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Nonlinear response via intrinsic rotation in metamaterials
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We propose and experimentally verify a way to achieve strong nonlinear coupling between the electromagnetic
and elastic properties in metamaterials. This coupling is provided through a novel degree of freedom in
metamaterial design: the internal rotation within structural elements. Our meta-atoms have high sensitivity
to electromagnetic wave power, and the elastic and electromagnetic properties can be independently designed to
optimize the response. We demonstrate a rich range of nonlinear phenomena including self-tuning and bistability,
and provide a comprehensive experimental demonstration of the predicted effects.
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I. INTRODUCTION

Metamaterials research has grown rapidly over the past
decade, exhibiting a wide variety of new wave phenomena.1,2

Being initially conceived in the domain of electromagnetics,3–5

the metamaterial concept also proved to be fruitful in other
areas of physics.6–8 Until recently, however, direct interplay
between different types of physical effects within the same
metamaterial was not considered, although mechanical control
over electromagnetic metamaterial properties was employed in
structural tuning.9,10

It turns out that introducing a mechanical degree of freedom
into electromagnetic metamaterials leads to an interesting
range of nonlinear effects, giving rise to a new class of
magnetoelastic metamaterials11 and to wide-band operation.12

The range of possible effects achievable in this way promises
to be richer than in the prominent area of optomechanics,13

because the greater flexibility in metamaterial design over-
comes the limits of available material functionalities and offers
wider possibilities for optimization. At the same time, the
implementation of magnetoelastic metamaterials11 remains
challenging and in some cases, such as the conformational
nonlinearity in resonant spirals,14 remains inaccessible for
optics. The reason for this is that the magnetic forces, employed
in the initial designs, are relatively weak, so such materials
require either high power or extremely small elastic restoring
forces, which poses a considerable manufacturing challenge.

We recall, however, that earlier research on structurally
tunable metamaterials9 indicated that near-field interaction
may significantly improve the tunability range, leading to
various effects associated with near-field coupling.15 In partic-
ular, changing the mutual orientation between the neighboring
elements has a profound effect on the resonator coupling and
the structure of their modes.16,17

We therefore expect that the most efficient approach to
implement dynamic coupling between electromagnetic and
mechanical effects should rely on the near-field interaction,
which can have a powerful influence even for subtle changes in
the mutual orientation. Instead of a considerable displacement
of an entire array,9 it is sufficient to move the crucial parts of the
resonant particles with respect to each other—for example, the
gaps of the two coupled split-ring resonators—which involves
a more gentle geometric alteration.

II. DESIGN AND GENERAL CONCEPT

Let us now introduce our concept: nonlinear metamaterials
with intrinsic rotation. As a building element of the structure
(see Fig. 1), we consider two coaxial split ring resonators
(SRRs) with elastic feedback between them. The rings are
allowed to rotate about the common axis, while the elastic
feedback is provided by connecting a thin elastic wire. Indeed,
the use of elastic wires has a prominent history in physics,
being utilized in the milestone achievement of the experimental
demonstration of light pressure by P. N. Lebedev.18 Here, we
employ the electromagnetic (EM) torque to construct a “light-
driven” meta-atom, which enables us to modulate the resonant
frequencies by twisting the rotatable element directly with EM
waves. The component of the EM forces, which twists the rings
with respect to each other, is normally not the strongest among
the forces involved, but the prominent advantage of using EM
torque instead of collinear EM force to drive a meta-atom is
that the effective lever arm of the azimuthal EM force can be
much larger than that of the azimuthal restoring force from
a thin wire; this can effectively magnify the deformation in
azimuthal direction by orders of magnitude.

Technically, there are a number of ways to implement this
general scheme; in our design, one of the rings is fixed to a
substrate and the other one is suspended on the long wire.
The three symmetrically positioned wires, which attach the
suspended ring to the string provide stability against tilt. In this
design, therefore, the only favorable movement is the rotation
of the suspended ring with respect to the fixed ring over the
common axis, and all other mechanical degrees of freedom
can be neglected.

Suppose the initial position is such that the ring slits have a
certain angle between them with respect to the common axis
(see Fig. 1). An EM wave then induces a certain distribution of
charges and currents in the two resonators, and the resonance of
the system is determined by their mutual orientation.16 These
charges and currents also result in EM torque between the
two rings,19 which drives the suspended ring to rotate until
the EM torque is compensated by the elasticity of the twisted
wire. Meanwhile, the entire pattern of charges and currents
gets modified and the torque also changes, so the final stable
equilibrium is only achieved via a complex nonlinear feedback.
The twisted wire provides a restoring torque to balance the
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FIG. 1. (Color online) Conceptual layout of a new metamaterial
and its rotational “meta-atom.” Incident wave propagates along y

direction, having a linear polarization with the electric field along
x and magnetic field along z. The induced electromagnetic torque
between the resonators changes the mutual twist angle θ between the
rings, connected by an elastic wire.

EM torque, so that we can control the twist angle (and thus the
resonance) by changing the external field.

An additional feature of the proposed design is that the
nonlinear dynamics of the rotatable particle not only depend
on the parameters of the wire, but also on the EM mode initially
excited in the resonators, which is determined by the starting
angle between the gaps. The latter can be made arbitrary, and
an implementation has the possibility to deliberately adjust it,
introducing tunability to the system.

The above design, therefore, offers a tunable resonant
nonlinear system with elastic feedback and, as we show below,
yields a rich pattern of nonlinear response including self-
tuning and nonlinear bistability, which are much stronger than
those provided by using nonlinear semiconductor components.
Below, we present a detailed theoretical analysis of rotational
meta-atoms. We then proceed to the experimental results
obtained with a fabricated prototype of the rotational “meta-
atom” placed in a rectangular waveguide, and confirm all
important features predicted by theory. Finally, we perform
full-wave numerical simulations of the array of “meta-atoms”
(i.e., metamaterial) and demonstrate that all the nonlinear
effects observed for the single meta-atom in the waveguide
are qualitatively the same in the array.

III. THEORETICAL ANALYSIS

A. Semianalytical model

To start with, we use a semianalytical model to study
the dynamics of an isolated meta-atom in free space. It will
subsequently be demonstrated that this model explains all
qualitative features of an array. As shown in Fig. 1, the two
coaxial identical SRRs are offset by a distance s in the z

direction, and the twist angle between them is θ . The incident
wave propagates along the y direction, with its magnetic field
in the z direction and electric field in the x direction. The
orientation of the gaps with respect to the incident electric
field polarization is described by the angle � between the
azimuth of the gap of the bottom ring as seen from the ring
axis and y axis.

To study the nonlinear behavior of the rotatable meta-atom,
we utilize an efficient analytical model based on the single

mode approximation and the near-field interaction.16 This
model can provide a reasonable prediction of the EM response
as well as the optomechanical properties of the structures.19

As our previous studies showed,20 the current and charge of
the SRR can be separated into frequency-dependent mode
amplitudes and spatially dependent distributions: J(r,ω) =
−jωQ(ω)j(r) and ρ(r,ω) = Q(ω)q(r). The mode amplitudes
Q1,2 can be obtained after solving the coupled equations:

Q1 = (E2Fm − E1Fs)/
(
F 2

s − F 2
m

)
, (1)

Q2 = (E1Fm − E2Fs)/
(
F 2

s − F 2
m

)
, (2)

where E1 and E2 correspond to the effective voltage applied
to the lower (index 1) and top (index 2) SRRs by the external
fields:

E1 = −Eext · le · ejk0aE cos � + jωBext · ue · ejk0aM cos � (3)

and

E2 = −Eext · le · ejk0aE cos(�+θ) + jωBext · ue · ejk0aM cos(�+θ).

(4)

The normalized electric dipole moment is le(θ,�) =∫
V

q(r)rdV , and ue(θ,�) = 1
2

∫
V

r × j(r)dV is the normal-
ized magnetic dipole moment.

We define the effective central positions of the electric and
magnetic dipoles

aE =
∫
V

[q(r1)r1 · x̂](r1 · ŷ)dV1∣∣ ∫
V

q(r1)r1dV1

∣∣ , (5)

aM =
∫
V

[r1 × j(r1) · ẑ](r1 · ŷ)dV1∣∣ ∫
V

r1 × j(r1)dV1

∣∣ (6)

similar to the definition of center of mass, and they are
calculated based on the charge and current distributions of
the lower SRR when � = 0. The phase terms of the effective
voltages describe the phase retardation experienced by the
SRRs in the direction of wave propagation. Fs = 1/Cs − ω2Ls

and Fm = 1/Cm − ω2Lm are the self- and mutual impedance
terms, where the effective capacitances C and inductances L

can be calculated from the modal current j(r) and charge q(r)
distributions (see Ref. 20).

Once the frequency-dependent mode amplitudes are
known, we can calculate the EM torque experienced by the
SRRs. Here, we are particularly interested in the torque on
the top rotating ring: MEM = ∫

V2
ρ(r2)r2 × E + r2 × [J(r2) ×

B]dV2, where the integration is performed over the volume
V2 of the top SRR. We decompose the total torque into
two parts: external torque Mext contributed by the external
incident fields,19 and internal torque Mint due to the near-field
interaction between the two SRRs. We assume that the lower
SRR is fixed while the top SRR is only allowed to rotate about
the z axis. The explicit expressions for the internal and external
torque are as follows:

Mext,2 = 1

2
Re

[∫
V2

ρ∗(r2)r2 × EextdV2

]

= −1

2
Re[Q∗

2(ω,�)ejk0aE cos(�+θ)]Eext · le sin(� + θ ) · ẑ,

(7)
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while the internal torque can be expressed as

Mint,2 = 1

2
Re

[∫
V2

ρ∗(r2)r2 × Eint(r2)dV2

]
(8)

with

Eint(r2) = −∇φ(r2) − ∂

∂t
A(r2)

= −
∫

V1

∇ ρ(r1)ejk|r2−r1|

4πε0|r2 − r1| + ∂

∂t

J(r1)ejk|r2−r1|

4πc2ε0|r2 − r1|dV1.

(9)

Finally, we arrive at

Mint,2 = 1

2
Re

{
Q1(ω)Q∗

2(ω)

4πε0

∫∫
q∗(r2)ejk|r1−r2|

|r1 − r2|
×

[
1 − jk|r1 − r2|

|r1 − r2|2 q(r1)r1 × r2 + k2r2 × j(r1)

]

× dV1dV2

}
. (10)

For a cylindrical wire that can be used to suspend the
rotatable SRR, the restoring torque can be estimated as
MR = −πa4G(θ − θ0)/(2d), where a and d are the radius and
the length of the wire, respectively. G is the shear modulus
and θ0 is the initial twist angle of the structure. A series of
equilibrium twist angles can be found by solving the nonlinear
equation

MEM(θ,PI) + MR(θ,θ0) = 0. (11)

B. Numerical example

We model a pair of twisted SRRs, with radius r = 6 mm
and vertical spacing s = 2 mm. The size of the slit in each ring
can be described by the angle at which the gap is visible from
the ring center, α0 = 10◦. The elastic coupling is provided with
a wire of radius a = 50 μm and of length d = 100 mm, made
from rubber with a shear modulus of G = 0.6 MPa.

Figures 2(a) and 2(b) depict the mode amplitude Q2

and the total EM torque MEM = Mext + Mint experienced
by the top SRR as functions of frequency and twist angle
θ . In our dimer meta-atom, changing � generally leads to
some difference in the coupling efficiency between the input
plane wave and the eigenmodes, but does not cause any
substantial qualitative difference such as the direction of EM
torque, since it is a property governed by the symmetry
of the mode profiles. Without loss of generality, we have
assumed � = 0 for the calculations. Since radiation losses are
taken into account in the model,20 we are able to accurately
describe the evolution of the mode amplitudes, phases and line
shapes of the resonances. As expected, this chiral meta-atom
supports two hybrid resonances, which can be characterized
as symmetric (lower frequency branch) and antisymmetric
(higher frequency branch) modes, according to the symmetry
of the Hz component.16

The directions of the EM torque at these two resonances are
also opposite. For the symmetric mode, θ = 0◦ corresponds to
the configuration of highest potential energy (unstable point),
and thus the two repel each other once θ > 0◦, until they come

FIG. 2. (Color online) The principle of nonlinear response in
rotatable meta-atoms. (a) The mode amplitude Q2 and (b) the EM
torque MEM of the top rotatable ring. (c) The EM torque at 3.5 GHz
for different pump powers from 0 to 1 mW/mm2 in 0.2 mW/mm2

steps, and the restoring torque for different initial twist angles θ0;
(d) the corresponding paths of power-dependent twist angles under
different θ0.

to the stable state at θ = 180◦, while the reverse is true for
the antisymmetric mode.21 The evaluated external torque is
about one order of magnitude smaller than the internal torque,
and the total torque is of the order of 10−10 Nm when the
structure is pumped with a power density PI = 1 mW/mm2.
This is confirmed by the full-wave simulation (CST Microwave
Studio) followed by calculation based on the Maxwell stress
tensor, which yields the EM torque through a surface integral
of the field components around the object.22

The overall mechanism of achieving a nonlinear effect is
presented in Figs. 2(c) and 2(d). As an example, we choose
a pump frequency (3.5 GHz) at the symmetric mode [regime
denoted by the black dashed line in Fig. 2(b)]. It can be seen
that MEM is a Lorentz-like function of the twist angle, while
the restoring torques MR under different initial twist angles
θ0 are approximated by linear functions (Hooke’s law). The
intersections of these two functions, MEM(θe,PI) + MR(θe) =
0, correspond to the equilibrium angles θe. However, only
the angles with ∂

∂θ
[MEM(θe) + MR(θe)] < 0 are stable. As the

pump power PI increases from zero to maximum and then
reduces, the stable angles also change accordingly. With this
method, we can numerically find a sequence of stable angles
under different pump power PI.

Since the EM torque is a nonlinear function of twist angle,
it naturally leads to nonlinear solutions. As shown in Fig. 2(d),
the power-dependent twist angles under different initial angles
demonstrate the evolution from smooth nonlinear to bistable
response as θ0 departs from the angle of maximum EM torque.
In principle, as θ0 moves further away from the resonance,
more noticeable rotation and hysteresis effects are expected,
but higher pump power is required (see the case for θ0 = 45◦).
Such evolution of the power-dependent nonlinear response can
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also be observed by fixing the initial twist angle but changing
the pump frequency, as will be demonstrated in the experiment
below.

IV. EXPERIMENTAL VERIFICATION

A. Experimental setup and measurement

To confirm the feasibility of the proposed nonlinear ro-
tatable meta-atoms, we carry out a pump-probe microwave
experiment. To experimentally realize a strong nonlinear or
even bistable effect, the restoring torque from the wire has to
be sufficiently small so that the structure can be twisted by a
large enough angle within the maximum available power. We
found that rubber is a good candidate, since the shear modulus
of rubber is of the order of 0.2–2.4 MPa,23 which is at least
three orders of magnitude smaller than it is for other polymers.

A schematic of the experimental setup is shown in Fig. 3.
We have used two separated copper SRRs (inner radius r = 3.2
mm, track width 1 mm, copper thickness 0.035 μm, and
slit width g = 0.2 mm) printed on Rogers R4003 substrates
(εr = 3.5, loss tangent 0.0027, substrate thickness 0.5 mm).
The lower SRR is fixed and positioned at the center of a
WR229 rectangular waveguide with � = 0◦, and the top SRR
is suspended with a thin rubber wire (radius a = 50 μm, length
d = 20 mm), so that it can rotate about the common axis. The
two SRRs are aligned coaxially, with a face to face distance
of 0.75 mm, separated by air. The horizontal positions of the
SRRs are carefully adjusted and the initial twist angle θ0 is set
at around 70◦. The mass of the suspended sample is 101 mg,
which leads to a 6.1% elongation of the wire. The Young’s
modulus is thus estimated as 2.06 MPa, and the shear modulus
follows as G ≈ 0.69 MPa.

Since the mechanism of nonlinear response is the dynamic
coupling between electromagnetic and elastic properties, the
experimental setup exhibits the same physics as the conceptual
schematic although it is slightly different. In the experiment,
it was not necessary to fix the bottom end of the wire to
the substrate, because the maximum forces emerging in the
lateral directions (∼0.1 μN according to our calculations) can
only produce a negligible swing angle (0.056◦) since they are
much smaller than the weight of the sample (∼980 μN). The
calculated torque is a Lorentz-like function and the maximum

FIG. 3. (Color online) Schematic of the experimental setup. The
pump and probe signals are combined by a 3-dB combiner. The
sample is positioned in the center of the waveguide. (1) Vector
network analyzer, (2) 3-dB combiner, (3) rectangular waveguide, (4)
20-dB attenuator, (5) power amplifier, (6) signal generator, and (7)
sample.

is around 0.8 nNm. The maximum attractive force between
the two SRRs is around 2 μN, which leads to a negligible
elongation of the wire (0.012%); while the force in the lateral
direction is around 0.1 μN, about 1000 times smaller than the
gravitational force exerted on the sample, and thus it only gives
rise to a tiny swing angle (0.056◦).

The transmission spectrum measurements are performed by
a vector network analyzer (Rohde and Schwarz ZVB-20). The
CW pump signal is generated by a signal generator (HP 8673B)
and is further amplified by a power amplifier (HP 83020A)
before being sent into the waveguide. Three pump frequencies
(3.18, 3.21, and 3.23 GHz) are chosen in order to capture
the evolution of the nonlinear response at different distances
from the initial resonance. The pump power is increased in
1-dB steps; for each step, the sample reaches steady state
after 30 s. The mechanical rotation is quite significant and can
be visually observed in the experiment, thus ruling out other
possible nonlinear mechanisms such as heating.

The experimentally observed transmission spectra are
shown in Fig. 4, and the corresponding resonant frequencies
are depicted in Figs. 5(a), 5(c), and 5(e), where the predicted
evolution from bistability to smooth nonlinearity is clearly
shown. The initial resonance (symmetric mode) without pump
is located around 3.256 GHz, and it redshifts as the pump
power increases, which indicates that the twist angle is
increased. When the pump frequency is at the red tail of the
resonance, a large spectral “jump” (about three times of the
resonance linewidth) can be observed when the pump power
passes a certain threshold value [see Fig. 5(a)]. The thresholds
are different for increasing and decreasing pump powers. As

FIG. 4. (Color online) Experimental transmission coefficients
|S21| for different pump frequencies and powers. The initial resonance
is located around 3.256 GHz and the pump power is swept in 1-dB
steps. (a) and (b) Pump at 3.18 GHz, the power changes from 15.2
to 27.2 dBm; (c) and (d) pump at 3.21 GHz, the power changes from
12.2 to 27.2 dBm; (d) and (e) pump at 3.23 GHz, the power changes
from 15.2 to 27.2 dBm.
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FIG. 5. (Color online) Comparison of experimentally [(a), (c),
and (e)] and numerically [(b), (d), and (f)] calculated resonant
frequency sweeps for identical geometry. The corresponding stable
twist angles are shown on the right axes. (a) and (b) Pump at 3.18 GHz;
(c) and (d) pump at 3.21 GHz; (e) and (f) pump at 3.23 GHz.

the pump frequency approaches to the initial resonance, the
spectral “jump” becomes smaller [see Fig. 5(c)] and finally
disappears [see Fig. 5(e)]. We also observed similar effects
(not shown) when the pump frequency is at the red tail of
the antisymmetric mode, in which case the two resonances
approach each other due to the opposite direction of the EM
torque.

B. Comparison with simulation and discussion

To further validate the observed effect, we numerically
simulated the exact experimental geometry by taking into
account the effect of the waveguide. The field distribution
is calculated numerically using CST Microwave Studio, and
the EM torque exerted on the top SRR is calculated with the
Maxwell stress tensor, as shown in Fig. 6(a). Once the twist
angle-dependent torque is known, the power-dependent twist
angle can be found by solving the nonlinear equation (11).
The estimated optimum initial twist angle is around 72.5◦,
and the maximum twist angles obtained for the three pump
frequencies (3.18, 3.21, and 3.23 GHz) are around 90◦, 85◦,
and 82◦, respectively. Finally, we remap these angles back
to the corresponding resonant frequencies according to the
simulation spectra. We found excellent agreement between the
measurement and simulation [see Figs. 5(b), 5(d), and 5(f)],
thus confirming that our numerical model has reproduced the
experimental configuration with acceptable accuracy.

Due to the formation of image currents within the waveg-
uide walls, a single meta-atom within a waveguide has
virtual neighbors. Just as in an array, there will be near-field

FIG. 6. (Color online) Mutual EM torque as a function of twist
angle under different pump frequencies. (a) Single chiral meta-atom
in waveguide and (b) periodic array of chiral meta-atoms, with
periodicity 45 mm in the lateral direction and one layer in the
propagating direction of EM wave. The torques shown correspond
to a 1-W power pumped into the waveguide or one unit cell.

interaction with these virtual neighbors, with some alteration
due to the mirror reflections. This suggests that the waveguide
system is strongly analogous to an array, at least for relatively
dilute lattice spacing. To verify this, we numerically model the
electromagnetic torque of the system for both the waveguide
and array geometries. As shown in Fig. 6, the qualitative
agreement between the two is very good.

FIG. 7. (Color online) Comparisons of resonant frequencies
demonstrated in a waveguide experiment and numerically calculated
for an array. (a) and (b) Pump at 3.18 GHz; (c) and (d) pump at
3.21 GHz; (e) and (f) pump at 3.23 GHz. The stable twist angles for
the array system are shown on the right axes. The power in the array
is the power incident on each unit cell.
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Since the nonlinearity arises from individual rotatable meta-
atoms, the behavior in an array will not show qualitative dif-
ference from a single meta-atom as predicted in the analytical
model, as long as the neighbor interaction is relatively weak.
We use full numerical simulation to model an array with thick-
ness of a single cell and periodicity of 45 mm in the transverse
directions, arranged as in Fig. 1. The parameters of the meta-
atoms used in the simulation are the same as in the experiment.
The array and the waveguide experiment show quite good qual-
itative agreement [see Figs. 7(b), 7(d), and 7(f) for the power-
dependent resonance and Fig. 6 for the EM torque], thus jus-
tifying that the nonlinear behavior observed in the waveguide
experiment is similar to that of the analogous array system.

V. CONCLUSION

We proposed and verified experimentally an interesting
concept for achieving strong nonlinear coupling between
the electromagnetic and elastic properties in metamaterials.
The nonlinear “meta-atom” described in this work proved to
possess a sensitive elastic feedback bringing nonlinearity to
the interaction of EM modes of the resonators. The resulting
nonlinearity and bistability of the response were successfully
observed in experiments and it turns out that these results

can be accurately predicted with theoretical modeling. We
also note that this structure is chiral (except in the high
symmetry cases of 0◦ and 180◦ angle between the rings), it
should also exhibit nonlinear optical activity, an effect which
is relatively weak in natural media,24 but can be quite strong
in metamaterials.25

Although the experimental demonstration in this work was
performed in the microwave frequency range, we expect that
the general principle of operation is valid at any frequency
where a resonant response can be excited in such or sim-
ilar metamaterials elements, e.g., in the recently developed
plasmonic chiral molecules based on DNA templates,26 and
the way to analyze the same phenomena in THz or op-
tical range is conceptually the same. We believe that this
work provides a substantial contribution to the emerging
area of optomechanical and magnetoelastic metamaterials,
and offers an efficient and convenient design for practical
applications.
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