, an interesting experiment is to flatten out
the low- to intermediate-energy structure of the default model,
by imposing an x-dependent

σdef(xϕ) = � + (σ̃def − �)
R2

x2
ϕ + R2

, (E4)

where R is the flattening radius and σ̃def � � is a strong flat-
tening of the default model’s low-energy region. For G0 it turns
out that the resulting MaxEnt solution is practically identical
to the σdef = � solution. This is shown in Fig. 30 for two
cases of low-energy default-model broadening. Consequently,
the “second step” artifact for G0 of overshooting low-energy
values (Fig. 29) can just be cured by imposing the correct
high-energy limit. The low-energy artifact is thus caused by
missing a priori information about the high-energy structure.
This appears to be another manifestation of the fact that the
kernel Q puts a large range of energy scales in relation to each
other.

(a) Application to the interacting model

Switching on a finite Coulomb interaction, one has to be
aware of the fact that theQmapping can no longer be expected
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∼Γ

xϕ

xωA(ω)
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(a) nontrivial physics at
xω ≈ ±xϕ/2

xϕ

xω

Γ

(b) “asymptotic free-
dom”

FIG. 31. At high energies, one might (a) expect the lateral
structure of Ã(xϕ,xω) to be composed of two Hubbard peaks and
possibly a quasiparticle resonance which combine to the physical
spectrum A(ω) at the intersection point. In the complementary
scenario (b), the function Ã would not differ from the noninteracting
one at high energies.

to be fully exact. However, a special case of the assumption,
namely the fitting ansatz in Ref. 1, is found to yield reasonable
results which agree with other methods up to a certain extent.11

Therefore, it seems worthwhile to investigate how far one can
go with the controlled MaxEnt approach to the inversion of
the Q mapping.35

(b) Lateral structure along singular directions

As shown in the preceding section, the a posteriori
determination of a most adequate approximate a priori picture
of the high-energy structure is crucial for the success of the
MaxEnt procedure. As sketched in Fig. 31, at finite U , one may,
for example, expect the lateral structure be an unphysical copy
of a spectral function, i.e., two Hubbard peaks with possibly an
additional peak associated to a quasiparticle resonance. Such
a structure would extend over a range ≈U . However, the two
parallel Hubbard peaks can be expected to approximately have
a Lorentzian structure of width ≈� and would generate a type
of branch cut in the Q mapping which is equivalent to the one
in G0. In the strongly correlated regime, Hubbard satellites
may be broadened up to a width of 2�, due to many-body
correlations.36

It is a priori uncertain to what extent either of the intuitive
pictures in Fig. 31 is correct. However, one of the conceptual
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FIG. 32. (Color online) Posterior probability of the default model
(E3) at β� = 5, e� = � for several interactions strengths. The result
is found to be essentially independent of the bias voltage. The kernel
validated in Fig. 28(d) has been used.

strengths of the Q mapping is the precise rendering of the
high-energy structure of the imaginary-voltage theory (cf.
Sec. IV C). One can expect that only a characteristic width
of the lateral structure along the singular directions is needed
in order to model the correct high-energy contribution to the
amplitude of the discontinuity of G(zϕ,zω) at the low- to
intermediate-energy portions of the branch cuts. Based on
this, we can investigate the posterior probability Pr(σdef|Ḡ)
for default models (E3) as a function of their width σdef .

The thus-determined most probable σdef then serves as an
effective description of the high-energy structure Ã(xϕ,xω)
for the actual computations. However, as input data from
the QMC simulations, only low- to intermediate-energy data
are available. Therefore, the posterior probability probe with
respect to default models (E3) has to be interpreted with care.

In Fig. 32, posterior probabilities for different interaction
strengths are displayed. Due to the width being significantly
larger than 2� for U = 15� it is obvious that the lateral width
cannot solely be interpreted as a signature of the Hubbard
bands. Merely, the overall Lorentzian broadness of the spectral
function seems to be obtained. Based on our data, neither of
the scenarios of Fig. 31 can be preferred. However, based
on our experience, the most probable high-energy structure
also yields reasonable results in the case of comparably strong
interactions. Thus, in the practical computations, first the most
probable default model is identified. As a next step, the actual
spectral functions are estimated.
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