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We have performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant
quantum Monte Carlo (DQMC). Here, we present details of the method, emphasizing the treatment of the lattice
degrees of freedom, and then study the filling and behavior of the fermion sign as a function of model parameters.
We find a region of parameter space with large Holstein coupling where the fermion sign recovers despite large
values of the Hubbard interaction. This indicates that studies of correlated polarons at finite carrier concentrations
are likely accessible to DQMC simulations. We then restrict ourselves to the half-filled model and examine the
evolution of the antiferromagnetic structure factor, other metrics for antiferromagnetic and charge-density-wave
order, and energetics of the electronic and lattice degrees of freedom as a function of electron-phonon coupling.
From this we find further evidence for a competition between charge-density-wave and antiferromagnetic orders
at half-filling.
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I. INTRODUCTION

The electron-phonon (e-ph ) interaction is at the heart of a
number of important phenomena in solids. It can be a dominant
factor in determining transport properties or produce broken
symmetry states such as conventional superconductivity1,2

and/or charge-density-wave (CDW) order.3 In systems well
described by Fermi-liquid theory, many of these phenomena
are understood within the framework of Migdal and Eliash-
berg theory, which provides a quantitative account of this
physics.2,4,5 The situation, however, can be quite different in
correlated systems where the role of the e-ph interaction is far
less well understood, sometimes even on a qualitative level.

From an experimental point of view, interest in the e-ph

interaction in correlated systems has largely been driven by
research on transition-metal oxides, and in particular the
high-T c cuprates. For example, in undoped Ca2−xNaxCuOCl2,
angle-resolved photoemission spectroscopy (ARPES) studies
have found broad Gaussian spectral features which have been
interpreted in terms of Franck-Condon processes and polaron
physics.6 This is supported by models for a single hole
coupled to the lattice and doped into an antiferromagnetic
(AFM) background,7–9 which reproduce the observed line
shape and dispersion. Similarly, the structure of the optical
conductivity of the undoped cuprates is well reproduced by
models with strong (polaronic) e-ph coupling.10,11 These
observations point towards a strong e-ph interaction in the
undoped and underdoped cuprates, where strong correlations
have the largest effect.

Evidence for lattice coupling also exists in the doped
cuprates. Perhaps the most discussed are the dispersion
renormalizations in the nodal and antinodal regions of the
Brillouin zone revealed by ARPES.12–19 These manifest as

sharp changes or “kinks” in the electronic band dispersion,
which are generally believed to be due to coupling to a
sharp bosonic mode. Although the identity of this mode
(be it an electronic collective mode or one or more phonon
modes) remains controversial, the appearance of the dispersion
renormalizations at multiple energy scales ranging from
10–110 meV strongly suggests coupling to a spectrum of
oxygen phonons.18–23 These electronic renormalizations have
analogous features in the density of states as probed by
scanning tunneling microscopy24–31 as well as in the optical
properties of the cuprates.32,33

Moving beyond the cuprates, strong e-ph and electron-
electron (e-e) interactions also are believed to be oper-
ative in a number of other systems. These include the
quasi-one-dimensional (quasi-1D) edge-shared cuprates,34

the manganites,35–37 the fullerenes,38–41 and the rare-earth
nickelates.42,43 Thus, understanding the role of the e-ph

interaction in correlated systems is an important problem with
possible implications across many materials families.

One of the primary barriers to resolving these issues is
the incomplete understanding of how the direct interplay
between the e-ph interaction and other important degrees of
freedom (such as strong e-e interactions, magnetic degrees
of freedom, reduced dimensionality, charge localization, etc.)
influences the e-ph interaction. On quite general grounds,
one expects that competition and/or cooperative effects can
significantly alter the nature of the e-e and e-ph interactions.
Strong e-e interactions will suppress charge fluctuations and
will have a tendency to localize carriers and renormalize the
e-ph interaction. Conversely, the e-ph interaction mediates
a retarded attractive interaction between electrons that can
counteract the repulsive Coulomb interaction. However, the
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interaction with the lattice will further dress quasiparticle
mass, producing heavier quasiparticles which may be affected
more significantly by the e-e interaction. In the limit of strong
coupling, this can lead to small polaron formation which also
localizes carriers. In the end, which, if any, of these effects
wins out is a complicated question.

Recent work has begun to examine these issues by
incorporating the Coulomb interaction at varying lev-
els using a variety of analytical and numerical meth-
ods. This has resulted in a number of interesting results
which are sometimes contradictory. Recent Fermi-liquid-
based treatments of the long-range components of the
Coulomb interaction have shown that the e-ph coupling
constant can be significantly enhanced at small momen-
tum transfers due to the quasi-two-dimensional (quasi-2D)
nature of transport in the cuprates and the breakdown of
screening in the deeply underdoped samples.23,44–48 The
enhanced coupling in the forward scattering direction can
enhance pairing in a d-wave superconductor49 and also affects
the energy scale of the dispersion renormalization.50 The
modification of the e-ph vertex appears to be generic as
studies examining the short-range components of the Coulomb
interaction as captured by the Hubbard interaction find similar
forward scattering enhancements of the e-ph vertex.51–53 The
short-range Hubbard interaction may also impact the energy
scale of the e-ph renormalizations in the electronic dispersion
as evidenced by a recent dynamical mean-field theory (DMFT)
study.54

Cooperative and competitive effects between the two
interactions also have been examined in the limit of strong
correlations. One example of this is in the context of un-
derstanding the anomalous broadening and softening of the
Cu-O bond stretching phonon modes in the high-T c cuprates
as a function of doping.55,56 Attempts to account for the
observed renormalizations within density functional theory
have generally been unsuccessful, particularly in the case of
the phonon linewidth.56,57 In contrast, correlated multiband
and t-J models with phonons have experienced more success
in describing this physics.58,59 The most likely origin of this
discrepancy is the underestimation of correlations and the
overprediction of screening effects within DFT.

The presence of multiple interactions is also expected
to enhance quasiparticle masses and therefore influence the
formation of small polarons. DMFT studies of the Hubbard-
Holstein (HH) model have found that the Hubbard interaction
modifies the critical coupling λc for the crossover to a small
polaron.7,9,58,60 However, the suppression or enhancement of
λc depends on the underlying phase: paramagnetic (suppres-
sion) or antiferromagnetic (enhancement).61,62 These results
indicate the importance of correlations and the presence of
the underlying magnetic order. A diagrammatic Monte Carlo
work on the t-J Holstein model also found an increased
tendency towards polaron formation for a single hole doped
into an antiferromagnetic background.9 Similar results have
been obtained in other approaches applied to e-ph coupling in
t-J models,7,9,58,63,64 however, these results are in contrast with
the exact solution for a two-site HH model where λc increases
for increasing Hubbard interaction strengths.65 Although this
result was obtained for a small molecular cluster, it does
highlight the need to examine models where U is finite in

order to allow for the possible destabilization of the AFM
correlations by the e-ph interaction. Without this effect, it
is impossible to address the competition between AFM and
a competing order driven by the e-ph interaction, such as
superconductivity or CDWs, in an unbiased manner.

In the case of the HH model, the e-ph and e-e interactions
can drive competition between different ordered phases. Take
for example the half-filled Hubbard and Holstein models on
a two-dimensional square lattice. The single-band Hubbard
model has strong Q = (π/a,π/a) correlations which favor
single occupation of the sites.66 Conversely, the single-band
Holstein model exhibits a Q = (π/a,π/a) CDW phase tran-
sition at finite temperature.67,68 In the CDW ordered phase,
the lattice sites are doubly occupied in a checkerboard pattern.
When both interactions are present, the tendency towards these
incompatible orders clearly will compete.69–73 Competing
orders in correlated systems is a prominent issue and a common
theme in many transition-metal oxides where novel physics
often emerges at the boundary between orders.

The T = 0 phase diagrams of the half-filled HH model
in one and infinite dimensions have been mapped out.69–72

Recently, this work was extended and a finite-temperature
phase diagram was proposed for the 2D case at half-filling
using determinant quantum Monte Carlo (DQMC).73 Figure 1
sketches the result, extending the diagram shown in Fig. 4 of
Ref. 73 to include additional metrics for the phases involved. In
Fig. 1(a), the average value of the double occupancy is shown
as a function of the e-e (U ) and e-ph (λ, dimensionless units,
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FIG. 1. (Color online) The finite-temperature (β = 4/t) phase
diagrams for the two-dimensional Hubbard-Holstein model at half-
filling. The vertical axis is the strength of the Hubbard interaction,
while the horizontal axis is the strength of the Holstein interaction
measured in dimensionless units (see text). The color scale in the
upper panel gives the average value of the double occupancy per site.
In the lower panel, it gives the spectral weight at the Fermi surface.
For reference, the point of maximum spectral weight is shown in
the upper panel and the line where the double occupancy is one
quarter is shown in the lower panel. The red line indicates the line
where Ueff = 0 in the antiadiabatic limit.
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see below) interaction strengths. When the e-e interaction
dominates, AFM correlations develop and 〈n↑n↓〉 is small.
Conversely, when the e-ph interaction dominates, 〈n↑n↓〉
tends towards 0.5 as half of the sites are doubly occupied
in a Q = (π/a,π/a) checkerboard pattern. These limits are
divided by the line where the strength of the e-e interactions is
comparable to the e-ph interaction (indicated by the red line),
which is taken to be the approximate phase boundary.

This phase diagram is quite similar to the ones drawn
for the one- and infinite-dimensional cases, however, in the
vicinity of the transition there is debate as to whether there is
an intervening metallic state. Here, in the finite-T 2D case, we
find indications of such a phase.73 This is most clearly seen
in the spectral weight at the Fermi level, which is related to
the imaginary time Green’s function G(τ = β/2) (Ref. 73,74)
and is shown in Fig. 1(b). To the left (right) of the transition
region, spectral weight is suppressed at the Fermi level due to
the opening of a Mott (CDW) gap. However, in the transition
region, the spectral weight is maximal, consistent with an
intervening metallic phase. The point of maximal spectral
weight lies near the line where 〈n↑n↓〉 = 0.25, a value equal
to that expected for a paramagnetic metal. Furthermore, as
the temperature is lowered, the low-energy spectral weight in
the intervening phase grows, indicative of metallic behavior,
while the spectral weight in the large-U and -λ regimes falls,
as expected for an insulator.73 These results are in contrast to
the results obtained in infinite dimensions and T = 0 where
a first-order AFM/CDW transition has been proposed.69,70 At
this stage, it is unclear what role dimension and temperature
are playing, indicating the need for further studies.

In this paper, we apply DQMC to study the 2D single-
band HH model. DQMC is a nonperturbative auxiliary-field
technique capable of handling both the Hubbard and Holstein
interactions on equal footing. This is particularly important
if one wishes to address competition between the two inter-
actions in an unbiased manner. Our results show a number
of indications of a competition between the Q = (π/a,π/a)
CDW and AFM orders. The primary evidence for this has been
reported in a previous paper (Ref. 73). The purpose of this
work is to outline the algorithm, benchmark it, and present
supporting evidence for the competition between CDW and
AFM in the half-filled model. Results are given for the fermion
sign, which is important for assessing when and where it
is feasible to apply DQMC. For large e-e interactions, the
fermion sign problem generally restricts DQMC simulations
to high temperature, however, we find a parameter regime
with strong e-e and e-ph interactions where the fermion
sign recovers. This opens the possibility of treating strongly
correlated polarons at finite carrier concentrations provided
the phonon field sampling remains efficient.

The organization of this work is as follows. In the following
section, we will briefly review the DQMC method as it applies
to the HH model. As previous works66,75 have outlined the
method in the context of the Hubbard model, here we focus
on the additional aspect associated with the treatment of the
lattice degrees of freedom. Following this, we begin presenting
results. Section III examines the severity of the fermion sign
problem throughout parameter space. Section IV examines
the filling and compressibility of the model as a function of
chemical potential. These results are intended to provide a

reference point for future finite concentration studies. From
this point forward, we then restrict ourselves to half-filling.
In Sec. V, we study the AFM structure factor and metrics for
the AFM and CDW orders as a function of e-ph coupling.
These results provide further evidence of the competition
between the two orders at half-filling. This competition also is
evident in the energetics of the electronic and lattice degrees
of freedom which are presented in Sec. VI. Finally, in Sec. VII
we summarize and make some concluding remarks.

II. FORMALISM

In this section, we outline the DQMC algorithm. The
general approach follows the original formalism of Refs. 66
and 75. Here, we briefly summarize the method and highlight
the changes and additions required to handle the lattice degrees
of freedom.

A. Hubbard-Holstein Model

The HH Hamiltonian is a simple model capturing the
physics of itinerant electrons with both e-e and e-ph interac-
tions. In this model, the motion of the lattice sites is described
by a set of independent harmonic oscillators at each site i, with
position and momentum operators X̂i and P̂i , respectively. The
e-e and e-ph interactions are both treated as local interactions:
the e-e interaction given by the usual Hubbard interaction
while the e-ph interaction arises from the linear coupling
of the local density to the atomic displacement X̂i . The HH
Hamiltonian can be decomposed into H = Hel + Hlat + Hint

where

Hel = −t
∑

〈i,j〉,σ
c
†
i,σ cj,σ − μ

∑
i,σ

n̂i,σ (1)

and

Hlat =
∑

i

(
M�2

2
X̂2

i + 1

2M
P̂ 2

i

)
(2)

contain the noninteracting terms for the electron and lattice
degrees of freedom, respectively, and

Hint = U
∑

i

(
n̂i,↑ − 1

2

)(
n̂i,↓ − 1

2

)
− g

∑
i,σ

n̂i,σ X̂i (3)

contains the interaction terms. Here, c
†
i,σ (ci,σ ) creates (an-

nihilates) an electron of spin σ at site i, n̂i,σ = c
†
i,σ ci,σ

is the number operator, 〈. . .〉 denotes a sum over nearest
neighbors, t is the nearest-neighbor hopping, � is the phonon
frequency, U and g are the e-e and e-ph interaction strengths,
respectively, and μ is the chemical potential, adjusted to
maintain the desired filling. It is convenient to define the
dimensionless e-ph coupling λ = g2/(M�2W ), equal to the
ratio of the lattice deformation energy Ep = g2/(2M�2) to
half the noninteracting bandwidth W/2 ∼ 4t . Throughout this
work, we use λ as a measure of the e-ph coupling strength and
set a = M = t = 1 as the units of length, mass, and energy,
respectively.

The competition between the Hubbard and Holstein in-
teractions is often demonstrated by explicitly integrating out
the phonon degrees of freedom, after which one obtains an
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effective dynamic Hubbard interaction77

Ueff(ω) = U + g2

M(ω2 − �2)
= U − Wλ

1 − (ω/�)2
. (4)

The second term represents the retarded attractive interaction
mediated by the phonons for ω < �. In the antiadiabatic
limit � → ∞ with λ held fixed, this interaction becomes
instantaneous and one is left with an effective Hubbard model
with Ueff = U − g2/M�2 = U − λW . For large values of �,
the behavior of the HH model approaches that of the Ueff

model. However, for small �, retardation effects can become
important as observed in comparisons between the HH and
Ueff Hubbard models when one examines observables such
as the CDW and AFM susceptibilities.61,73 Nevertheless, the
frequency-independent Ueff model is used often to describe
the HH model and recent studies have found that some of the
low-energy properties of the model can be captured by such
an approximation.61,69

B. DQMC algorithm

In general, one wishes to evaluate the finite-temperature
expectation value of an observable Ô given by

〈Ô〉 = TrÔe−βH

Tre−βH
, (5)

where the averaging is performed within the grand canonical
ensemble. In order to evaluate Eq. (5), the imaginary-time
interval [0,β] is divided into L discrete steps of length 	τ =
β/L. The partition function can then be rewritten using the
Trotter formula as78

Z = Tr(e−	τLH ) = Tr(e−	τHinte−	τK )L, (6)

where K is the matrix form of the noninteracting terms K =
Hel + Hlat, and terms of order tU (	τ )2 and higher have been
neglected. In many other modern QMC approaches, this Trot-
ter error is eliminated by using continuous-time algorithms.79

However, with DQMC one has a highly efficient sampling
scheme which is difficult to implement in a continuous-time
approach. We will return to this point when we discuss Monte
Carlo updates. For our choice of discrete time grids, the Trotter
errors are typically a few percent and difficult to discern against
the background of statistical errors when evaluating long-range
correlation and structure factors.

With this discrete imaginary-time grid, the Hubbard interac-
tion terms can now be written in a bilinear form by introducing
a discrete Hubbard-Stratonovich field si,l = ±1 at each site i

and time slice l. This results in

e−	τU (n̂i,↑−1/2)(n̂i,↓−1/2) = A
∑

si,l=±1

e−	τsi,lα(n̂i,↑−n̂i,↓), (7)

where A = 1
2e−	τU/4 and α is defined by the relation

cosh(	τα) = exp(	τU/2).66,75,76 In the absence of the e-ph

interaction, the trace over fermion degrees of freedom can be
performed and the partition function is expressed as a product
of determinants75

Z =
∑
si,l

det M↑ det M↓, (8)

where Mσ = I + Bσ
LBσ

L−1 . . . Bσ
1 . Here, I is an N × N iden-

tity matrix and the Bl matrices are defined as

B
↑(↓)
l = e∓	ταv(l)e−	τK, (9)

where v(l) is a diagonal matrix whose ith element is the field
value si,l . The evaluation of Eq. (8) now requires a Monte
Carlo averaging of the auxiliary fields si,l (see Sec. II C).
This expression must be modified when introducing the e-ph

interaction.
In order to handle the motion of the lattice, the position

operator X̂i is replaced with a set of continuous variables
Xi,l defined on the same discrete imaginary-time grid as
the Hubbard-Stratonovich fields. The momentum operator is
replaced with a finite difference Pi,l = M(Xi,l+1 − Xi,l)/	τ

and periodic boundary conditions are enforced on the interval
[0,β] such that Xi,L = Xi,0. In this treatment, we recover the
proper values for the average phonon kinetic and potential
energy in the noninteracting limit provided the sampling of
the phonon displacements has been done with care.

With these changes, the fermion trace can again be
performed and one has

Z =
∫

dX
∑
si,l

e−Eph	τ det M↑ det M↓, (10)

where
∫

dX is shorthand for integrating over all of the
continuous phonon displacements Xi,l and Mσ is defined as
before but with modified matrices

B
↑(↓)
l = e∓	ταv(l)−	τgX(l)e−	τK. (11)

The matrix v(l) is defined as before and X(l) is a diago-
nal matrix whose ith diagonal element is Xi,l . The factor
exp(−Eph	τ ) arises from the bare kinetic and potential energy
terms of the lattice Hamiltonian Hlat, where

Eph = M�2

2
X2

i,l + M

2

(
Xi,l+1 − Xi,l

	τ

)2

. (12)

An expression for the numerator of Eq. (5) can be obtained in
an analogous way.

Most observables can be expressed in terms of the single-
particle Green’s function Gσ (τ ). For an electron propagating
through field configurations {si,l}, {Xi,l}, the Green’s function
at time τ = l	τ is given by66

[Gσ (l)]ij = 〈T̂τ ci,σ (τ )c†j,σ (τ )〉
= [

I + Bσ
l . . . Bσ

1 Bσ
L . . . Bσ

l+1

]−1
ij

, (13)

where T̂τ is the time ordering operator. The determinant of
Mσ appearing in Eq. (10) is independent of l and is related
to the Green’s function on any time slice Gσ (l) by detMσ =
detG−1(l).

C. Sampling the auxiliary fields

The sampling of the Hubbard-Stratonovich and phonon
fields is performed using two types of single-site updates
as well as a “block” update for the phonon fields. In our
implementation, each Monte Carlo step consists of cycling
through these three types.
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1. Hubbard-Stratonovich field updates

The evaluation of Eq. (13) requires O(N3) operations.
However, once the Green’s function Gσ (l) is known, the
Green’s function on the next imaginary-time slice can be
efficiently computed with a set of matrix multiplications [an
order O(N2) operation]

Gσ (l + 1) = Bσ
l+1G

σ (l)
[
Bσ

i+1

]−1
. (14)

This forms the basis for an efficient single-site update scheme.
One begins by computing the Green’s function on a single
time slice using Eq. (13). A series of updates are then proposed
for the Hubbard-Stratonovich fields while holding the current
configuration {Xi,l} fixed. This portion follows the prescription
given in Ref. 66. One sweeps through all sites i proposing
si,l → −si,l = s ′

i,l , which is accepted with probability

R = R↑R↓ = detM↑′detM↓′

detM↑detM↓ , (15)

where Mσ ′ and Mσ correspond to the HS fields with and
without the proposed update, respectively.

Since the phonon fields are held fixed during this update,
fast Sherman-Morrison updates can be performed in the usual
manner.66 One has

Bσ (l) → Bσ ′(l) = [I + 	σ (i,l)]Bσ (l), (16)

where the matrix [	σ (i,l)]jk = δikδik[exp(±2	τsi,l) − 1] has
a single nonzero element. The ratio of determinants can be
computed easily from

Rσ = 1 + {1 − [Gσ (l)]ii}[	σ (i,l)]ii . (17)

If the spin flip of the Hubbard-Stratonovich field is accepted,
the updated Green’s function is given by

[Gσ (l)]′ = Gσ (l) − Gσ (l)	σ (i,l)[I − Gσ (l)]

1 + [
1 − Gσ

ii(l)
]
	σ

ii(i,l)
. (18)

	σ (i,l) has a single nonzero element, making evaluation of
Eq. (18) straightforward. Once updates have been performed
for all fields on time slice l, Gσ (l) is advanced to Gσ (l + 1)
using Eq. (14) and the process repeated.

This update scheme is efficient; however, it cannot be fully
exploited in an auxiliary field continuous-time approach where
one defines time slices τi on a variable grid with spacing
	τi = τi+1 − τi and sampling is performed over the auxiliary
fields and number of time slices. For a fixed number of time
slices, the methodology outline above holds and the fast update
scheme can be used. The difficulty enters when one proposes
the insertion or removal of a time slice from the set. These
updates are accepted with a probability related to the ratio of
determinants similar to Eq. (15) times an additional prefactor
to satisfy detailed balance.79 However, the new configuration
in this case involves a different number of time slices and thus
the determinants must be computed from scratch, which is
computationally expensive. Since continuous-time approaches
require many of these types of updates, we choose to remain
on a discrete grid where fast sampling of the auxiliary fields
can be maintained on larger clusters.

2. Phonon field updates

Single-site updates for the phonon fields proceed in a
manner analogous to that for the Hubbard-Stratonovich fields.
For each point (i,l) one proposes updates Xi,l → X′

i,l =
Xi,l + 	Xi,l while holding the configuration {si,l} fixed. In
this case, 	Xi,l is drawn from a box probability distribution
function. The proposed phonon update is then accepted with
probability R = R↑R↓ exp(−	τ	Eph) where 	Eph is the
total change in kinetic and potential energy associated with
the update, and Rσ is defined by Eq. (15). The 	Eph term
accounts for the contribution of Hlat to the total action. The
fast Sherman-Morrison update scheme can also be performed
for single-site phonon updates with 	σ (i,l) replaced by

[	σ (i,l)]jk = δikδjk[exp(−	τ	Xi,l) − 1]. (19)

3. Block updates for the phonon fields

As noted previously, sampling the phonon fields requires
some additional care. In addition to the single-site update
scheme, we have found that a block update scheme is necessary
to reproduce correct results in the noninteracting and atomic
limits. In this update scheme, the lattice position for a given
site is updated such that Xi,l → Xi,l + 	X for all l ∈ [0,L].80

This type of update helps to efficiently move the phonon
configurations out of false minima at lower temperatures.
However, it comes at a price. Block updates spanning multiple
imaginary-time slices are computationally expensive within
the DQMC formalism. They require that the Green’s function
be recalculated from scratch since updates are being made
on multiple time slices simultaneously. This is an O(N3)
operation in contrast to the O(N2) cost of Eq. (18). Therefore,
a balance between the two types of phonon updates must be
struck. As a rule of thumb we have found that two to four
block updates at randomly selected sites for every full set of
single-site updates to {si,l} and {Xi,l} are sufficient to recover
the correct behavior in the noninteracting and atomic limits.
In our implementation, 	X is drawn from a separate box
probability distribution function.

III. FERMION SIGN

We begin with the average value of the fermion sign, which
is the limiting factor for any QMC treatment of correlated
electrons. In Fig. 2, we focus on the average sign at half-filling
as a function of e-ph coupling for a moderately correlated
case (U = 4t). Results are shown for a phonon frequency
� = t and inverse temperature β = 8/t . Since we have only
included nearest-neighbor hopping, the average sign at half-
filling is protected by particle-hole symmetry for λ = 0.66 This
protection results from the fact that although detMσ < 0, sym-
metry dictates sign(detM↑) = sign(detM↓) in a particle-hole
symmetric system; thus, the ratio R remains positive definite.
This no longer holds for finite e-ph coupling since most
phonon configurations {Xi,l} break this symmetry, leading
to a sign problem at half-filling. Increasing λ suppresses the
average sign until reaching a minimum that depends on the
cluster size. For larger clusters, this minimum persists over a
wide range of λ; however, the average sign eventually recovers
in all cases when Wλ � U . This behavior is generic for all
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FIG. 2. (Color online) The average value of the fermion sign as
a function of e-ph coupling λ for various half-filled clusters. The
parameters for these calculations are β = 8/t , 	τ = t/10, U = 4t ,
and � = t .

parameter sets we have examined at half-filling and is due to the
strong reduction of Ueff produced by the attractive interaction
mediated by the e-ph interaction. This result indicates that
although simulations of the HH model at low T remain limited
by the fermion sign problem for arbitrary parameter ranges,
this need not be true for simulations of the correlated polaronic
regime (large λ with moderate to large U ).

Turning to finite carrier concentrations, Fig. 3 shows the
average sign as a function of filling for a strongly correlated
system (U = 8t), phonon frequencies � = t [Fig. 3(a)], and
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<
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0
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λ = 0.90(a) Ω = t

(b) Ω = 4t

FIG. 3. (Color online) The average value of the fermion sign as
a function of filling for λ = 0.25 (◦), 0.5 (�), 0.7 (�), and 0.9 (
).
Results are shown for two sets of phonon frequencies � = t (panel a)
and � = 4t (panel b). All data sets are for the strongly correlated limit
with U = 8t . These results were obtained on a N = 8 × 8 cluster
with 	τ = 0.1/t . The inverse temperatures for panels (a) and (b) are
β = 4/t and 3/t , respectively. The solid lines are guides to the eye.

� = 4t [Fig. 3(b)] (the latter being closer to the antiadiabatic
limit), and inverse temperatures are β = 4/t and 3/t , respec-
tively. For weak e-ph coupling, doping suppresses the sign
in a manner similar to the bare Hubbard model66 where the
most severe sign problem occurs near 〈n〉 ∼ 0.85 and ∼1.15.
Upon increasing λ, the behavior at half-filling follows that
shown in Fig. 2. However, at finite doping, the evolution of the
fermion sign depends on the phonon frequency. For � = t

the average value of the sign increases with the inclusion
of the e-ph interaction for most carrier concentrations away
from the immediate vicinity of half-filling. Conversely, for
� = 4t , the average sign is systematically suppressed and a
deep minimum develops over a wide doping range for the
largest values of λ considered. This indicates that the way in
which the e-ph coupling affects the sign problem depends both
on the strength of the effective attraction as well as retardation
effects. We will return to this point shortly. Figure 3 also shows
that for large λ, the degree to which the sign is enhanced or
suppressed at finite doping is comparatively smaller than the
size of the induced sign problem at half-filling. In other words,
although a sign problem is induced at half-filling, it does
not appear to be significantly exacerbated, and can even be
improved by the e-ph interaction, near carrier concentrations
that are of interest for the doped high-T c cuprates.

The � dependence of the average sign reinforces the
notion that the degree of retardation associated with the e-ph

interaction plays an important role in determining the dressing
of the Hubbard interaction. To explore this further, in Fig. 4(a)
we show the average sign at half-filling for t/2 < � < 4t as
a function of λ. For a given value of �, the overall trend
remains similar to Fig. 2, however, increasing � results in
a greater overall suppression of the average sign, indicating
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FIG. 4. (Color online) (a) The average sign for 〈n〉 = 1 as a
function of λ for � = t/2 (◦), t (�), 2t (�), and 4t (	). The
Hubbard interaction strength is held fixed at U = 6/t , and the inverse
temperature is β = 4/t . (b) The average value of the fermion sign
at half-filling as a function of the phonon frequency � and fixed
e-ph coupling λ = 0.25. Results are shown for U = 4t , β = 4/t (◦),
U = 4t , β = 6/t (�), and U = 6t , β = 4/t (♦). All results in panels
(a) and (b) were obtained on an N = 8 × 8 cluster with 	τ = 0.1/t .
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that U is suppressed more rapidly by antiadiabatic phonons.
The opposite trend was observed in the AFM susceptibilities,
where AFM was suppressed at lower values of λ for larger
�.73 This suggests that the fermion sign is influenced both by
the magnitude of U and the degree of retardation encoded in
Ueff(ω).82 This possibility is underscored by contrasting the
instantaneous Ueff model to the HH model with large �. In
the Ueff model, particle-hole symmetry holds and the average
value of the sign is identically one. In contrast, we observe
that the sign is lower for � approaching the antiadiabatic limit
as shown in Fig. 4(b) for a fixed λ = 1

4 . Furthermore, the
average sign is suppressed more rapidly for small � before
asymptotically approaching a U - and β-dependent value at
high frequency. We interpret the value of the sign at large � as
the size of the induced sign problem introduced by the breaking
of particle-hole symmetry by the phonon fields. A possible
explanation for the improved sign at small � is the attractive
e-ph -mediated interaction for electrons at the Fermi level. Re-
call that the dynamic effective Hubbard interaction introduced
by the phonons U

ph

eff (ω) is attractive for ω < � and divergent
for ω → �. Thus, as the phonon frequency tends to smaller
values, a significant suppression of the repulsive Hubbard in-
teraction occurs for electrons in a window near the Fermi level.
If the average sign is determined primarily by electrons in this
window, then one would expect the sign to be improved. Fur-
ther work is clearly needed to clarify this interesting possibility.

IV. FILLING AND COMPRESSIBILITY

Figure 5 shows the average filling on an 8 × 8 cluster as
a function of chemical potential μ for the same parameter
set used to obtain the results shown in Fig. 3. [A chemical
potential shift 	μ = −Wλ due to the equilibrium lattice
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μ - Wλ  [t]
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λ = 0.50
λ = 0.70
λ = 0.90

FIG. 5. (Color online) The average value of the filling 〈n〉 as a
function of chemical potential μ − Wλ for the same parameter sets
shown in Fig. 3. The −Wλ correction accounts for the global shift of
the lattice equilibrium position (see main text).
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      β = 3/t

κ

λ = 0.25
λ = 0.50
λ = 0.70
λ = 0.90

FIG. 6. (Color online) The compressibility κ as a function of
chemical potential for the same parameter set shown in Fig. 5
(Ref. 83).

position has been subtracted off such that μ = 0 corresponds to
half-filling (see Appendix).] Figure 6 shows the corresponding
compressibility κ ∝ ∂〈n〉

∂μ
for the system.83 In these results, one

starts to see indications of competition between the attractive
interaction mediated by the e-ph interaction and the repulsive
e-e interaction. For small values of λ, the strong Hubbard inter-
action (U = 8t) dominates, opening a Mott gap in the system
which clearly manifests as a plateau in 〈n(μ)〉 and incompress-
ibility κ ∼ 0 located near μ − Wλ = 0. As the strength of the
e-ph interaction increases, the effective attractive interaction
grows. This reduces the influence of the Hubbard interaction
and the size of the Mott gap begins to diminish. This is evident
in the shrinking width of the plateau in 〈n(μ)〉 and the rise in
the value of κ . In the limit of large λ, all indications of the
Mott gap vanish and 〈n(μ)〉 behaves in a manner expected for
a metallic state. The system has a finite compressibility and
κ → 0 as the band completely fills. This qualitative behavior
occurs for both phonon frequencies and is further evidence for
the direct competition between the attractive e-ph interaction
and repulsive e-e interaction discussed in Ref. 73. For this
parameter set, λ ∼ 1 marks the position where one expects the
transition between the AFM and CDW order (see Fig. 1). We
interpret this as further evidence for an intervening metallic
state between the two orders at finite temperature. Finally, for
the largest coupling λ = 0.9, the κ → 0 for μ − Wλ → 3t ,
indicating that the total bandwidth of the system has been
narrowed by the interactions present in the system.

V. CHARGE-DENSITY-WAVE AND
ANTIFERROMAGNETIC CORRELATIONS

In this section, we address the issue of competition between
the e-ph-driven CDW and e-e-driven AFM correlations for the
model at half-filling. We begin by first reviewing our previous
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FIG. 7. (Color online) The (a) spin χs(π,π ) and (b) charge
χc(π,π ) susceptibilities for several values of U on an N = 8 × 8
cluster, reproduced from Ref. 73. The inset of (b) shows χs (dashed
lines) and χc (solid lines) at U = 4t for several lattice sizes. The
error bars in the inset have been suppressed for clarity. The remaining
parameters are β = 4/t , 	τ = 0.1/t , and � = t .

results for the charge χc(q) and spin χs(q) susceptibilities,
defined as

χs,c(q) = 1

N

∫ β

0
dτ 〈Tτ Ôs,c(q,τ )Ô†

s,c(q,0)〉, (20)

where Ôs(q) = ∑
i e

iq·Ri (n̂i,↑ − n̂i,↓), and Ôc(q) =∑
i,σ eiq·Ri n̂i,σ .
Our results for χs(π,π ) and χc(π,π ) are reproduced in

Fig. 7 as a function of λ and for several values of U .73 For
increasing e-ph coupling, χs [Fig. 7(a)] is suppressed as a
result of the reduction in the effective Hubbard interaction.
For small values of U , χs is suppressed immediately for
finite λ. However, for larger values of U , where more robust
AFM correlations are present, χs persists up to λ ∼ U/W

before beginning a significant drop as a function of λ. (This is
seen most clearly in the data for U = 8t .) At the same time,
as λ increases there is a corresponding increase in χc(π,π )
[Fig. 7(b)]. This occurs gradually at first while χs is large, but
once the AFM correlations have been suppressed sufficiently
there is a sharp increase in the growth of χc. This indicates a
competition between the two orders as the AFM correlations
must be suppressed before charge ordering can occur. Finally,
for U � 6t , further increases in λ result in a decreasing χc.
We interpret this as being due to the finite CDW transition
temperature in the HH model.73 The inset of Fig. 7 shows
similar results obtained on different lattices, demonstrating
that the finite-size effects do not qualitatively alter this picture.

Another measure of the AFM correlations in the single-
band model can be obtained from the magnitude of the equal-
time spin structure factor S(π,π ), which is defined as the
Fourier transform of the spin-spin correlation function c(lx,ly)
(Ref. 66)

S(q) =
∑

l

eiq·lc(lx,ly), (21)
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FIG. 8. The structure factor S(π,π ) as a function of inverse
temperature β for the half-filled Hubbard-Holstein model. Results
are shown for clusters of linear dimension (a) N = 4, (b) N = 6, and
(c) N = 8 and for several values of the electron-phonon coupling
strength λ, as indicated. The remaining parameters are U = 4t ,
	τ = 0.1t , and � = t .

where l = (lx,ly) is the lattice position and

c(lx,ly) = 1

N

∑
i

〈(n̂i+l,↑ − n̂i+l,↓)(n̂i,↑ − n̂i,↓)〉.

Here, the sum over i has been introduced to average over
translationally equivalent quantities as opposed to a nontrivial
spatial sum as in Eq. (21).

In Fig. 8, we plot the structure factor S(π,π ) at the
antiferromagnetic ordering vector for a series of half-filled
clusters with U = 4t . The data are plotted as a function
of inverse temperature and for various values of the e-ph

coupling strength, as indicated in the figure. The λ = 0 results
well reproduce the results of White et al.66 for the Hubbard
model. However, the suppression of the AFM correlations as a
function of λ is apparent and S(π,π ) is reduced over the entire
temperature range for finite values of λ. The suppression of
the AFM order is also evident in the structure of the real-space
spin-spin correlation function c(lx,ly), as shown in Fig. 9.
The results for λ = 0 show a clear staggered moment in the
real-space spin structure. However, for λ = 0.7, which is below
the peak in the CDW susceptibility [see Fig. 7(b)], the spin
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FIG. 9. (Color online) The real-space structure of the spin-spin
correlation function c(lx,ly) along the path indicated in the inset.
For λ = 0 (black �), the antiferromagnetic correlations are evident.
For increasing values of λ, the antiferromagnetism is suppressed. By
λ = 0.5 (blue �), where λW ∼ U , all traces of antiferromagnetic
correlations are gone.

correlations resemble the result obtained in the paramagnetic
metallic state.66 This behavior is also reflected in the real-space
density correlation function, shown in Fig. 10 for the same
parameter set. For weak e-ph coupling, the cluster has a
uniform charge distribution; however, upon increasing λ to
0.7 > U/W , a clear (π,π ) charge-density wave forms. The
behavior of both of these correlation functions implies the
presence of an intervening metallic state below the onset of
the CDW transition.

VI. ENERGETICS AT HALF-FILLING

In this final section, we present results for the energetics of
the lattice and electronic degrees of freedom. Again, we restrict
ourselves to half-filling and examine the energetics across the
AFM/CDW transition. We first examine the average kinetic
energy of the electrons Kel , which is defined as

Kel =
〈
−t

∑
〈i,j〉,σ

c
†
i,σ cj,σ

〉
. (22)
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FIG. 10. (Color online) The real-space structure of the density-
density correlation function along the path indicated in the inset.
For λ = 0 (black �), the density of the system is uniform within
error bars. This uniform density persists for increasing values of
λ � 0.5 (blue �). However, for λ = 0.7 > U/W (red �), a (π,π )
charge-density-wave correlation begins to develop.
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FIG. 11. (Color online) The negative of the average electron
kinetic energy as a function of the e-ph interaction strength λ and
U = 4t (green ◦), 6t (blue �), 8t (red �), and 10t (black 
). The
arrows indicate the value of coupling when Wλ = U for each data set.

Figure 11 shows the negative of Kel plotted as a function
of e-ph coupling and for values of U between 4t and 10t .
For λ = 0, charge fluctuations are suppressed by the Hubbard
interaction and −〈Kel〉 decreases for increasing values of U .
As λ increases, the effective Hubbard interaction is lowered
and Kel decreases slowly as a function of λ. For reference,
Kel ∼ −1.567t in the noninteracting limit. However, once λ ∼
U/W (indicated by the arrows), Kel turns over and increases
rapidly. The value of λ at which this occurs coincides with
both a pronounced change in the lattice potential energy (see
below) and the onset of the CDW susceptibility.73 In Ref. 70,
similar behavior was observed in an assumed AFM ordered
state.

The average potential energy of the electrons, which is
proportional to the average number of doubly occupied sites

〈Pel〉 =
〈∑

i

Un̂i,↑n̂i,↓

〉
, (23)

is plotted in Fig. 12(a). The average value of the double
occupancy 〈n↑n↓〉 appears in Fig. 12(b) for reference. (The
value for a noninteracting system is indicated by the dashed
line.) Again, one sees the apparent competition between the
AFM and CDW orders. For λ = 0 the system is dominated by
the Hubbard interaction and the number of doubly occupied
sites is low and for increasing U the value of Pel is lowered.
When the e-ph coupling increases, 〈n↑n↓〉 grows. This
happens slowly at small values of λ. However, once λ ∼ U/W ,
the number of doubly occupied sites grows more rapidly before
saturating at a value of 0.5 where half of the sites are doubly
occupied as expected for q = (π,π ) CDW order. Similarly, the
electronic potential energy increases concomitantly with the
increase in the cost of this double occupancy. This large cost
in Pel is compensated for by the gain in energy associated with
the e-ph interaction (see below).

The behavior of 〈n↑n↓〉 shown in Fig. 12 shows some
differences from the results of infinite dimension DMFT.70

Generically, we see the growth in double occupancy occurring
much more gradually than the DMFT result for the largest
values of U . This appears to be the case regardless of the
underlying state (charge ordered or normal) assumed in the
DMFT calculations. One possible source for this difference
is the presence of the intervening metallic state in two
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FIG. 12. (Color online) (a) The average potential energy of the
electrons due to the Hubbard interaction Pel as a function of λ and
U = 4t (green ◦), 6t (blue �), 8t (red �), and 10t (black 
). (b) The
corresponding average value of the double occupancy. The dashed
line indicates the value expected for the noninteracting metallic
system. The arrows indicate the value of coupling when Wλ = U

for each data set.

dimensions. If such a state were present, one would expect
to see 〈n↑n↓〉 flatten at 1

4 as a function of λ in this parameter
regime. The thermal fluctuations present in our calculation
would then broaden this to produce milder behavior like that
shown here.

The average values of the phonon kinetic and potential
energies are given by

〈Pph〉 = M�2

2

〈∑
i,l

X2
i,l

〉
, (24)

〈Kph〉 = 1

2	τ
− M

2

〈∑
i,l

(
Xi,l+1 − Xi,l

	τ

)2
〉

. (25)

The factor of 1/(2	τ ) appearing in the kinetic energy term is
a Euclidean correction introduced by the Wick rotation to the
imaginary-time axis. In the case of the lattice potential energy,
we have subtracted off the contribution associated with the
shift in the lattice equilibrium position in order to obtain a
measure of the lattice fluctuations about equilibrium.

The average values of the phonon kinetic and poten-
tial energies are shown in Figs. 13(a) and 13(b), respec-
tively, as a function of λ and U . For λ = 0, we recover
the atomic result 〈Kph〉 = 〈Pph〉 = �

2 [nb(ω) − 1/2], where
nb(ω) = [exp(ωβ) − 1]−1 is the Bose occupation number. For
finite e-ph coupling, the kinetic (potential) energy of the lattice
slowly decreases (increases) for λ � U/W . This reflects a
small renormalization of the phonons by scattering processes.
A further increase in λ crosses the transition point at which
point the kinetic energy reaches a minimum before returning
to a value comparable to that at λ = 0 with a concomitant
increase in the potential energy. Again, the minimum in Kph

and onset in the Pph coincide with the peak in the CDW
susceptibilities reported in Fig. 1(b) of Ref. 73. Therefore,
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FIG. 13. (Color online) The average (a) kinetic and (b) potential
energy of the lattice for the Hubbard-Holstein model as a function of
the e-ph interaction strength λ and U = 4t (green ◦), 6t (blue �), 8t

(red �), and 10t (black 
).

these changes are linked to the onset of the CDW correlations
and lattice’s checkerboard displacement pattern.

The total phonon energy is dominated by Pph and therefore
the onset of the CDW correlations is marked by an accompa-
nying increase in the electronic and lattice potential energies,
consistent with the DMFT results in infinite dimensions. This
is perhaps expected as the CDW state is associated with an
increase in doubly occupied sites as well as large lattice
distortions in the checkerboard arrangement. As previously
mentioned, this energy comes from a corresponding gain in
the e-ph energy Ee-ph = −〈∑i gniXi〉 as shown in Fig. 14.
As with the phonon potential energy, Ee-ph shows a weak
dependence for λ < U/W which gives way to a rapid rise at
the onset point of the CDW correlations.

VII. CONCLUDING REMARKS

We have presented the DQMC method applied to the two-
dimensional HH model. In extending the DQMC algorithm
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FIG. 14. (Color online) The average e-ph interaction energy as a
function of the e-ph interaction strength λ and U = 4t (green ◦), 6t

(blue �), 8t (red �), and 10t (black 
).
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to include lattice degrees of freedom, we have found that
care must be paid to the manner in which the phonon fields
are sampled in order to ensure that one obtains the proper
noninteracting limits. Once implemented, we benchmarked
the algorithm and examined the severity of the fermion
sign problem. Here, we found that although the phonons
introduce a sign problem where it was originally protected by
particle-hole symmetry, they do not significantly change the
value at finite carrier concentrations where DQMC typically
performs poorly. This leaves open the possibility of examining
carrier concentrations relevant to the high-T c cuprates, which
we leave for future work. We also found that the degree
of retardation had a strong influence on the severity of the
induced sign problem. However, we also observed a recovery
of the fermion sign when λW � U and CDW correlations
dominate. This suggests that parameter regimes correspond-
ing to strongly correlated polarons may be accessible to
DQMC.

Focusing on the half-filled model, we also presented further
evidence for competition between the AFM and CDW ordered
phases driven by the Hubbard and Holstein interactions,
respectively. This work complements our previous findings,73

and we see clear, systematic suppression of the AFM cor-
relations as λ increases. In all our metrics, we found that
for λW ∼ U various quantities appear to be similar to the
values one might expect for a metallic phase, providing further
evidence in support of the presence of an intervening metallic
phase between the CDW and AFM states, at least at high
temperatures. Our results also indicate the importance of
treating both interactions on equal footings. In the DQMC
treatment, the e-ph interaction is capable of destabilizing the
AFM correlations and thus addressing true competition. This
is not true for t-J Holstein model treatments where a robust
AFM persists for all values of λ. Thus, one would like to revisit
the issue of polaron formation using methods such as the one
presented here.
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APPENDIX: AVERAGE LATTICE DISPLACEMENT

On warmup, the average value of the lattice position Xi,l

shifts to a nonzero equilibrium position. This is the result of
the coupled system minimizing its energy by exploiting the
e-ph interaction energy at the expense of the lattice potential
energy paid for the shifted equilibrium position. For a uniform
charge density which one would expect for the half-filled case
dominated by the Hubbard interaction, this lattice shift can
be obtained by minimizing the total energy with respect to
the phonon position. The new equilibrium position is given
by

d

dX

[
M�2

2
X2 − g〈n〉X

]
= 0, (A1)

which for 〈n〉 = 1 yields X = g/M�2 = √
Wλ/�. In Fig. 15,

we plot 〈X〉 as a function of λ for � = t and 4t . The data
are well fit by the functional form 〈X〉 = √

Wλ/� shown
as the solid lines in the plot. This demonstrates that at
half-filling the lattice shifts to a new equilibrium position
and electrons couple to fluctuations around this point. This
shift also accounts for the functional form of the renormalized
chemical potential shift μ = −Wλ used in Figs. 5 and 6.

In general, we have found that the DQMC algorithm begins
to encounter numerical instabilities for phonon frequencies
well into the adiabatic limit. The shift in equilibrium position
is one of the possible sources for this instability: as the
average lattice displacement gets large, numerical overflows
in the multiplication of the B matrices begin to occur due
to the exponential dependence in Xi,l . This difficulty could
be overcome by writing the interaction term in the form∑

i,σ g(ni,σ − 〈n〉)Xi provided the expectation value of the
filling is known and the charge density is uniform. At half-
filling, such a procedure would be easy to implement; however,
for finite doping a self-consistency loop would have to be
built into the warmup procedure. Furthermore, this procedure
would likely do little to help in the CDW ordered phases once
the average filling per site alternates from zero and two.
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