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We present a multireference configuration mixing scheme for describing ground and excited states, with
well-defined spin and space-group symmetry quantum numbers, of the one-dimensional Hubbard model with
nearest-neighbor hopping and periodic boundary conditions. Within this scheme, each state is expanded in terms
of nonorthogonal and variationally determined symmetry-projected configurations. The results for lattices up to
30 and 50 sites compare well with the exact Lieb-Wu solutions as well as with results from other state-of-the-art
approximations. In addition to spin-spin correlation functions in real space and magnetic structure factors, we
present results for spectral functions and density of states computed with an Ansatz whose quality can be well
controlled by the number of symmetry-projected configurations used to approximate the systems with Ne and
Ne ± 1 electrons. The intrinsic symmetry-broken determinants resulting from the variational calculations have
rich structures in terms of defects that can be regarded as basic units of quantum fluctuations. Given the quality
of the results here reported, as well as the parallelization properties of the considered scheme, we believe that
symmetry-projection techniques, which have found ample applications in nuclear structure physics, deserve
further attention in the study of low-dimensional correlated many-electron systems.
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I. INTRODUCTION

Studies of correlations arising from electron-electron inter-
actions remain a central theme in condensed matter physics1

to better understand challenging phenomena such as high-Tc

superconductivity2 or colossal magnetic resistance.3 There is a
need for better theoretical models that can account for relevant
correlations in ground and excited states of fermionic systems
with as much simplicity as possible. Within this context, the
repulsive Hubbard Hamiltonian4 has received a lot of attention
since it is considered the generic model of strongly correlated
electron systems.1 Hubbard-type models have also received
renewed attention in the study of cold fermionic atoms in
optical lattices5 and the electronic properties of graphene.6

Unlike the one-dimensional (1D) Hubbard model, which is
exactly solvable7 using the Bethe Ansatz,8 an exact solution of
the two-dimensional (2D) problem is not known. Therefore,
it is highly desirable to develop approximations that, on
the one hand, can capture the main features of the exact
1D Bethe solution and, on the other hand, can be extended
to higher dimensions. For small lattices, one can resort to
exact diagonalization using the Lanczos method.1,9 For larger
systems, several other methods have been extensively used
to study the 1D and 2D Hubbard models as well as their
strong coupling versions.10 Among such approximations, we
have the quantum Monte Carlo,11,12 the variational Monte
Carlo,13 the density matrix renormalization group,14–17 as well
as approximations based on matrix product and tensor network
states.18 Both the dynamical mean-field theory and its cluster
extensions19–26 have made important contributions to our
present knowledge of the Hubbard model. Other embedding
approaches are also available.27 Finally, we refer the reader to
the recent state-of-the-art applications of the coupled-cluster
method to frustrated Hubbard-type models.28,29

Although routinely used in nuclear structure physics,
especially within the generator coordinate method,30,31

symmetry restoration via projection techniques32 has received
little attention in condensed matter physics. Nevertheless,
these techniques offer an alternative for obtaining accurate
correlated wave functions that respect the symmetries of
the considered many-fermion problem. The key idea is,32

on the one hand, to consider a mean-field trial state |D〉
which deliberately breaks several symmetries of the original
Hamiltonian. On the other hand, the Goldstone manifold
R̂|D〉, where R̂ represents a symmetry operation, is de-
generate and the superposition of such Goldstone states32

can be used to recover the desired symmetry by means
of a self-consistent variation-after-projection procedure.32,33

Such a single-reference (SR) scheme provides the optimal
Ritz-variational34 representation of a given state by means of
only one symmetry-projected mean-field configuration. This
kind of SR variation-after-projection scheme has already been
applied to the 1D and 2D Hubbard models35,36 as well as
in quantum chemistry within the framework of the projected
quasiparticle theory.37–39

One of the main advantages of the symmetry-projected
approximations32,35–39 is that they offer compact wave func-
tions as well as a systematic way to improve their quality by
adopting a multireference (MR) approach. In this case, a set
of symmetry-broken mean-field states |Di〉 is used to build
Goldstone manifolds R̂|Di〉 whose superposition can be used
to recover the desired symmetries of the Hamiltonian.40,41 The
key idea is then to expand a given state in terms of several
symmetry-projected and variationally determined mean-field
configurations. The resulting wave functions encode more
correlations than those obtained within SR methods while still
keeping well-defined symmetry quantum numbers.42

There are different flavors of MR approximations available
in the literature.40–49 In this study, we adopt a MR scheme
well known in nuclear structure physics,40 which to the best
of our knowledge has not been applied to lattice models.
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The key ingredient in such a MR scheme is the inclusion
of relevant correlations in both ground and excited states
on an equal footing. As a benchmark test, we concentrate
on the 1D Hubbard model for which exact solutions are
known.7,8 In particular, we consider the case of half-filled
lattices. Nevertheless, the present MR approximation can be
extended to the 2D case as well as to doped systems with
arbitrary onsite interaction strengths.

For a given single-electron space, we resort to general-
ized Hartree-Fock (HF) transformations50 (GHF) mixing all
quantum numbers of the single-electron basis states. The
corresponding Slater determinants deliberately break spin and
spatial symmetries of the 1D Hubbard Hamiltonian.10 We
restore these broken symmetries with the help of projection
operators.32 The resulting MR ground-state wave functions
are obtained applying the variational principle to the projected
energy.

The structure of our MR ground-state wave functions is
formally similar to the one adopted within the resonating
HF (Refs. 41–46) (ResHF) method, i.e., they are expanded
in terms of a given number of nonorthogonal symmetry-
projected configurations. Nevertheless, while in the latter all
the underlying HF transformations and mixing coefficients
are optimized simultaneously,42,46 in our case the orbital
optimization is performed sequentially, only for the last
added HF transformation (all our mixing coefficients are still
optimized at the same time), rendering our calculations easier
to handle. This is particularly relevant for alleviating our
numerical effort if one keeps in mind that, for both ground and
excited states, we use the most general GHF transformations
and therefore a full 3D spin projection is required.

Our MR scheme is also used to compute spin-spin correla-
tion functions (SSCFs) in real space, magnetic structure factors
(MSFs), as well as dynamical properties of the 1D Hubbard
model such as spectral functions (SFs) and density of states
(DOS).1,35,36,51 On the other hand, one may wonder whether
there is any relevant information in the intrinsic symmetry-
broken GHF determinants associated with our MR wave
functions. As will be shown in the following, the structure of
such intrinsic determinants can be interpreted in terms of basic
units of quantum fluctuations for the lattices considered.52

In addition to ground-state properties, our MR framework
treats excited states with well-defined quantum numbers as ex-
pansions in terms of nonorthogonal symmetry-projected con-
figurations using chains of variation-after-projection (VAP)
calculations. As a by-product, we also obtain a (truncated)
basis consisting of a few Gram-Schmidt orthonormalized
states,36 which may be used to perform a final diagonalization
of the Hamiltonian in order to account for further correlations
in both ground and excited states.

The layout of the theory part of this paper is as follows.
First, we introduce the methodology of our MR VAP scheme
in Sec. II. Symmetry restoration based on a single Slater
determinant (i.e., SR symmetry restoration) is described in
Sec. II A. This section will serve to set our notation as well
as to introduce some key elements of our 3D spin and full
space-group projection techniques. Subsequently, symmetry
restoration based on several Slater determinants (i.e., MR
symmetry restoration) is discussed in Sec. II B. In particular,
the MR description of ground and excited states is presented

in Secs. II B1 and II B2, respectively. In Sec. II C, we will
briefly discuss the computation of the SFs and DOS within
our theoretical framework.

The results presented in this paper test the performance of
our approximation in a selected set of illustrative examples.
In most cases, calculations have been carried out for onsite
repulsions U = 2t, 4t , and 8t taken as representatives of
weak, intermediate-to-strong, and strong correlation regimes.
In Sec. III, we first consider the ground states of half-filled
lattices with up to 50 sites. We compare our ground-state and
correlation energies with the exact ones as well as with those
obtained using other theoretical methods. We then discuss
the dependence of the predicted correlation energies on the
number of nonorthogonal symmetry-projected configurations
used to expand our ground-state wave functions, the computa-
tional performance of our scheme, as well as the structure of
the intrinsic GHF determinants resulting from our MR VAP
procedure. Next, we consider the results of our calculations
for SSCFs in real space and MSFs for half-filled lattices with
up to 30 sites. These results are compared with density matrix
renormalization group14–17 (DMRG) ones obtained with the
open-source ALPS software.53 This comparison is very valuable
as DMRG represents one of the most accurate approximations
in the 1D case. Subsequently, we compare the DOS provided
by our theoretical framework with the exact one, obtained with
an in-house diagonalization code, in a lattice with 10 sites.
Results for hole SFs are also discussed for a 30-site lattice.
We end Sec. III by presenting results for excitation spectra in
various lattices and discussing the structure of the intrinsic
GHF determinants resulting from our MR VAP procedure
for excited states. Finally, Sec. IV is devoted to concluding
remarks and work perspectives.

II. THEORETICAL FRAMEWORK

In what follows, we describe the theoretical framework
used in this study. First, SR symmetry restoration is presented
in Sec. II A. Subsequently, in Sec. II B, we consider our
MR scheme to describe both ground (Sec. II B1) and excited
(Sec. II B2) states of the 1D Hubbard model. The computation
of SFs and DOS is briefly discussed in Sec. II C.

A. Single-reference (SR) symmetry restoration

We consider the 1D Hubbard Hamiltonian4

Ĥ = −t
∑
j,σ

{ĉ†j+1σ ĉjσ + ĉ
†
jσ ĉj+1σ } + U

∑
j

n̂j↑n̂j↓, (1)

where the first term represents the nearest-neighbor hopping
(t > 0) and the second is the repulsive onsite interaction (U >

0). The fermionic34 operators ĉ
†
jσ and ĉjσ create and destroy

an electron with spin projection σ = ± 1
2 (also denoted as σ =

↑,↓) along an arbitrary chosen quantization axis on a lattice
site j = 1, . . . ,Nsites. The operators n̂jσ = ĉ

†
jσ ĉjσ are the local

number operators. We assume periodic boundary conditions,
i.e., the sites j and j + Nsites are identical. Furthermore, we
assume a lattice spacing � = 1.

In the standard HF approximation,32,34 the ground state of
an Ne-electron system is represented by a Slater determinant
|D〉 = ∏Ne

h=1 b̂+
h |0〉 in which the energetically lowest Ne
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single-fermion states (holes h,h′, . . .) are occupied while
the remaining 2Nsites − Ne states (particles p,p′, . . .) are
empty. For a set of single-fermion operators ĉ†, the HF
quasiparticle operators b̂† are given by the following canonical
transformation:32,34

b̂
†
i =

∑
jσ

D∗
jσ,i ĉ

†
jσ , (2)

where D is a general 2Nsites × 2Nsites unitary54 matrix, i.e.,
DD† = D†D = 1. In all the calculations to be discussed
below, we have used generalized HF (GHF) transformations.50

As it is well known, the most general GHF determinant
|D〉 deliberately breaks several symmetries of the original
Hamiltonian.32,35–38,40 Typical examples are the rotational
(in spin space) and spatial symmetries. To restore the spin
quantum numbers in a symmetry-broken GHF determinant,
we explicitly use the full 3D projection operator35–38

P̂ S
��′ = 2S + 1

8π2

∫
d�DS∗

��′ (�)R(�), (3)

where R(�) = e−iαŜz e−iβŜy e−iγ Ŝz is the rotation operator in
spin space, the label � = (α,β,γ ) stands for the set of Euler
angles, and DS

��′(�) are Wigner functions.55 To recover the
spatial symmetries, we introduce the projection operator

P̂ k
mm′ = 1

2Nsites

∑
g


k
mm′(g)R̂(g), (4)

where 
k
mm′ (g) is the matrix representation of an irreducible

representation, which can be found by standard methods,9,42

and R̂(g) represents the corresponding symmetry operations
(i.e., translation by one lattice site and the reflection x → −x)
parametrized in terms of the label g. The linear momentum
k = (2π/Nsites) ξ is given in terms of the quantum number ξ

that takes the values

ξ = −Nsites

2
+ 1, . . . ,

Nsites

2
(5)

allowed inside the Brillouin zone (BZ).56 Equivalently, it can
take all integer values between 0 and Nsites − 1. For k = 0,π

an additional label b = ±1 should be introduced to account
for the parity of the corresponding irreducible representation
under the reflection x → −x.9,42 In what follows, we do not
explicitly write this label b, but the reader should keep in mind
that it is taken into account whenever needed.

We introduce36 the shorthand notation � = (S,k) for the
set of symmetry (i.e., spin and linear momentum) quantum
numbers as well as K = (�,m). The total projection operator
reads as

P̂ �
KK ′ ≡ P̂ S

��′ P̂
k
mm′ . (6)

We then superpose the Goldstone manifold R̂(�)R̂(g)|D〉
to recover the spin and spatial symmetries32 via the following
SR Ansatz:

|D; �; K〉 =
∑
K ′

f �
K ′ P̂

�
KK ′ |D〉, (7)

where f � are variational parameters. Note, that the state (7)
is already multideterminantal36,37 via the projection operator

P̂ �
KK ′ . For a given symmetry �, the energy (independent of K)

associated with the state (7)

E� = f �†H�f �

f �†N�f �
(8)

is given in terms of the Hamiltonian and norm

H�
KK ′ = 〈D|Ĥ P̂ �

KK ′ |D〉, N�
KK ′ = 〈D|P̂ �

KK ′ |D〉 (9)

matrices. It has to be minimized with respect to the coefficients
f � and the underlying GHF transformation D. The variation
with respect to the former yields the following resononlike57

eigenvalue equation:35,36

(H� − E�N�)f � = 0 (10)

with the constraint f �†N�f � = 1 ensuring the orthogonality
of the solutions. On the other hand, the unrestricted minimiza-
tion of the energy [Eq. (8)] with respect to D is carried out via
the Thouless theorem.35,36,54

For a given symmetry �, we only retain the energetically
lowest solution of our VAP equations.36 Both the GHF
transformation D and the mixing coefficients f � are complex,
therefore, one needs to minimize nvar = 2(2Nsites − Ne) ×
Ne + 4S real variables. We use a limited-memory quasi-
Newton method for such minimization.35,36,58 In practice, the
integration over the set of Euler angles in Eq. (3) is discretized.
For example, for a lattice with Nsites = 30 we have used 13,
26, and 13 grid points for the integrations over α, β, and
γ , respectively. In this case, a total of 263 640 grid points
are used in the discretization of the projection operator of
Eq. (6). We have afforded such a task by developing a parallel
implementation for all the VAP schemes discussed in this
paper.

B. Multireference (MR) symmetry restoration

For each symmetry �, the SR procedure described in
Sec. II A provides us with the optimal variational repre-
sentation of the corresponding ground state via a single
symmetry-projected GHF determinant. However, as the lattice
size increases, one may adopt a MR perspective to keep
and/or improve the quality of the wave functions.40,41 The
key features of our MR approach, known in nuclear structure
physics as the FED VAMP (few determinant variation after
mean-field projection40) strategy, for the considered ground
states are described in the next section. We use the acronym
GHF-FED to refer to it in this work. On the other hand, our
MR approach for excited states, known as EXCITED FED
VAMP,40 will be presented in Sec. II B2. We will use the
acronym GHF-EXC-FED to refer to it in what follows.

1. MR symmetry restoration for ground states (GHF-FED)

Our goal in this section is to obtain, through a chain of
VAP calculations, nonorthogonal symmetry-projected GHF
configurations used to build a MR expansion of a given ground
state40 with well-defined symmetry quantum numbers �.

Suppose we have generated a ground-state solution |φ1�
1K 〉 =

|D1
1; �; K〉 [Eq. (7)]. Note that, at this point, we have added

the superscript 1 to explicitly indicate that only one GHF
transformation has been used within the SR approximation
discussed in Sec. II A. On the other hand, the subscript 1 has
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been added to indicate that the ground state is considered.
As we will see in Sec. II B2, this subscript will allow us
to distinguish between ground (i.e., i = 1) and excited (i.e.,
i = 2,3, . . . ,m) states. On the other hand, both indices are
also added to the (intrinsic) GHF transformation to explicitly
indicate that it is variationally optimized for the state |φ1�

1K 〉.
We then keep the transformation D1

1 fixed and consider the
Ansatz

∣∣φ2�
1K

〉 =
∑
K ′

2∑
i=1

f i�
1K ′ P̂

�
KK ′

∣∣Di
1

〉
, (11)

which approximates the ground state (subscript 1) by means
of two (superscript 2) nonorthogonal symmetry-projected
GHF determinants. It is obtained applying the variational
principle to the energy functional with respect to the last added
transformation D2

1 and all the new mixing coefficients f i�
1 . A

similar procedure can be followed to approximate the ground
state by a larger number of nonorthogonal symmetry-projected
configurations. Let us assume that n1 − 1 configurations have
already been computed. Then, one introduces a new GHF
transformation Dn1

1 , a new set of mixing coefficients f i�
1 , and

makes the MR GHF-FED Ansatz

∣∣φn1�
1K

〉 =
∑
K ′

n1∑
i=1

f i�
1K ′ P̂

�
KK ′

∣∣Di
1

〉
, (12)

which superposes the Goldstone manifolds R̂(�)R̂(g)|Di
1〉.

The corresponding energy

E
n1�
1 = f n1�†Hn1�f n1�

f n1�†N n1�f n1�
(13)

is given in terms of the Hamiltonian and norm

Hn1�
iK,jK ′ = 〈

Di
1

∣∣Ĥ P̂ �
KK ′

∣∣Dj

1

〉
,

(14)
N n1�

iK,jK ′ = 〈
Di

1

∣∣P̂ �
KK ′

∣∣Dj

1

〉
kernels, which require the knowledge of the symmetry-
projected matrix elements between all the GHF determinants
used in the expansion (12). The wave function (12) is
determined varying the energy (13) with respect to all the
new mixing coefficients f i�

1 and the last added transformation
Dn1

1 . In the former case, we obtain an eigenvalue equation
similar to Eq. (10), with the constraint f n1�†N n1�f n1� = 1,
while the unrestricted minimization with respect to Dn1

1 is
carried out via the Thouless theorem. Let us stress that the
GHF-FED MR approximation (12) of a given ground state
enlarges the flexibility in our wave functions to a total number
of nvar = 2n1(2Nsites − Ne) × Ne + 4n1S + 2(n1 − 1) varia-
tional parameters.

2. MR symmetry restoration for excited states (GHF-EXC-FED)

In this section, we construct nonorthogonal symmetry-
projected GHF configurations to expand a given excited state.
The orthogonalization between ground and excited states is
achieved via the Gram-Schmidt procedure.36 As a by-product,
our MR GHF-EXC-FED method also yields a (truncated)
basis consisting of a few orthonormal states which may be
used to diagonalize the Hamiltonian and account for further
correlations in both ground and excited states.36,40

Let us assume that we have already obtained a GHF-
FED ground state |φn1

1 〉 = |φn1�
1K 〉 [Eq. (12)] along the lines

discussed in the previous Sec. II B1. We then look for the
first excited state (subscript 2) with the same symmetry
�, approximated by a given n2 number of nonorthogonal
symmetry-projected configurations. We start with the Ansatz∣∣ϕ1

2

〉 = α1
∣∣φn1

1

〉 + β1
∣∣φ1

2

〉
, (15)

where |φ1�
2K 〉 has a form similar to Eq. (7) but written in terms

of the coefficients f 1�
2 and the GHF determinant |D1

2〉. Both α1

and β1 can be obtained by requiring orthonormalization with
respect to the ground state that we already have. The state (15)
is determined varying the energy functional with respect to
f 1�

2 and D1
2. When n2 − 1 configurations have already been

computed for the first excited state, one makes the Ansatz∣∣ϕn2
2

〉 = αn2
∣∣φn1

1

〉 + βn2
∣∣φn2

2

〉
, (16)

where the state |φn2�
2K 〉 has a form similar to Eq. (12) but written

in terms of the new coefficients f i�
2 and the GHF transforma-

tions Di
2 (i = 1, . . ., n2). Once again, the coefficients αn2 and

βn2 are obtained by requiring orthonormalization with respect
to the ground state we already have. The wave function (16)
is determined varying the energy functional with respect to
the last added GHF transformation Dn2

2 and all the coefficients
f i�

2 .
Now, we consider the most general situation in which

the ground state |ϕn1
1 〉 = |φn1

1 〉 as well as a set of m − 2
Gram-Schmidt orthonormalized excited states |ϕn2

2 〉, |ϕn3
3 〉, . . .,

|ϕnm−1
m−1 〉, all of them with the same symmetry quantum numbers

�, are already at our disposal. Each of these m − 1 states is
optimized using chains of VAP calculations, as discussed in
Sec. II B1 and in this section. The key question is then how
to approximate the mth excited state by nm nonorthogonal
symmetry-projected configurations. We also need to ensure
orthogonality with respect to all the m − 1 states we already
have. Let us assume that nm − 1 configurations have already
been computed for the mth excited state with symmetry
�. Then, an approximation in terms of nm nonorthogonal
symmetry-projected GHF configurations is obtained with the
GHF-EXC-FED Ansatz

∣∣ϕnm

m

〉 =
m−1∑
i=1

ωm
i

∣∣φni

i

〉 + τm
∣∣φnm

m

〉
, (17)

where the state |φnm�
mK 〉 has a form similar to Eq. (12)

but is written in terms of new coefficients f i�
m and GHF

transformations Di
m (i= 1, . . ., nm). The coefficients τm and

ωm
i read as

τm = 〈
φnm

m

∣∣(1 − Ŝm−1)
∣∣φnm

m

〉−1/2
,

(18)

ωm
i = −

m−1∑
k=1

(A−1)ik
〈
φ

nk

k

∣∣φnm

m

〉
τm

in terms of the projector (i.e., Ŝm−1 = Ŝ2
m−1)

Ŝm−1 =
m−1∑
i,k=1

∣∣φni

i

〉
(A−1)ik

〈
φ

nk

k

∣∣ (19)
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with the overlap matrix Aik = 〈φni

i |φnk

k 〉. The MR GHF-EXC-
FED wave function (17) is determined by varying all the
coefficients f i�

m and the last added GHF transformation Dnm
m .

The energy is

Enm�
m = f nm�†Hnm�f nm�

f nm�†N nm�f nm�
, (20)

where the Hamiltonian Hnm� and norm N nm� kernels account
for the fact that m − 1 linearly independent solutions have been
removed from the variational space. The kernel expressions are
slightly more involved than those in Eqs. (9) and (14) but still
can be obtained straightforwardly. The variation with respect to
the coefficients f i�

m leads to a generalized eigenvalue equation
similar to Eq. (10) with the constraint f nm�†N nm�f nm� = 1,
while the unrestricted minimization with respect to the last
added GHF transformation Dnm

m is carried out via the Thouless
theorem.

The GHF-EXC-FED scheme outlined in this section pro-
vides, for each set of symmetry quantum numbers �, a (trun-
cated) basis of m (orthonormalized) states |ϕn1�

1K 〉, . . . ,|ϕnm�
mK 〉,

each of them expanded by n1, . . .,nm nonorthogonal symmetry-
projected GHF determinants, respectively. Finally, the diago-
nalization of the Hamiltonian (1) in such a basis

m∑
j=1

[〈
ϕ

ni

i

∣∣Ĥ ∣∣ϕnj

j

〉 − ε�
α δij

]
C�

jα = 0 (21)

provides ground and excited states

∣∣��
α

〉 =
m∑

j=1

C�
jα

∣∣ϕnj

j

〉
(22)

which may account for additional correlations. Nevertheless,
because many of these correlations have already been ac-
counted for in the MR expansion of each of the m basis states
(as discussed above), one may expect the role of this final
diagonalization to be, in general, less important than in the
scheme used in Ref. 36.

Both the GHF-FED and GHF-EXC-FED VAP approxima-
tions could be extended to the use of general Hartree-Fock-
Bogoliubov (HFB) transformations.40 This, however, would
require an additional particle number symmetry restoration
that increases our numerical effort by around one order of
magnitude and has hence not been included in this study.

C. Spectral functions and density of states

In this section, we briefly discuss the computation of the SFs
and DOS within our theoretical framework. Let us assume that
for an Ne-electron system we have already obtained, along the
lines described in Sec. II B1, a GHF-FED ground-state solution
|φn1�

1K 〉. For all the lattices considered in this study, the ground
state has spin S = 0 but not necessarily linear momentum zero
[i.e., � = (0,k)]. In all cases, the ground state transforms as
an irrep of dimension 1. Therefore, for this specific case, we
can simply write the ground-state wave function as |n1,Ne,k〉.
The ground-state energy will be denoted as En1k .

Usually, the SFs are defined as the imaginary part of the
time-ordered Green’s function and can be calculated from
the Lehmann representation.51 In order to compute them, we

approximate35,36 the ground states of the (Ne ± 1)-electron
systems with the quantum numbers �± = (1/2,k±). For the
(Ne − 1)-electron system, we superpose the Goldstone (hole)
manifolds R̂(�)R̂(g)b̂h(Di

1)|Di
1〉 in the Ansatz

|nT ,Ne − 1,k−〉 =
∑
ihM

f i�−
hM P̂ �−

KMb̂h

(
Di

1

)∣∣Di
1

〉
, (23)

where i = 1, . . . ,nT . The number nT of GHF transformations
used to expand the state (23) may be different from the one (i.e.,
n1) in the GHF-FED ground-state wave function. We write
b̂h(Di

1) to explicitly indicate that holes are made on different
intrinsic determinants |Di

1〉 corresponding to the lowest-energy
states of the Ne-electron system approximated by a single
symmetry-projected configuration along the lines described in
Sec. II A. The hole index h runs as h = 1, . . . ,Ne. Note that
the label b = ±1 is not explicitly written in this section, but it
is taken into account whenever needed.

For the (Ne + 1)-electron system, we superpose the Gold-
stone (particle) manifolds R̂(�)R̂(g)b̂†p(Di

1)|Di
1〉 and write

|nT ,Ne + 1,k+〉 =
∑
ipM

gi�+
pM P̂ �+

KMb̂†p
(
Di

1

)∣∣Di
1

〉
, (24)

where the index i runs again as i = 1, . . . ,nT and p =
Ne + 1, . . . ,2Nsites. The mixing coefficients f i�−

and gi�+
are

determined by solving eigenvalue equations similar to Eq. (10).
This yields a maximum of 2nT × Ne × d hole solutions with
energies EnT k−

and a maximum of 2nT × (2Nsites − Ne) × d

particle solutions with energies EnT k+
for each irreducible

representation of the space group. The quantity d is the
dimension of the corresponding irreducible representations,
i.e., d = 1 for k± = 0,π and d = 2 for k± 
= 0,π . The hole
B(q,ω) and particle A(q,ω) SFs are then written in their
standard form

B(q,ω) =
∑
k−σ

|〈nT ,Ne − 1,k−|ĉqσ |n1,Ne,k〉|2

× δ(ω − En1k + EnT k−
),

A(q,ω) =
∑
k+σ

|〈nT ,Ne + 1,k+|ĉ†qσ |n1,Ne,k〉|2

× δ(ω − EnT k+ + En1k), (25)

and the DOS can be computed as

N (ω) =
∑

q

[B(q,ω) + A(q,ω)]. (26)

Due to the finite size of the considered lattices, both the hole
and particle SFs consist of a finite number of δ functions
with different weights. Therefore, we introduce an artificial
Lorentzian width 
 for each state.

III. DISCUSSION OF RESULTS

In this section, we discuss the results of our calculations
for some illustrative examples. In most cases, we consider
onsite repulsions of U = 2t, 4t , and 8t representing weak,
intermediate-to-strong (i.e., noninteracting bandwidth), and
strong correlation regimes. First, in Sec. III A, we consider
the ground states of half-filled lattices of various sizes.
We compare our ground state and correlation energies with
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the exact ones, as well as with those obtained using other
theoretical approaches. We then discuss the dependence of
the predicted correlation energies on the number n1 of
nonorthogonal symmetry-projected configurations used to
expand our ground-state wave functions. The computational
performance of our scheme is also addressed. The structure of
the intrinsic GHF determinants resulting from our GHF-FED
VAP procedure is discussed in Sec. III B. Our results for
SSCFs in real space and MSFs, for lattices with up to 30
sites, are presented in Sec. III C. They are compared with
DMRG results. For all the considered lattices, we have retained
1024 states in the renormalization procedure. In Sec. III D, we
compare the DOS provided by our theoretical framework with
the exact one, obtained with an in-house full diagonalization
code in a lattice with Nsites = 10. Hole SFs are also discussed
in the case of Nsites = 30. Finally, in Sec. III E, we present
results obtained for the excitation spectra in lattices with
Nsites = 12, 14, and 20 and also discuss the structure of
the underlying symmetry-broken GHF determinants resulting
from our GHF-EXC-FED VAP procedure for excited states.

A. Ground-state and correlation energies

Let us start by considering lattices of 12 and 20 sites
with the GHF-FED scheme discussed in Sec. II B1. The
corresponding � = (0,π ) ground states have B1 symmetry,
i.e., they are symmetric under the reflection x → −x. In
Table I, we compare the predicted ground-state energies with
the exact ones. For completeness, we also include energies
provided by the standard (i.e., one transformation) restricted
(RHF) and unrestricted (UHF) HF frameworks. Ours is a VAP
approach whose quality can be checked by studying how well
it reproduces the exact ground-state correlation energies. To
this end, we consider the ratio

κGHF-FED = ERHF − EGHF-FED

ERHF − EEXACT
× 100 (27)

TABLE I. Ground-state energy of the half-filled lattices with
Nsites = 12 and 20, as predicted with the GHF-FED scheme based
on n1 = 10 GHF transformations, are compared with exact results
for onsite repulsions of U = 2t, 4t , and 8t . Energies obtained with
the RHF and UHF approximations are included as a reference. The
ratio of correlation energies κ obtained with the UHF and GHF-FED
aproximations is computed according to Eq. (27). For more details,
see the main text.

Nsites = 12 κ (%) Nsites = 20 κ (%)

U = 2t RHF −8.9282 −15.2551
UHF −9.3379 36.79 −15.6411 24.05
GHF-FED −10.0401 99.85 −16.8565 99.79
EXACT −10.0418 −16.8599

U = 4t RHF −2.9282 −5.2550
UHF −5.6290 67.65 −9.3821 66.08
GHF-FED −6.9201 99.99 −11.4954 99.92
EXACT −6.9204 −11.5005

U = 8t RHF 9.0718 14.7450
UHF −2.9532 92.26 −4.9219 92.23
GHF-FED −3.9625 99.99 −6.5612 99.96
EXACT −3.9626 −6.5699

between the GHF-FED and the exact correlation energies.
For the UHF approximation, κUHF is obtained from a similar
expression.

We observe from Table I that the inclusion of n1 =
10 nonorthogonal symmetry-projected configurations with
the GHF-FED approach significantly improves correlation
energies with respect to UHF. In fact, κGHF-FED � 99.79% in
all considered correlation regimes even for Nsites = 20, which
is out of reach with exact diagonalization.

In the case of Nsites = 14, whose � = (0,0) ground state has
A1 symmetry, i.e., it is symmetric under the reflection x →
−x, our calculations with n1 = 10 transformations predict
energies of −11.9539t , −8.0874t , and −4.6127t compared
to the exact ones of −11.9543t , −8.0883t , and −4.6131t

for U = 2t, 4t, and 8t , respectively. This yields κGHF-FED

values of 99.95,99.97, and 99.99%, respectively. Results
for this lattice have been reported in the literature with the
ResHF framework using the half-projection method.45 For
half-filled lattices with sizes comparable to the ones already
mentioned, the Gutzwiller method57 provides κ ratios around
85%, 77%, and 50%, respectively.59,60 Let us also mention that
our GHF-FED energies for Nsites = 12 and 14 improve upon
previously reported VAP values of −6.9093t and −8.0577t

for U = 4t .35

Calculations have also been carried out for Nsites = 16,
whose � = (0,π ) ground state has B1 symmetry. We have
obtained ground-state energies of −16.4754t for U = t and
−9.2122t for U = 4t while the exact ones are −16.4758t

and −9.2144t , respectively. Previous DMRG results for this
lattice have been reported in the literature.17 For all the lattices
with sizes Nsites � 18, our DMRG calculations, retaining 1024
states in the renormalization procedure, reproduce the exact
Lieb-Wu ground-state energies (to all quoted figures) for the
considered U values.

The ground-state energies for the lattices with Nsites = 30
and 50 are compared in Table II with the exact ones. In
this case, the corresponding � = (0,0) ground states have
A1 symmetry. In the same table, we also present ground-state
energies predicted with the ResHF method42 based on n1 = 30
UHF transformations (i.e., UHF-ResHF). It is very satisfying
to observe that both the GHF-FED and the UHF-ResHF
VAP schemes can account for κ � 98% in a relatively large
lattice with Nsites = 30. In fact, the GHF-FED scheme provides
κ � 99.39% with 45 048 variational parameters that represent
a small fraction of the dimension of the restricted (i.e.,
accounting for all symmetries) Hilbert space in this lattice. In
this case, our GHF-FED energy also improves the variational
value −16.6060t obtained in Ref. 35 for U = 4t using a
single symmetry-projected configuration. Note that the ResHF
method41,42 is not intrinsically limited to the use of UHF
transformations and, therefore, the UHF-ResHF ground-state
energies shown in Table II can still be improved by, for
example, adopting GHF transformations as basic building
blocks.61 On the other hand, for Nsites = 30, our DMRG
calculations provide the energies −25.3830t , −17.2334t , and
−9.8387t for U = 2t, 4t, and 8t , respectively.

Let us now comment on our results for Nsites = 32 whose
� = (0,π ) ground state has B1 symmetry. We have used n1 =
25 GHF transformations. For onsite repulsions of U = t and
2t , we have obtained energies of −33.2137t and −26.9814t
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TABLE II. Ground-state energy of the half-filled lattices with
Nsites = 30 and 50 predicted with the GHF-FED scheme based
on n1 = 25 GHF transformations are compared with exact results
for onsite repulsions of U = 2t, 4t , and 8t . Results obtained with
the UHF-ResHF approximation (Ref. 42) based on n1 = 30 UHF
transformations, as well as the RHF and UHF energies are also
included in the table. The ratio of correlation energies κ obtained
with the UHF, UHF-ResHF, and the GHF-FED approximations, is
computed according to Eq. (27).

Nsites = 30 κ (%) Nsites = 50 κ (%)

U = 2t RHF −23.2671 −38.7039
UHF −23.4792 10.02 −39.1294 12.02
UHF-ResHF −25.3436 98.11 −41.9535 91.78
UHF-FED −25.3508 98.45 −41.9963 92.99
GHF-FED −25.3730 99.50 −42.1219 96.46
EXACT −25.3835 −42.2443

U = 4t RHF −8.2671 −13.7039
UHF −14.0732 64.75 −23.4553 65.02
UHF-ResHF −17.0542 98.00 −27.9633 95.09
UHF-FED −16.9420 96.75 −27.3518 91.01
GHF-FED −17.1789 99.39 −27.9788 95.19
EXACT −17.2335 −28.6993

U = 8t RHF 21.7329 36.2961
UHF −7.8329 93.65 −12.3048 92.26
UHF-ResHF −9.5378 99.04 −15.6422 98.59
UHF-FED −9.3524 98.46 −14.8461 97.08
GHF-FED −9.7612 99.75 −15.6753 98.65
EXACT −9.8387 −16.3842

while the UHF-ResHF ones42 are −33.2128t and −26.9556t ,
respectively. These energies should be compared with the
exact ones of −33.2152t and −27.0183t as well as with the
DMRG values −33.2141t and −27.0177. For previous DMRG
calculations for this lattice, the reader is referred to Ref. 62.

From the previous results, we conclude that the GHF-FED
approximation can be considered a reasonable starting point
for building correlated ground-state wave functions which,
at the same time, respect the original symmetries of the 1D
Hubbard Hamiltonian. This is further corroborated from the
results, shown in Table II, for Nsites = 50. In particular, even
when our description of the ground state in this lattice is
poorer than in the Nsites = 30 case since we have kept the
same number of GHF transformations, it is remarkable that
we obtain (with 125 048 variational parameters) the values
κGHF-FED = 96.46%, 95.19%, and 98.65%, respectively. For
the same onsite repulsions, the variational Monte Carlo
method60 predicts κ values of around 87%, 92%, and 96%.
The corresponding UHF-ResHF values42 are also listed in
Table II.

In Fig. 1, we have plotted the ratio κGHF-FED, as a function of
the inverse 1/n1 of the number of transformations n1 included
in the GHF-FED Ansatz, for lattices with Nsites = 20 and 30.
They increase smoothly with the number of nonorthogonal
symmetry-projected configurations used to expand the wave
function. From Fig. 1, it is apparent (see also Tables I and II)
that with increasing lattice size, we need a larger number n1

of symmetry-projected configurations to keep and/or improve
the quality of the GHF-FED wave functions. For example,
comparing the Nsites = 20 and 30 lattices, we see that in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1/n1

94
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N sites=30,U=2t
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FIG. 1. (Color online) The ratio of correlation energies κ obtained
with the GHF-FED approximation is plotted as a function of the
inverse of the number of GHF transformations for the half-filled
lattices with Nsites = 20 and 30. Results are shown for onsite
repulsions of U = 2t, 4t , and 8t . For more details, see the main
text.

the former n1 = 10 transformations are enough to obtain
κGHF-FED � 99.79%, while in the latter 98.69% � κGHF-FED �
99.49%. On the other hand, in the Nsites = 50 case, n1 =
10 transformations leads to 93.37% � κGHF-FED � 97.68%,

whereas with n1 = 25 we reach the κGHF-FED values shown in
Table II.

Obviously, as in many other approaches to many-fermion
systems, we are always limited to a finite number of con-
figurations in practical calculations. Nevertheless, the GHF-
FED scheme provides compact ground-state wave functions
whose quality can be systematically improved by adding new
(variationally determined) nonorthogonal symmetry-projected
configurations. In fact, both ours and the ResHF (Refs. 42, 44,
and 45) wave functions are nothing else than a discretized form
of the exact coherent-state representation of a fermion state63

and, therefore, become exact in the limit n1 → ∞. Our aim in
this work is not to lower the ground-state energy as much as
possible, but to test to which extent our scheme can account
for relevant correlations in the considered lattices. Therefore,
for the largest lattices here studied (i.e., Nsites = 30 and 50),
we have restricted ourselves in practice to a maximum number
n1 = 25 of GHF transformations.

A few words concerning the computational performance of
our method are in order here. In Fig. 2(a), we have plotted the
speedup of a typical calculation as a function of the number
of processors. Results are shown for Nsites = 50 and U = 4t

but similar behavior was also obtained for U = 2t and 8t .
As demonstrated in the plot, the GHF-FED speedup grows
linearly with the number of processors used in the calculations.
On the other hand, Fig. 2(b) of the same figure shows that (for a
fixed number of processors) an efficient implementation of our
variational scheme scales linearly with the number n1 of GHF
transformations used while the ResHF scaling is quadratic.
Concerning the scaling of our method with system size, Fig. 1
shows that as the system becomes larger, a larger number of
transformations are required to keep the quality of our wave
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FIG. 2. Speedup of a typical GHF-FED calculation is shown in
panel (a) as a function of the number of processors. The corresponding
scaling (for a fixed number of processors) with the number of
transformations n1 is presented in panel (b). Results are for the
half-filled lattice with Nsites = 50 and U = 4t.

functions. We cannot currently determine how the number of
transformations scales with system size as this would require
to consider larger lattices than those studied in this paper.

B. Structure of the intrinsic determinants and basic
units of quantum fluctuations

An interesting issue is whether there is any relevant infor-
mation in the symmetry-broken (i.e., intrinsic) determinants
|Di

1〉 resulting from the GHF-FED VAP optimization. We are
interested in comparing the structure of these determinants
with the spin-density wave solution obtained with the standard
UHF approximation. Here, one should keep in mind that a
variationally optimized GHF determinant has the same energy

as the optimal UHF one.64 We have studied the quantity

ξ i
1(j ) = (−)j−1〈Di

1

∣∣S(j )
∣∣Di

1

〉 · 〈
Di

1

∣∣S(1)
∣∣Di

1

〉
, (28)

where j = 1, . . . ,Nsites is the lattice index while i = 1, . . . ,n1

enumerates the GHF determinants in the GHF-FED ground-
state (subscript 1) solution. Among the n1 = 25 transforma-
tions Di

1 used for the Nsites = 50 lattice, we have selected
some typical examples to plot the quantity ξ i

1(j ). Results are
displayed in Figs. 3(a) to 3(d). Other determinants |Di

1〉, not
shown in the figure, exhibit the same qualitative features.
Similar results are also found for other onsite repulsions, as
well as for other lattices.

For the standard UHF spin-density wave solution, the
quantity ξ i

1(j ) has nearly constant positive values plotted with
red lines in Fig. 3. A very different behavior appears in the
intrinsic GHF determinants |Di

1〉 associated with the GHF-
FED solution. First, we observe a broad spin feature distributed
all over the lattice, which is a consequence of the richer spin
textures provided by the use of GHF transformations and full
3D spin projection. In addition, pairs of points (black squares)
appear where ξ i

1(j ) changes its sign (i.e., the spin-density
wave reverses its phase). These defects of the spin-density
wave phase represent soliton-antisoliton (S-S) pairs in the
case of half-filled lattices.42,43,45,52 In particular, our analysis of
the charge densities ρi

1(j ) = 1 − ∑
σ 〈Di

1|n̂jσ |Di
1〉 reveal that

they correspond to neutral S0-S0 pairs. Let us stress that the
presence of at least one S0-S0 pair is a genuine VAP effect
appearing even if we approximate a given ground state within
a SR framework,54 as discussed in Sec. II A.

Furthermore, Fig. 3 illustrates how the S0-S0 pairs appear at
different lattice locations j with varying distance R

S0-S0 among
the members of the pairs. The latter represents the breathing
motion of the S0-S0 pairs. The S0-S0 pairs are present in all
the intrinsic determinants |Di

1〉 associated with the GHF-FED
expansion, which as already mentioned above superposes the
Goldstone manifolds R̂S(�)R̂(g)|Di

1〉 containing defects in the
spin-density wave. We are then left with an intuitive physical
picture in which the soliton pairs can be regarded as basic
units of quantum fluctuations in our GHF-FED states. On the
other hand, the interference between S0-S0 pairs belonging to
different symmetry-broken determinants |Di

1〉 is accounted for
in our calculations through a resononlike equation similar to
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FIG. 3. (Color online) The quantity ξ i
1 [Eq. (28)] is plotted as a function of lattice site j for some typical symmetry-broken GHF determinants

|Di
1〉 resulting from the GHF-FED VAP optimization for the half-filled lattice with Nsites = 50 and U = 4t . The UHF spin-density wave is

plotted in red for comparison. For more details, see the main text.
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Eq. (10). This interpretation has been suggested in previous
studies with the ResHF method.42–45

C. Spin-spin correlation functions and magnetic
structure factors

Let us now consider the ground-state spin-spin correlation
functions (SSCFs) in real space. For a given set of symmetry
quantum numbers �, they can be computed as

Fn1�
m (j ) =

〈
φ

n1�
1K

∣∣S(j ) · S(1)
∣∣φn1�

1K

〉
〈
φ

n1�
1K

∣∣φn1�
1K

〉 . (29)

Note that if a wave function has good spin, as it is the
case with the GHF-FED one, the SSCFs have to be the same
for all the members of a (2S + 1) multiplet and, therefore,
they can not depend on the � quantum number. However,
a dependence with respect to the particular row m of the
space-group irreducible representation that we are using in the
projection still remains and is explicitly included in Fn1�

m (j ).
The SSCFs corresponding to the ground states for Nsites =

14,18,22,26, and 30, approximated by n1 = 10,10,15,25,

and 25 GHF transformations, respectively, are depicted in
Figs. 4(a)–4(c). In the same figure, we have also plotted the val-
ues resulting from our DMRG calculations. We observe a good
agreement between the GHF-FED and DMRG SSCFs with
slight deviations for the Nsites = 30 lattice at U = 8t , which
can be improved by increasing the number of transformations.
In particular, both SSCFs display a rapid decrease for j � 3.
A similar feature has been studied in previous works.42–45,65

Regardless of the onsite interaction, the short-range part of
the SSCFs runs parallel for the lattices considered in Fig. 4,
pointing to converged behavior as a function of lattice size.
Morevover, the mid- and long-range amplitudes of the SSCF
for a given lattice increase with increasing U values.

In each panel of Fig. 4, the inset displays a closeup of the
long-range behavior of the SSCF predicted by the GHF-FED
and DMRG approximations compared with the one obtained
within the standard UHF approach for Nsites = 30. As can be
observed, the amplitude of the UHF SSCF remains constant
for j � 5, while the GHF-FED and DMRG ones exhibit a
damped long-range trend. Previous studies have suggested that
there are two important ingredients necessary to account for
a qualitatively correct long-range behavior of the SSCFs: the
self-consistent optimization of the intrinsic determinants (i.e.,
orbital relaxation43,45) and having pure spin states (i.e., no spin
contamination42). Our wave functions meet both conditions.

The magnetic structure factors (MSFs), evaluated at the
wave vector q = π , can be computed as

Sn1�
m (π ) = 1

Nsites

∑
ij

(−)i+j

〈
φ

n1�
1K

∣∣S(i) · S(j )
∣∣φn1�

1K

〉
〈
φ

n1�
1K

∣∣φn1�
1K

〉 (30)

and those corresponding to the ground states for Nsites =
14,18,22,26, and 30 are displayed in Fig. 5 as functions
of lnNsites. The corresponding DMRG results are shown in
the same plot. We have also included the UHF MSFs for
comparison purposes. At variance with the UHF MSFs which
diverge exponentially, both the GHF-FED and DMRG results
display an almost linear behavior. A previous work66 has
shown that the SSCFs in real space behave for a half-filled
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FIG. 4. (Color online) GHF-FED ground-state spin-spin correla-
tion functions in real space for half-filled lattices of different sizes
(red, brown, magenta, blue, and cyan curves). DMRG values are
plotted with black triangles. Results are shown for U = 2t (a), 4t

(b), and 8t (c). In each panel, the inset displays a closeup of the
long-range behavior predicted by the GHF-FED (red curve) and
DMRG (black triangles) schemes compared with the one obtained
within the standard UHF approximation (green curve) in the case of
the Nsites = 30 lattice. For more details, see the main text.
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FIG. 5. (Color online) The GHF-FED magnetic structure factor,
evaluated at the wave vector q = π , is plotted as a function of lnNsites

for half-filled lattices of different sizes. GHF-FED results are shown
for onsite repulsions of U = 2t (red diamonds), 4t (black diamonds),
and 8t (blue diamonds). The corresponding DMRG values are plotted
with open circles. A straight line has been fitted to guide the eye.
The magnetic structure factors predicted by the UHF approximation
for U = 2t (continuous red curve), 4t (continuous black curve),
and 8t (continuous blue curve) are also included for comparison
purposes.

system as ≈(lnσ j )/j . This implies that as a function of the
lattice size, the MSFs should behave as ln1+σ Nsites. In Fig. 5,
we have simply fitted a straight line using the DMRG MSFs to
guide the eye. We have not attempted to determine logarithmic
corrections as this would require larger lattices than those
studied in this paper.

D. Spectral functions and density of states

In panels Figs. 6(a)–6(c), we have plotted (black) the DOS
N (ω) for Nsites = 10. In the same figure, we have also plotted
(red) the exact DOS obtained with an in-house full diagonal-
ization code. There is excellent agreement between ours and
the exact DOS concerning the position and relative heights

of all the prominent peaks. Both ours and the exact DOS
exhibit the particle-hole symmetry well known for half-filled
systems10 and a splitting into the lower and upper Hubbard
bands. The Hubbard gap between these bands increases with
larger U . Both dynamical cluster approximation23–25 and
cellular dynamical mean-field theory67 studies suggest that this
gap is preserved for any finite value of the onsite interaction
at sufficiently low temperatures even in the thermodynamic
limit, with U = 0t being the only singular point.

Tendencies to spin-charge separation as well as other
relevant shadow features inside the Brillouin zone, similar
to the ones expected in the infinite-U limit of the 1D Hubbard
model,68 have been found in previous cellular dynamical
mean-field theory67 and cluster perturbation theory69 studies
of the spectral weights in the case of finite onsite repulsions. In
Figs. 7(a)–7(c), we have plotted the hole SFs for the Nsites = 30
lattice.

The first feature observed from Fig. 7 is the Hubbard gap
opening at the Fermi momentum kF = 7π/15. The spectral
weight concentrates on the prominent peaks belonging to
the spinon band. Our calculations for smaller lattices with
Nsites = 14 and 20 indicate that this spinon band is quite stable
in terms of lattice size although the relative height of its peaks
decreases for increasing U values. The holon singularities
are clearly visible in some of the SFs shown in Fig. 7 for
linear momenta −π/2 < k < π/2. On the other hand, the
holon bands can also be followed for linear momenta k > π/2
and k < −π/2. They are the mirror images of the ones with
opposite ω − U/2 values69 and become apparent for U = 4t

and 8t . However, aside from the spinon band, the most relevant
feature in our SFs is the very extended distribution of the
spectral weight for linear momenta −π/2 < k < π/2. The
comparison with our SFs for Nsites = 14 and 20, obtained
with n1 = 10 and nT = 10 GHF transformations, reveals that
the increase of lattice size produces more pronounced shadow
features due to the fragmentation of the spectral strength over
a wider interval of ω − U/2 values. The previous finite-size
results show that our SFs exhibit tendencies beyond a simple
quasiparticle distribution and agree qualitatively well with the
ones obtained using other approximations.67,69

The shapes of some selected hole SFs are compared in
Figs. 7(d)–7(f). As can be seen from Fig. 7(d), nT = 15
transformations are enough to account for all relevant details
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FIG. 6. (Color online) The DOS (black) for the half-filled lattice with Nsites = 10 at U = 2t, 4t, and 8t is plotted in panels (a)–(c),
respectively, as a function of the shifted excitation energy ω − U/2 (in t units). Results have been obtained by approximating the Ne and
(Ne ± 1) systems with n1 = 10 and nT = 10 GHF determinants. Our results are hardly distinguishable from the DOS obtained with exact
diagonalization (red). A Lorentzian folding of width 
 = 0.05t has been used. For more details, see the main text.
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FIG. 7. (Color online) The hole SFs for the half-filled lattice with Nsites = 30 at U = 2t, 4t, and 8t are plotted in panels (a)–(c) as functions
of the shifted excitation energy ω − U/2 (in t units). Results have been obtained by approximating the Ne and (Ne ± 1) systems with n1 = 25
and nT = 25 GHF determinants. The hole SFs for momenta identical to the Fermi momentum are displayed in brown color. The shapes of some
selected hole SFs (i.e., k = 0, 2π/5, and 7π/15), obtained by approximating the ground states of the (Ne ± 1) systems with nT = 5 (blue), 15
(red), and 25 (black) but the ground state of the Ne system always with n1 = 25 GHF transformations, are compared in panels (d), (e), and (f).
A Lorentzian folding of width 
 = 0.05t has been used. For more details, see the main text.

of the SFs shown in Fig. 7(a) for U = 2t . On the other
hand, Figs. 7(e) and 7(f) show that a larger number of
transformations is required for U = 4t and 8t . In particular,
increasing the number of transformations for the (Ne ± 1)
systems from nT = 5 to nT = 15 and/or 25 leads to a shift of
the main peaks and redistributes the spectral strength of some
of the peaks found in the SFs for nT = 5 as a result of the
small number of configurations used in the calculations. This
explains the differences between ours and the SFs reported,
for the same lattice at U = 4t , in the previous VAP study35 of
the 1D Hubbard model using only n1 = 1 and nT = 5 GHF
transformations.

E. Excitation spectra

In this section, we consider the low-lying excitation spectra
obtained for Nsites = 12,14, and 20 with the GHF-EXC-FED
scheme discussed in Sec. II B2. For each irreducible represen-
tation of the space group, we have computed the lowest-energy
and first excited states with spins S = 0,1, and 2. Each of these
states has been approximated by 10 nonorthogonal symmetry-
projected GHF determinants. A final 2 × 2 diagonalization of
the 1D Hubbard Hamiltonian has also been carried out. For
these particular lattices, we have found that for each symmetry
�, the (Gram-Schmidt orthonormalized) ground |ϕn1=10,�

1K 〉
and first excited |ϕn2=10,�

2K 〉 states are very weakly coupled
through the Hamiltonian. Due to this, the energies correspond-
ing to the states |��

1K〉 and |��
2K〉 resulting from the 2 × 2

diagonalization are almost identical to those corresponding to
the basis states |ϕn1=10,�

1K 〉 and |ϕn2=10,�
2K 〉. However, this can

not be anticipated a priori and the final diagonalization of the
Hamiltonian should always be carried out.

In Fig. 8, we compare the energies of some selected states
for Nsites = 12 and 14 with the ones obtained in the previous
variational study35 of the 1D Hubbard model where 3D spin
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FIG. 8. The energies of some selected states obtained within
the GHF-EXC-FED approximation for the half-filled lattices with
Nsites = 12 and 14 are compared with the ones provided by single-
reference VAP (SR VAP) calculations (only 3D spin and linear
momentum projections) as well as with the exact ones from Lanczos
diagonalization (Ref. 35). Results are shown for U = 4t .
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FIG. 9. (Color online) Energy spectrum obtained via Eq. (21) for the half-filled lattices with Nsites = 14 [panels (a)–(c)] and 20 [panels
(d)–(f)]. For each irreducible representation of the space group, the lowest-energy and first excited states with the spins S = 0 (red bars), 1 (blue
bars), and 2 (green bars) have been plotted. Results are shown for U = 2t, 4t, and 8t . The exact dispersion curves (Ref. 70) for Nsites → ∞
(thin black lines) are also included. In order to guide the eye, the lowest-lying states with spin S = 0 (S = 1) have been connected by long
(short) dashed lines. For more details, see the main text.

and linear momentum projections were carried out. The exact
results in Fig. 8 correspond to Lanczos diagonalizations. As
can be observed, our MR calculations, where in addition to 3D
spin projection the full space group of the 1D Hubbard model
is taken into account, improve the energies reported in Ref. 35
for both ground and excited states.

In Fig. 9, we show the low-lying spectrum obtained via
Eq. (21), for Nsites = 14 [Figs. 9(a)–9(c)] and 20 [Figs. 9(d)–
9(f)] taken as representative examples of systems whose � =
(0,0) and � = (0,π ) ground states have A1 and B1 symmetries,
respectively. We observe that both the lowest-lying singlet and
triplet states obtained in our calculations nicely follow the
sinelike dispersion trend in the exact curve for Nsites → ∞.
The anomaly observed in the GHF-EXC-FED k dispersion
for the lowest-energy singlets and triplets has also been found
in previous studies within the ResHF framework45 as well as
in finite versions of the exact Lieb-Wu solutions.71 For any
finite U value, the exact Nsites → ∞ curves exhibit gapped
excitations, exception made for the k = 0 and π states which
are degenerate. In our calculations, such a degeneracy is broken
due to finite-size effects. However, we observe that for a
given finite U value, the energy difference between the lowest
singlet and triplet states decreases with increasing lattice
size. For example, for U = 2t we have obtained �Es−t =
0.5287t in the case Nsites = 14 while �Es−t = 0.1275t for
Nsites = 20 . For increasing onsite respulsions, irrespective
of the lattice size, an overall compression of the spectra
takes place. This is consistent with the fact that in the limit

U → ∞, all the configurations shown in Fig. 9 should become
degenerate.

F. Structure of the intrinsic determinants and basic units of
quantum fluctuations in the GHF-EXC-FED wave functions

In Sec. III B, we have discussed the structure of the intrinsic
determinants associated with the GHF-FED states. Here, we
pay attention to the symmetry-broken ones used to expand the
GHF-EXC-FED wave functions. To illustrate our results, we
consider states belonging to the spectrum shown in Fig. 9(e).
In particular, we have plotted in Figs. 10(a) to 10(d) the
quantities ξ i

1(j ) (black) and ξ i
2(j ) (red) computed [see Eq. (28)]

with some of the n1 = 10 and n2 = 10 symmetry-broken
determinants |Di

1〉 and |Di
2〉 used to expand the lowest-energy

|ϕn1=10,�
1K 〉 and first excited |ϕn2=10,�

2K 〉 states with � = (1,0)
and A1 symmetry. Other determinants, not shown in the figure,
exhibit the same qualitative features. Similar results are also
obtained for U = 2t and 8t as well as for other lattices.

As can be observed, both ξ i
1(j ) and ξ i

2(j ) display defects
similar to the ones already discussed for the S = 0 ground
states provided by the GHF-FED approximation (see Fig. 3).
From this, we conclude that not only the ground- but also
the excited-state wave functions provided by our MR VAP
scheme superpose Goldstone manifolds built in terms of
intrinsic GHF determinants containing defects (i.e., solitons)
that can be regarded as basic units of quantum fluctuations. In
general, the intrinsic determinants associated with different

235129-12



MULTIREFERENCE SYMMETRY-PROJECTED VARIATIONAL . . . PHYSICAL REVIEW B 87, 235129 (2013)

2 4 6 8 10 12 14 16 18 20
j

-200

-160

-120

-80

-40

0

40

80

120

160

200

ξ 
× 

10
3

U=4t

(a)

2 4 6 8 10 12 14 16 18 20
j

 
U=4t

(b)

2 4 6 8 10 12 14 16 18 20
j

 

U=4t

(c)

2 4 6 8 10 12 14 16 18 20
j

 

U=4t

(d)

FIG. 10. (Color online) Structure of some typical symmetry-broken GHF determinants |Di
1〉 (black) and |Di

2〉 (red) used to expand
the lowest-energy and first excited states with spin S = 1, linear momentum k = 0, and A1 symmetry. The charge density (dashed blue)
corresponding to the determinants |Di

2〉 is also included in each panel. Results are shown for the half-filled lattice with Nsites = 20 at U = 4t .
For more details, see the main text.

symmetry-projected states may develop local variations
of the charge density as seen (dashed blue curve) from
Fig. 10 where we have also plotted the quantity ρi

2(j ) =
1 − ∑

σ 〈Di
2|n̂jσ |Di

2〉.

IV. CONCLUSIONS

The accurate description of the most relevant correlations in
the ground states and low-lying excited states of a given many-
fermion system, with as few configurations as possible, is a
central problem in quantum chemistry, solid state, and nuclear
structure physics. In this study, we have explored a VAP MR
avenue for the 1D Hubbard model. The main accomplishments
of this work are listed below.

(i) We have presented a powerful methodology of a VAP
MR configuration mixing scheme, originally devised for the
nuclear many-body problem, but not yet considered to study
ground and excited states, with well-defined symmetry quan-
tum numbers, of the 1D Hubbard model with nearest-neighbor
hopping and periodic boundary conditions. Both ground and
excited states are expanded in terms of nonorthogonal and Ritz-
variationally optimized symmetry-projected configurations.
The simple structure of our projected states allows an efficient
parallelization of our variational scheme, which scales linearly
with the number of processors as well as with the number
of transformations used in the calculations. The method also
provides a (truncated) basis consisting of a few Gram-Schmidt
orthonormalized states. This basis may be used to diagonalize
the Hamiltonian to account, in a similar fashion, for additional
correlations in the ground and excited states with well-defined
symmetry quantum numbers.

(ii) We have shown that our MR approximation gives
accurate ground-state energies and correlation energies as
compared with the exact Lieb-Wu solutions for relatively large
half-filled lattices up to 30 and 50 sites. The comparison with
other theoretical approaches also reveals that our scheme can
be considered as a reasonable starting point for obtaining
correlated ground-state wave functions in the case of the
1D Hubbard model. We have computed the full low-lying
spectrum for the Nsites = 14 and 20 lattices. The momentum
dispersion of the lowest-lying singlet and triplet states follows
the exact shape predicted by the Lieb-Wu solution in the

thermodynamic limit. With increasing U , we also observe a
general compression of the spectrum.

(iii) From the analysis of the structure of the intrinsic
determinants associated with our MR ground- and excited-
state wave functions, we observe that they all contain defects
(i.e., solitons) that can be regarded as basic units of quantum
fluctuations for the considered lattices.

(iv) Our results for the ground-state SSCFs in real space
show long-range decay that is not observed in the UHF case.
The MSFs computed from such correlation functions show
a behavior approximately linear in lnNsites consistent with
previous results available in the literature.

(v) Our approximation also allows us to compute SFs and
the DOS. To this end, we considered Ansätze, whose flexibility
is determined by the numbers n1 and nT of HF transformations
used to expand the wave functions of systems with Ne and
(Ne ± 1) electrons. For a small lattice with Nsites = 10, we have
compared the DOS predicted within our approach with the one
obtained using a full diagonalization and found an excellent
agreement between both. For a larger lattice with Nsites = 30,
our scheme provides hole SFs that agree qualitatively well
with the ones obtained with other approximations and exhibit
tendencies beyond a simple quasiparticle distribution.

We believe that the finite-size calculations discussed in this
study already show that VAP approximations, based on MR
expansions in terms of nonorthogonal symmetry-projected HF
determinants, represent useful tools that complement other
existing approaches to study the physics of low-dimensional
correlated electronic systems. Within this context, the scheme
presented in this work leaves ample space for further im-
provements and research. First, the number of nonorthogonal
symmetry-projected configurations used in the corresponding
MR expansions can be increased to improve the quality of our
wave functions. Second, we could still incorporate particle
number symmetry breaking (i.e., general HFB transforma-
tions) and restoration (i.e., particle number projection) to
access even more correlations. Third, our scheme can be easily
extended to the 2D case as well as to doped systems with
arbitrary onsite interaction strengths. Our approximation is
also general enough so as to be implemented for the molecular
Hamiltonian72 as well as for lattices such as the honeycomb,
the kagome, or the Shastry-Sutherland73 ones. The same VAP
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MR scheme can also be applied to study frustrated Hubbard
models in the 1D and 2D cases. Finally, the MR scheme
discussed in this work could also be used as a powerful solver in
the framework of fragment-bath embedding approximations.27

In particular, it could replace exact diagonalizations for
fragment sizes where it is not feasible while still providing
highly correlated (fragment) wave functions. Obviously, a
careful analysis of the corresponding symmetries should be
carried out in each case. Work along these avenues is in
progress and will be reported elsewhere.
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522 (2000).

70F. Woynarovich, J. Phys. C: Solid State Phys. 16, 5293 (1983).
71K. Hashimoto, Int. J. Quant. Chem. 36, 633 (1986).
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