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We use the operator product expansion to derive exact results for the momentum distribution and the static
structure factor at high momentum for a jellium model of electrons in both two and three dimensions. It is
shown that independent of the precise state of the Coulomb system and for arbitrary temperatures, the asymptotic
behavior is a power law in the momentum, whose strength is determined by the contact value of the pair
distribution function g(0). The power-law tails are quantum effects which vanish in the classical limit h̄ → 0. A
leading-order virial expansion shows that the classical and the high-temperature limit do not agree.
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I. INTRODUCTION

The basic constituents of ordinary matter are electrons and
nuclei combined in such a way that there is no net overall
charge. Within a nonrelativistic approximation and treating the
nuclei as point particles, the interaction is fully described by an
instantaneous Coulomb potential ∼e2/r at arbitrary distances.
In spite of the long-range nature of this interaction and the
divergent attractive force between electrons and nuclei at short
distances, one expects an overall neutral Coulomb system to be
stable in the sense that the ground-state energy (or free energy
at finite temperature) is finite and scales linearly with the total
number N of particles. It is one of the major accomplishments
of theoretical physics to show that, beyond the exactly solvable
case of the hydrogen atom, these expectations can indeed
be proven rigorously. The proof crucially relies on the fact
that electrons are fermions and are thus constrained by the
Pauli principle.1 Since neither the size and mass nor the
statistics of the nuclei play a role in this context, a simple
approximation which captures much of the basic physics of
Coulomb systems is the well-known jellium model, where
the nuclei are treated as a homogeneous background that
precisely cancels the negative charge of the Coulomb gas of
electrons.2 At zero temperature, this model is fully specified
by the standard dimensionless interaction strength rs = r0/a0.
Here, a0 = h̄2/me2 is the Bohr radius while r0 is the average
spacing between electrons, connected with the electron density
n via r0 = (3/4πn)1/3 in three dimensions (3D) and r0 =
(1/πn)1/2 in two dimensions (2D), respectively. Despite the
fact that the periodic arrangement of the nuclei is ignored,
the jellium model provides a reasonable starting point to
describe elementary properties of metals like their cohesion
energy or compressibility.2–4 Unfortunately, however, beyond
the fundamental issue of stability and extensivity, there are
hardly any exact results even for this highly simplified model.
It is only in the high-density limit rs � 1 where a perturbative
expansion around the noninteracting Fermi gas is possible. A
simple argument for this is provided by writing the jellium
Hamiltonian

H = − 1

r2
s

∑
i

∇2
i + 1

rs

∑
i<j

2

|ri − rj | + Hb (1)

in dimensionless form, with Ry = e2/2a0 as the unit of energy
and particle coordinates ri measured in units of r0 (both
the energy Hb of the background as well as the interaction
energy between electrons and the background are constants
and thus need not be written explicitly). Clearly, as rs → 0,
the kinetic energy dominates and the Coulomb interaction can
be treated within perturbation theory. The expected ground
state is a Fermi liquid, with a finite jump 0 < Z < 1 of the
momentum distribution at a spherical Fermi surface |k| = kF .5

While typical values of rs ≈ 1–5 in metals7 are outside the
range of perturbation theory, at least the qualitative features of
electrons in metals are captured correctly in this picture. For
very large values of rs , the uniform electron liquid is expected
to eventually form a Wigner crystal, which minimizes the
interaction energy in (1). In addition, nontrivial phases such
as anisotropic quantum liquid crystals are likely to appear
at intermediate values of rs . Indeed, in two dimensions a
direct transition from a uniform electron liquid to a Wigner
crystal as a function of rs can be ruled out by a quite
general thermodynamic argument.8 Moreover, even in the
Wigner crystal, the electron spin gives rise to strong quantum
fluctuations due to ring exchange processes, leading to a
complex magnetic structure (see, e.g., Refs. 9–11).

In view of the still poorly understood phase diagram of even
the simplest model for a many-body system with Coulomb
interactions, it is of considerable interest to derive exact
relations that hold independent of the interaction strength and
the particular state in question. Our aim in this work is to show
that such relations follow directly from the operator product
expansion (OPE) of quantum field theory. They constrain
the short-distance physics of Coulomb systems in a manner
which is analogous to the so-called Tan relations12–14 for
fermions with interactions that have effectively zero range.
Physically, these relations rely on the fact that at sufficiently
short distances, only the two-body interaction is relevant. At
the level of the many-body ground-state wave function for
Coulomb systems, this observation goes back to Kimball.15–17

Beyond providing a concise derivation of these relations, a
quite non-trivial aspect of our present derivation via the OPE
is the fact that the relations will be shown to be valid at the level
of operators. As a result, they apply to any state of the system,
e.g., to a Fermi liquid or a Wigner crystal, at zero or at finite
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temperature and also in a few-body situation. The only change
is the value of the “contact” g(0), a dimensionless measure of
the probability that two electrons with opposite spin are found
at a coincident point in space.

In order to illustrate the universal features in the short-
distance behavior of Coulomb systems, it is instructive to
consider the hydrogen atom as a simple and exactly solvable
system. In fact, the basic relations that will subsequently
be proven for the many-body case show up already in this
elementary textbook problem.18 The wave function for relative
motion in the hydrogen atom has the well-known form19

ψnlm(r) =
(

2

a0n

)3/2
√

(n − l − 1)!

2n(n + l)!
Ylm(θ,ϕ)

×
(

2r

a0n

)l

e
− r

a0n L2l+1
n−l−1

(
2r

a0n

)
, (2)

where Ylm(θ,ϕ) and L2l+1
n−l−1(x) are spherical harmonics and

generalized Laguerre polynomials, respectively (we assume
the proton to be infinitely heavy, so the reduced mass is equal
to the electron mass m). Its Fourier transform ϒnlm(q) has been
calculated by Podolsky and Pauling.20 It is given by

ϒnlm(q) = 22l+4π (a0n)3/2(−i)l l!

√
n(n − l − 1)!

(n + l)!
Ylm(ϑ,φ)

× ζ l

(ζ 2 + 1)l+2
Cl+1

n−l−1

(
ζ 2 − 1

ζ 2 + 1

)
, (3)

where ζ = q a0n, and Cl+1
n−l−1(x) denotes a Gegenbauer poly-

nomial. The momentum distribution of the electron is the
absolute square of the momentum-space wave function. Using
Eq. (3), |ϒnlm(q)|2 turns out to decrease asymptotically as
1/q8+2l for large momentum ζ = q a0n � 1. The leading-
order term

|ϒn00(q)|2 =
(

8π

a0

)2 |ψn00(0)|2
q8

+ O(1/q10) (4)

in the momentum distribution therefore only involves the
contribution from s states. They are the only ones with a finite
probability density |ψn00(0)|2 = 1/π (a0n)3 for the electron
and proton to be found at a coincident point in space.

Remarkably, the same contact density also appears in the
high-momentum tail of the atomic form factor ρnlm(q), which
is the Fourier transform of the electronic density distribution.
Its leading contribution at large q

ρn00(q) =
∫

d3r e−iq·r|ψn00(r)|2

= 16π

a0

|ψn00(0)|2
q4

+ O(1/q5) (5)

comes again from s states, while higher angular momenta
are associated with faster decaying power laws. As for the
momentum distribution, the coefficient of the high-momentum
tail contains the contact density |ψn00(0)|2. Moreover, both
the momentum distribution and the form factor depend only
on the magnitude q = |q| of the wave vector, i.e., they have
spherically symmetric tails since only s states contribute. As
will be shown in the following, the power laws found in the

hydrogen atom and the fact that the physics at short distances is
rotation invariant also show up in the many-body context, even
for inhomogeneous or anisotropic phases. More precisely, the
momentum distribution is replaced by the Fourier transform of
the one-particle density matrix, while the atomic form factor
becomes the static structure factor S(q) of the many-body
system.

The paper is structured as follows: In Sec. II, we introduce
the jellium model, the one- and two-particle density matrix,
as well as some basics of the operator product expansion.
In Sec. III, the OPE is used to derive the exact short-distance
behavior of general many-body wave functions. Moreover, it is
shown that this implies power-law tails in both the momentum
distribution and the static structure factor which depend on
the particular state in question only through the value of the
contact g(0). A direct computation of the short-distance OPE
of the density-density correlator and the one-particle density
matrix is presented in Sec. IV. Finally, an explicit calculation
of the contact in both the classical and the high-temperature
limits is given in Sec. V. It is shown that for a Coulomb system
these limits give opposite results and thus are not equivalent.
The paper is concluded by a summary and outlook, Sec. VI.
The Feynman rules of the diagrammatic calculation and some
details of the evaluation of some few-particle matrix elements
are discussed in Appendixes A and B.

II. JELLIUM AND OPE

In second-quantized form, the Hamiltonian of the jellium
model is given by

H = Hb +
∫

ddx ψ†
σ

−h̄2∇2

2m
ψσ (x)

+ 1

2

∫
ddx

∫
ddx ′ ψ†

σ (x)ψ†
σ ′(x′)

e2

|x − x′|ψσ ′(x′)ψσ (x),

(6)

where a summation over spin indices σ = ↑,↓ is implied.
Since the Hamiltonian involves only one- and two-body
interactions, the expectation value of the energy in a state
described by an arbitrary N -body density matrix only involves
the reduced one- and two-particle density matrices γ (1)

and γ (2).1 In a spin-resolved form and in a position space
representation, the former can be expressed as

γ (1)
σ (x,x′) = 〈ψ†

σ (x)ψσ (x′)〉 . (7)

Its Fourier transform with respect to x − x′ then gives the
momentum distribution [see Eq. (30)]. Regarding the two-
particle density matrix γ (2)(1,1′; 2,2′), one only needs the
diagonal elements 1=1′, 2=2′, which define a dimensionless,
spin-resolved pair distribution function

nσ (x) nσ ′ (x′) gσ,σ ′(x,x′) = 〈ψ†
σ (x)ψ†

σ ′(x′)ψσ ′(x′)ψσ (x)〉.
(8)

The pair distribution function is a measure of the probability
to find an electron with spin projection σ ′ at position x′ given
an electron with spin projection σ is at x. For a completely
uncorrelated system, one has g(x,x′) ≡ 1. Note that there
is no assumption here about translation invariance, which
is certainly broken in the Wigner crystal. The total pair
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distribution function

g(x,x′) =
∑
σ,σ ′

nσ (x)nσ ′(x′)gσσ ′(x,x′)
n(x)n(x′)

(9)

of a spin- 1
2 Fermi gas is a weighted sum of contributions gσ,σ ′ .

They all approach unity as x − x′ → ∞ and so does g(x,x′).
For small separations x − x′ → 0, in turn, the pair distribution
function for equal spins vanishes quadratically because of
the Pauli principle. Taking into account the possibility of a
nonvanishing spin polarization ζ = (n↑ − n↓)/n, one finds

g(0) = 1
2 (1 − ζ 2) g↑↓(0) (10)

for the total pair distribution function at vanishing separation in
the translationally invariant case. Note that in a situation where
the electronic state is not translation invariant, the local value
g(0) = g(R,0) of the pair distribution function depends also on
the “center-of-mass” coordinate R = (x + x′)/2, a dependence
which is suppressed in the following.

Both the one-particle density matrix and the pair distri-
bution function can be expressed as expectation values of
operators at different points in space. The operator product
expansion, specified here to the relevant case of equal times,
provides an expansion of an operator product Oa Ob at nearby
points in space in terms of local operators:

Oa

(
R − r

2

)
Ob

(
R + r

2

)
=

∑
n

Wn(r)On(R). (11)

It is important to emphasize that Eq. (11) is an operator relation,
i.e., it is valid for expectation values between any state. The
state-independent coefficients Wn(r) are ordinary c numbers
and are called the Wilson coefficients. They depend both on
n and the specific operators Oa and Ob which appear on
the left-hand side of Eq. (11). The scaling dimension n

of a local operator On that contains NO fermion creation
and annihilation operators is defined by the property that the
correlation between On and its Hermitian conjugate at points
separated by a small distance r and time t asymptotically scales
as t−n exp[−iNOmr2/2t]. For example, the operator ψ†

σ has
scaling dimension  = d/2. The values of n determine the
dependence of the Wilson coefficients at small separation r via

Wn(r) = rn−a−b f (r/a0,êr), (12)

where f is a function of the dimensionless ratio r/a0 and the
unit vector êr, which reflects a possible angular dependence.
The operators On with the lowest scaling dimension therefore
govern the behavior of an operator product at small separation.
In particular, Wilson coefficients which are nonanalytic in r

give rise to power-law tails of the associated correlator OaOb

at large momentum.
Regarding the question as to whether the OPE (11) is

a convergent rather than an asymptotic expansion, precise
statements have only been given in the context of relativistic21

and, in particular, conformal field theories. In the latter
case, the OPE can be shown to have infinite radius of
convergence.22,23 For nonrelativistic quantum field theories, as
in our present problem, mathematically precise results on the
convergence of the OPE are unfortunately not available. The
OPE for the specific case of Coulomb systems may, however,
be justified a posteriori by the fact that our main results like the

short-distance behavior of the many-body wave function (20)
and the cusp condition (24) agree with results derived in a
mathematically precise manner via different methods.24

In practice, the Wilson coefficients may be determined by
performing few-particle calculations. Indeed, since they are
state independent, it is sufficient to calculate the matrix element
of Eq. (11) between simple (few-particle) states for which
〈On〉 �= 0. The coefficients Wn(r) then follow by matching
both sides of Eq. (11). As will be shown in the following,
an operator of particular interest in the present context is the
two-particle operator

Oc(R) = ψ
†
↑ψ

†
↓ψ↓ψ↑(R) . (13)

In analogy to the notion used for fermions with short-range
interactions, we shall refer to this as the contact operator. It
has a finite expectation value in the presence of Coulomb inter-
actions and thus the scaling dimension c = 2d of the contact
operator is the one inferred from simple dimensional analysis.
This is quite different from the case where the interactions
have zero range and Oc acquires an anomalous dimension
two.25 The contact is a central quantity which determines the
leading short-distance singularities of Coulomb systems and,
in particular, the magnitude of the high-momentum tails of
both the momentum distribution and the structure factor. In a
translation-invariant situation, the contact is equal to n2 times
the local value of the pair distribution function g(0). Before
proceeding to derive these results from the OPE in explicit
form, we note that our derivation remains unchanged if the
sign of the interaction is reversed. All the results of this paper
can thus be extended to the case of an attractive Coulomb
interaction by simply changing e2 → −e2.

III. OPE FOR THE MANY-BODY WAVE FUNCTION

The crucial physical insight, already implicit in the work
of Kimball,15–17 relies on the intuition that the many-body
wave function factorizes into a two-body contribution and a
remainder whenever two particle coordinates come closer than
the average interparticle distance. In this limit, the two particles
only feel their mutual Coulomb repulsion at short distance,
with negligible corrections from the medium. This type of
argument has in fact been used by various authors26,27 in the
derivation of the Tan relations for Fermi gases with short-range
interactions. In order to prove the validity of this intuitive
picture, we use the operator product expansion for the special
case of the operator

Oa(x)Ob(y) = ψ↑(x)ψ↓(y). (14)

Inserting the general form (11) of the OPE, the N -particle wave
function � corresponding to an arbitrary N -particle state |�N 〉
can be expanded as a formal power series

�

(
− r

2
,↑;

r
2
,↓; r3,σ3; . . .

)

= 1√
N↑!N↓!

〈0|ψ↑

(
− r

2

)
ψ↓

(
r
2

) N∏
l=3

ψσl
(rl)|�N 〉

=
∑

n

Wn(r)
1√

N↑!N↓!
〈0|On(0)

N∏
l=3

ψσl
(rl)|�N 〉, (15)
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+

(a)

+

(b)

FIG. 1. (a) Contribution to the two-particle matrix element of the
operator ψ(− r

2 )ψ( r
2 ), denoted by the white circles. (b) Same for the

operator ψψ(0). The T matrix is denoted by a gray rectangle.

where Wn(r) are the Wilson coefficients in an OPE of the
operator ψ↑(x)ψ↓(y), which can be written as the sum of a
spin-singlet operator

ψ(x)ψ(y) = 1
2 [ψ↑(x)ψ↓(y) − ψ↓(x)ψ↑(y)] (16)

and a triplet operator which is symmetric in the spin indices.
The leading-order term in the OPE is associated with the
operator ψψ(0), whereas a similar contribution of the triplet
operator vanishes since the fermion fields anticommute.
Both singlet and triplet operators contribute in higher orders
involving additional derivatives. The Wilson coefficient of
the leading order can be obtained by taking the expectation
value of Eq. (16) between the vacuum and a two-particle state
with (on-shell) energy p2/m. The corresponding diagrams are
sketched in Fig. 1. [A brief summary of the Feynman rules
in momentum space for the jellium Hamiltonian (6) is given
in Appendix A.] We can express this matrix element as a
one-body scattering wave function

〈0|ψ
(

− r
2

)
ψ

(
r
2

)
|p,↑; −p,↓〉

= 〈r|1 + G0T |p,↑; −p,↓〉 = ψp(r), (17)

using the bare retarded two-particle propagator G0 and the T

matrix T . In the second line, we have used the Lippmann-
Schwinger equation for the scattering wave function ψp(r)
with energy p2/m. Similarly, the matrix element of the opera-
tor ψψ(0) is ψp(0).28 We determine its Wilson coefficient by
matching this matrix element to leading order in the energy
p2/m of the external state. As a result, it turns out that Wψψ (r)
solves the two-particle s-wave Schrödinger equation at zero
energy [

−∇2 + 1

a0r

]
Wψψ (r) = 0 (18)

with boundary condition Wψψ (0) = 1. The solution of Eq. (18)
up to linear order in r is

Wψψ (r) =
{

1 + r
2a0

+ · · · (3D),

1 + r
a0

+ · · · (2D).
(19)

The OPE therefore provides a concise derivation of the
intuitive short-distance factorization

lim
r→0

�

(
− r

2
,↑;

r
2
,↓; . . .

)
= Wψψ (r) �(0,↑; 0,↓; . . .)

(20)

of the many-particle wave function (15) if two particles of
opposite spin are close to each other. This factorization was
previously considered by Lepage for two-particle systems in
the context of effective field theories.31 Recently, this was used
to derive high-momentum tails for the unitary Fermi gas and
the Coulomb gas.32

Focusing on pure states, e.g., the ground state of jellium,
the result (20) together with the fact that the two-particle wave
function Wψψ (r) is nonanalytic at short distances implies
power-law tails in the ground-state momentum distribution
and the static structure factor. Indeed, for a pure state, the
dimensionless and intensive momentum distribution is given
by

n(q) = N

V

∫
ddR

∫
ddr

N∏
l=2

ddrl e
−iq·r

×�∗
(

R − r
2
,r2, . . . ,rN

)
�

(
R + r

2
,r2, . . . ,rN

)
.

(21)

Its asymptotic behavior for large momentum is determined by
the integration regions in which both R + r/2 and R − r/2
approach one of the particle coordinates rl for l = 2, . . . ,N

simultaneously. By substituting the result (20) in Eq. (21), the
resulting high-momentum tail of the momentum distribution
turns out to be given by

n(q) =
⎧⎨
⎩

(
4π
a0

)2 n2g(0)
q8 + · · · (3D),(

2π
a0

)2 n2g(0)
q6 + · · · (2D)

(22)

in accordance with the results in Refs. 15–17 and 32.
The pair distribution function in first-quantized form reads

as (specifying to the translation-invariant case)

n2g(r) = N (N − 1)
∫ N∏

l=3

ddrl|�(0,r,r3, . . . ,rN )|2. (23)

Inserting Eq. (20) in the definition of the pair correlation
function, Eq. (23), we obtain

g(r) =
{(

1 + r
a0

)
g(0) + · · · (3D),(

1 + 2r
a0

)
g(0) + · · · (2D).

(24)

The pair distribution function at short distance therefore
exhibits a dip, rising linearly with slope g(0)/a0. For an
attractive Coulomb force, where a0 → −a0, the dip is replaced
by a cusp. The result (24) agrees with the one obtained
previously by Kimball.15–17 Following Rajagopal et al.,33 we
call this the cusp condition. It is interesting to note that
a result which is completely analogous to that in Eq. (24)
holds for Fermi systems with zero-range interactions in one
dimension, with the 1D scattering length a1 replacing the Bohr
radius.34 Moreover, it is important to mention that various
approximate schemes which have been developed to treat
the jellium problem at least in its Fermi-liquid phase in fact
violate the cusp condition (24). This is true in particular for the
standard random phase approximation (RPA), which is exact in
the long-wavelength limit but violates the cusp condition (see,
e.g., Ref. 39). It is obeyed within extensions of the RPA which
include local field corrections such as the one developed by
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Singwi, Tosi, Land, and Sjölander,40 at the expense, however,
of violating the compressibility sum rule S(q) ∼ q2 at long
wavelengths q → 0.4,41

The short-distance nonanalyticity in the pair distribution
function leads to an asymptotic power law in the static structure
factor

S(q) = 1 + n

∫
ddr e−iq·r (g(r) − 1). (25)

Substituting Eq. (24), the static structure factor behaves like

S(q) − 1 =
{

− 8π
a0

ng(0)
q4 (3D),

− 4π
a0

ng(0)
q3 (2D)

(26)

at large momentum, where we have used that the Fourier
transform of r in three and two dimensions is −8π/q4 and
−2π/q3, respectively, in the sense of distributions. The results
in Eq. (26) are again in accordance with those obtained in
Refs. 15–17 and 32.

The tails (22) and (26) in both the momentum distribution
and the static structure factor are present for any state of the
Coulomb system, a property that will be derived in detail in
the following section. Here, we focus on the particular case of
zero temperature and moderate values of rs , where the jellium
ground state is a uniform Fermi liquid. The characteristic
momentum scale beyond which the asymptotic behavior
applies is then set by the Fermi wave vector kF , which is related
to the average interparticle distance r0 via kF = 1/(αr0),
with α = (4/9π )1/3 � 0.521 in 3D and α = 1/

√
2 � 0.707

in 2D. Introducing a dimensionless strength s of the tail
in the momentum distribution via nσ (q) → s (kF /q)2d+2 one
obtains35

s(rs) =
{

9
2α8 g(0)r2

s (3D),

2α6 g(0)r2
s (2D).

(27)

The dimensionless strength s is a continuous function of
rs , vanishing in both limits rs → 0 and rs → ∞. Indeed,
the power-law tail in the momentum distribution is present
even in the Wigner crystal, as long as the spin polarization
ζ remains less than one [recall Eq. (10)]. The contact in
this limit is expected to vanish in an exponential manner
with rs . In the opposite limit of high density, the fact that
g(0) = 1/2 + O(rs) (Ref. 36) yields s ∼ r2

s . The function
s(rs), therefore, must have a maximum, whose value appears to
be much smaller than one. Indeed, according to recent quantum
Monte Carlo calculations of the momentum distribution in the
Fermi-liquid phase of the jellium model in 2D (Ref. 37) and 3D
(Ref. 38), the resulting dimensionless strengths s(10) � 0.006
(2D) or �0.009 (3D) of the power-law tail are surprisingly
small even at rs = 10. In particular, they are almost two
orders of magnitude smaller than the corresponding value
s(∞) = 32 ln 2/(3π2) � 0.749 of a Fermi gas with infinite
short-range repulsion in 1D.34

In contrast to zero-range interactions, where the value
of the contact determines the complete thermodynamics by
a simple coupling constant integration,12 the ground-state
energy of the jellium model requires knowledge of the pair
distribution function at all distances. Interpolation schemes
for the static structure factor and thus the complete pair
distribution function g(r) which properly account for both the

long- and short-distance behavior of the homogeneous, un-
polarized electron gas have been proposed by Gori-Giorgi,
Sacchetti, and Bachelet42 and may be used to develop
improved versions of the exchange and correlation energy
functionals in density functional theory.43,44

IV. DIRECT OPE OF THE CORRELATORS

In the following, we will show how the OPE can be
used to perform an expansion of the one-particle density
matrix and the pair distribution function (7) and (8) at the
operator level. Apart from providing an alternative derivation
of the high-momentum tails which avoids discussing the
many-particle wave function, this method makes evident a
point stressed already in our introduction: the short-distance
properties derived here are valid completely independent
of the state of the system. In particular, they hold in
arbitrary few- or many-body states or in equilibrium at any
temperature.

We start by considering the static structure factor, which
for q �= 0 is just the Fourier transform

S(q) = 1

N

∫
ddR

∫
ddr e−iq·r

〈
n

(
R − r

2

)
n

(
R + r

2

)〉
(28)

of the density correlator. Equations (8) and (28) imply that its
asymptotic behavior for large momentum q is dominated by
the short-distance behavior of the pair distribution function.
The pair distribution function is connected to the ↑↓ density
correlator ψ

†
↑ψ↑(− r

2 )ψ†
↓ψ↓( r

2 ) via definition (8). As shown in
detail in Appendix B, the short-distance OPE of this correlator
to linear order in r is

ψ
†
↑ψ↑

(
− r

2

)
ψ

†
↓ψ↓

(
r
2

)

=
{(

1 + r
a0

)
ψ

†
↓ψ

†
↑ψ↑ψ↓(0) + · · · (3D),(

1 + 2r
a0

)
ψ

†
↓ψ

†
↑ψ↑ψ↓(0) + · · · (2D),

(29)

where we have omitted the analytic term of order r since
it does not contribute to the high-momentum asymptotics.
At this order, additional four-fermion operators involving
only one-particle species do not contribute because of the
anticommutation relations obeyed by the fermion fields. The
OPE (29), together with the definitions of the pair correlation
function (8) and the static structure factor (28), reproduces the
high-momentum behavior (26). In particular, when taking the
expectation value of (29), the contact operator ψ

†
↓ψ

†
↑ψ↑ψ↓(0)

produces the pair correlation function at zero separation.
The momentum distribution nσ (q) describes the probability

to find a particle of spin σ with momentum q. In second
quantization, it is defined as the Fourier transform of the one-
particle density matrix:

nσ (q) = 1

V

∫
ddx

∫
ddy e−iq·(y−x)

〈
γ (1)

σ (x,y)
〉

= 1

V

∫
ddR

∫
ddr e−iq·r

〈
ψ†

σ

(
R − r

2

)
ψσ

(
R + r

2

)〉
.

(30)
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The nonanalytic Wilson coefficients in a short-distance ex-
pansion of the one-particle density matrix therefore determine
the high-momentum tail of nσ (q). A quite elaborate calcu-

lation, which is discussed in detail in Appendix B, shows
that the OPE of the one-particle density matrix is given
by

ψ†
σ

(
− r

2

)
ψσ

(
r
2

)
=

{[
e− r

2 ·∇ψ†
σ (0)

][
e

r
2 ·∇ψσ (0)

] − r5

2880π

(
4π
a0

)2
ψ

†
↓ψ

†
↑ψ↑ψ↓(0) + · · · (3D),[

e− r
2 ·∇ψ†

σ (0)
][

e
r
2 ·∇ψσ (0)

] − r4 ln r
128π

(
2π
a0

)2
ψ

†
↓ψ

†
↑ψ↑ψ↓(0) + · · · (2D).

(31)

The first Wilson coefficients of the bilinear operators are the
coefficients in a Taylor expansion of the operators on the
left-hand side. The contact operator Oc defined in Eq. (13)
is the leading-order term associated with a nonanalytic Wilson
coefficient of order O(r5) and O(r4 ln r) in 3D and 2D,
respectively. Substituting Eq. (31) in (30), we obtain

nσ (q) =
{(

4π
a0

)2 n↑n↓g↑↓(0)
q8 + · · · (3D),(

2π
a0

)2 n↑n↓g↑↓(0)
q6 + · · · (2D)

(32)

for an arbitrary state with a possible nonvanishing spin polar-
ization ζ . Summing over σ = ↑,↓, we recover the previous
result for the momentum distribution at large momentum in
the spin-balanced Coulomb gas [Eq. (22)]. The fact that the
nonanalytic terms in Eq. (31) appear at the level of operators
shows that the tails in the momentum distribution are also
present in phases where translation invariance is broken, in a
few-body situation, or at arbitrary temperatures. In a Wigner
crystal, for instance, the product n↑n↓g↑↓(0) has to be replaced
by

1

V

∫
ddR 〈ψ†

↓ψ
†
↑ψ↑ψ↓(R)〉 , (33)

which is again an intensive quantity in the thermodynamic limit
N,V → ∞ at fixed average densities n↑,n↓. In a few-body
situation, in turn, these densities vanish but there is still a finite
expectation value of the contact operator. For the hydrogen
atom, for instance, one finds∫

d3R 〈ψ†
↓ψ

†
↑ψ↑ψ↓(R)〉 = |ψn00(0)|2, (34)

in agreement with the result derived in the Introduction.

V. HIGH-TEMPERATURE VERSUS CLASSICAL LIMIT

Beyond the derivation of exact relations which constrain the
short-distance properties of Coulomb systems in quite general
terms and which, as has been shown in the preceding sections,
all involve the contact 〈Oc(R)〉, quantitative results for specific
phases of jellium or nontrivial few-body Coulomb systems
require us to calculate the value of the contact as a function
of both the interaction strength rs and temperature T . Since
relevant values of rs are beyond the regime where perturbation
theory can be applied, this can only be achieved numerically,
for instance, via quantum Monte Carlo calculations (see, e.g.,
Refs. 37 and 38 for some recent results). In the following, we
calculate the value of the contact in the classical and the high-
temperature limits. Surprisingly, it turns out that for Coulomb

interactions these two limits are not equivalent. In fact, they
turn out to be completely opposite.

Consider the Coulomb gas in the regime

kBT � h̄2n2/d

m
, (35)

where the thermal energy is much larger than the degeneracy
energy. This is the standard limit of a nondegenerate gas, in
which the average interparticle spacing n−1/d is much larger
than the thermal wavelength λT = h̄(2π/mkBT )1/2:

n1/dλT � 1. (36)

In this limit, thermodynamic properties can be calculated
by expanding in powers of the fugacity z = exp (βμ) =
nλd

T /2 � 1.45 The nondegeneracy condition (36) does not
involve the strength e2 of the interaction and is satisfied both
in the infinite temperature and in the classical limit. Now,
for systems with Coulomb interactions, there is a second
and purely classical, so-called Bjerrum length �B = e2/(kBT ),
which, keeping h̄ finite, eventually becomes shorter than the
thermal length at sufficiently high temperatures. As a result
(already noted in Ref. 46), the order in which the limits
T → ∞ or h̄ → 0 is taken matters. Taking T → ∞ before
h̄ → 0 results in the following hierarchy of length scales:

n−1/d � a0 � λT � �B. (37)

In turn, taking the classical limit h̄ → 0 before T → ∞, we
find

n−1/d � �B � λT � a0. (38)

As will be shown below, these two limits give quite different re-
sults for the value of the contact. Since the gas is nondegenerate
in both cases, the contact value of the pair distribution function
can be calculated to leading order in the virial expansion, which
just involves an integration

n2g(0) = z2 2d/2

λd
T

∫
ddp

(2πh̄)d
e−βp2/m|ψp(0)|2 (39)

of the square of the relative Coulomb wave function |ψp(0)|2
at the origin with the classical Boltzmann distribution for the
relative momentum p. Here, z = eβμ is the fugacity, while
|ψp(0)|2 is given by19

|ψp(0)|2 =
{

2πξ

e2πξ −1 (3D),
2

e2πξ +1 (2D)
(40)
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with ξ = me2/2h̄p. In the infinite-temperature limit, the
integration gives

g(0) =
{

1
2

(
1 − √

2π �B

λT
+ · · · ) (3D),

1
2

(
1 − π2√

2
�B

λT
+ · · · ) (2D).

(41)

The leading-order term is the expected result for a classical
ideal gas. The corrections involve the ratio �B/λT and thus
vanish for large temperatures as ∼1/

√
T . Note that, although

g(0) is of order one in this limit, the high-momentum tails are
present only for very large q � λ−1

T .
More relevant for low-temperature, nondegenerate plasmas

is the classical limit h̄ → 0 for which Ry � kBT . This
limit is reached, for example, for Coulomb gases of charged
dust particles in astrophysics.47 In this limit, the integration
in (39) gives rise to a contact which vanishes exponentially
like

g(0) =

⎧⎪⎨
⎪⎩

4π221/3

31/2

(
�B

λT

)4/3
e
− 3π

21/3

(
�B
λT

)2/3

+ · · · (3D),

2π21/3

31/2

(
�B

λT

)1/3
e
− 3π

21/3

(
�B
λT

)2/3

+ · · · (2D).
(42)

Equations (41) and (42) are the main results of this section.
The Wilson coefficients of the momentum distribution and the
static structure factor diverge as 1/a2

0 ∼ 1/h̄4 and 1/a0 ∼ 1/h̄2

as h̄ → 0. The high-momentum tails are expected to occur for
q � λ−1

T . Thus, their characteristic momentum scale is pushed
to infinity as h̄ → 0. The total weight of the tails, containing
both the Wilson coefficients and g(0), is exponentially sup-
pressed and guarantees a well-defined kinetic energy in this
limit. We point out that different high-momentum tails are
present in the classical system. Indeed, the structure factor of
the classical electron gas decreases as 1/q2 at intermediate
momentum κ < q < 1/lB , where κ = √

nlB is the inverse
Debye-Hückel length.48

A. Diagrammatic derivation

In the infinite-temperature limit, the virial expansion of the
contact g(0) in Eq. (41) can also be obtained using a dia-
grammatic formalism. This method was originally introduced
by Vedenov and Larkin to derive the equation of state of an
electron gas,49 and was recently used by various groups to
determine the virial expansion of a Fermi gas with short-range
interactions.50–53

The perturbation series of an arbitrary correlator involves
all Feynman diagrams that connect to the operator insertions.
In the absence of a small parameter, this gives rise to a very
large number of diagrams. The key point of the method is
that in the infinite-temperature limit, this number is drastically
reduced by exploiting the causal structure of the propagators,
which are defined as

G(τ,k) =
{−(1 − nk)e−(εk−μ)τ , τ > 0
nke

−(εk−μ)τ , τ < 0
(43)

where nk = 1/(eβ(εk−μ) + 1) is the Fermi-Dirac distribution.
In imaginary time, they carry the whole dependence on the
fugacity and, thus, an expansion of a diagram in the fugacity
corresponds to an expansion of the propagators:

G(τ,k) = G(0)(τ,k) + G(1)(τ,k) + O(z2), (44)

0 β

(a)

0 βt

(b)

FIG. 2. (a) O(e0) and (b) O(e2) contribution to g(0). Imaginary
time runs from the left to the right. Black dots denote the density
operator, the wavy line the instantaneous Coulomb interaction, and
(slashed) lines the particle propagator as explained in the text.

with

G(0)(τ,k) = −�(τ ) eμτ e−εkτ and (45)

G(1)(τ,k) = z eμτ e−εk(β+τ ). (46)

� is the Heaviside step function. The coefficients G(i) with
i = 1,2, . . . can be treated as separate diagrammatic elements,
e.g., by denoting them by a line that is slashed i times. The
order of a diagram in z is then set by the sum

∑
i iNi , where Ni

is the number of propagators of type i. It is important to note
that the leading-order term (45) is purely retarded, and while
the calculation of a general order may be unwieldy, only a very
limited number of diagrams contribute to the virial expansion
of a correlator to leading order in z.

Figure 2 shows the two leading-order contributions in e2 to
the pair correlation function

g↑↓(0) = 1

n↑n↓
〈Tτn↑(β)n↓(0)〉, (47)

where we define the density operator in the usual sense nσ =
− limτ→0− Tτψσ (τ )ψ†

σ (0) to avoid an ordering ambiguity.3

Figure 2(a) corresponds to the noninteracting result

ga
↑↓(0) = 1, (48)

where we use the relation nσ = zσλ−d
T . TheO(e2) contribution

in Fig. 2(b) reads as

gb
↑↓(0) =

{
−√

2π �B

λT
(3D),

− π2√
2

�B

λT
(2D),

(49)

which coincides with our previous result (41). Note that higher-
order contributions to g(0) contain infrared divergences. They
can be removed by summing the divergent parts of an infinite
number of ring diagrams49 which gives rise to Debye-Hückel
corrections that are of higher order in the density.

VI. SUMMARY AND CONCLUSIONS

In summary, we used a short-distance operator product
expansion to derive the high-momentum tail of the structure
factor and the momentum distribution of the Coulomb gas.
Since these results are based on operator identities, they hold
for pure states as well as for mixtures, and, in particular,
for different phases, such as a Fermi liquid or a Wigner
crystal. The key idea behind the derivation of our exact
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results is the separation of short- and long-distance scales. The
functional dependence on the high-energy scales can be cal-
culated exactly while the low-energy contribution factorizes.
This multiplicative constant is the contact value of the pair
distribution function, consistent with the intuitive expectation
that the short-distance physics is determined by the probability
to find two particles at the same point. These results are in
close analogy to the Tan relations for zero-range interactions12

in which an analogous contact enters the coefficients of the
high-momentum tails.

Furthermore, we calculated the contact in explicit form for
nondegenerate Coulomb gases using a virial expansion. It turns
out that there are two possible limits which yield quite different
results: In the high-temperature limit, the contact approaches
the ideal Fermi gas value with power-law corrections in the
temperature. By contrast, in the classical limit, the contact
vanishes exponentially as h̄ → 0, a behavior which is crucial
to ensure a well-defined transition to the classical regime in
which the Coulomb repulsion between the particles prevents
them from being at coincident points.

The universal relations obtained in this paper are by
far not exhaustive. Indeed, many more relations could be
derived within the framework introduced here. A short-
time OPE analogous to Refs. 54–56 would give results
for dynamical correlators, such as, for example, the current
response function or the dynamic structure factor, which
display short-range correlations that are not captured in a
random phase approximation.57 A similar analysis can be
carried out for the spectral function, which possesses a
high-frequency tail as derived in Refs. 58 and 59. Beyond
applying the OPE to the Coulomb gas, it should be straight-
forward to generalize the results in this paper to other many-
fermion systems with long-range interactions, such as quantum
gases of dipolar particles, which have recently been studied
experimentally.60–62
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R. Schmidt, and M. Wingate for discussions. J.H. is supported
by CHESS, STFC, St. John’s College, Cambridge, and by
the Studienstiftung des deutschen Volkes. M.B. is supported
by the DFG research unit “Strong Correlations in Multiflavor
Ultracold Quantum Gases.”

APPENDIX A: FEYNMAN RULES

This appendix summarizes the Feynman rules of the
Hamiltonian (6) in momentum space. An energy ω and a
momentum q are assigned to each internal and external

line. The bare propagator is denoted by a continuous line
and contributes a factor G0(ω,q) = i/(ω − q2/2m + i0). We
represent the interaction between two fermions by a wavy
line. It contributes a factor 4πie2/q2 in 3D and 2πie2/q in
2D, where q is the difference between the center-of-mass
momenta of the ingoing and outgoing fermions. Finally,
each undetermined momentum and energy is integrated with
measure

∫
ddq/(2π )d

∫
dω/2π .

The T -matrix insertion iT (p,p′,k) is denoted by a gray
rectangle, where p and p′ are the center-of-mass momentum
of the ingoing and outgoing atoms, respectively. We denote
the center-of-mass energy of the ingoing atoms by E = k2/m.
Note that this energy is not necessarily on shell, i.e., we
do not impose the condition k2 = p2 = p′2. The T matrix
solves the Bethe-Salpeter equation, depicted diagrammatically
in Fig. 3(a), and reads as29,30,63,64

iT (p,p′,k) =
{

−16iπe2k2
∫ 1

0 dx xiξ d
dx

x
H (p,p′,k) (3D),

−4iπe2k
∫ 1

0 dx xiξ d
dx

x1/2

H 1/2(p,p′,k) (2D),

(A1)

where H (p,p′,k) = 4k2(p − p′)2x − (k2 − p2)(k2 − p′2)(1 −
x)2 and ξ = me2/2k is called the Sommerfeld parameter.

APPENDIX B: OPERATOR PRODUCT EXPANSION

In this appendix, we collect the matrix elements and
momentum integrals needed to perform the OPE for the
Coulomb gas. For simplicity, we set h̄ = 1 in the following.
Since the operator product expansion is state independent, it
is sufficient to evaluate the matrix elements of the operator
products (7) and (8) and the local operators between selected
few-particle states. The Wilson coefficients are determined by
matching the terms in an expansion of these expectation values
in the external parameters of the state. The Wilson coefficients
of the bilinear operators, i.e., operators that contain one field
operator and its Hermitian conjugate, are the coefficients
in a Taylor expansion of the operator product, which can
be obtained by matching the matrix elements between a
one-particle state. To compute the contact’s Wilson coefficient,
we choose a two-particle state with zero relative momentum
and (off-shell) energy k2/m, which we denote by 〈k|O|k〉.
These matrix elements are the sum of four diagrams with
either scattering or no scattering in the initial and final states.
Some of them are depicted in Fig. 3.

1. Structure factor

As explained in Sec. IV, the short-distance behavior of
the pair correlation function is inferred from an OPE of the
↑↓ density correlator n↑(− r

2 )n↓( r
2 ). The matrix element of

= +

(a) (b) (c) (d) (e)

FIG. 3. (a) Bethe-Salpeter equation for the T matrix, which is indicated by a gray rectangle. (b)–(e) Contribution to the two-particle matrix
elements of (b) the density-density correlator n↑(− r

2 )n↓( r
2 ), (c) the contact of the pair distribution function g(0), (d) the one-particle density

matrix ψ †
σ (− r

2 )ψσ ( r
2 ), and (e) bilinear operators, respectively.
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this operator between a two-particle state can be expressed
diagrammatically in terms of Fig. 3(b). The complete matrix

element is the sum of four diagrams with either scattering or
no scattering in the initial and final states:

〈k|n↑

(
− r

2

)
n↓

(
r
2

)
|k〉 =

[
1 +

∫
dω

2π

∫
ddq

(2π )d
eiq·riT (0,q,k)G0(ω,q)G0(E − ω, − q)

]2

=
{(

1 + r
a0

)[
4
∫ 1

0 dx xiξ d
dx

x
(1+x)2

]2 + O(r2) (3D),(
1 + 2r

a0

)[
2
∫ 1

0 dx xiξ d
dx

x1/2

1+x

]2 + O(r2) (2D),
(B1)

where we used the integrals ∫
d3q

(2π )3

eiq·r

(q2 − a2)(q2 − b2)
= i

4π

1

a + b
− r

8π
+ O(r2) (B2)

and ∫
d2q

(2π )2

eiq·r

(q2 − a2)1/2(q2 − b2)
= i

2π

arccos a
b√

b2 − a2
− r

2π
+ O(r2). (B3)

The factor in square brackets in Eq. (B1) depends on the details of the states and must not contribute to the Wilson coefficients.
It is matched by the expectation value of the contact ψ

†
↓ψ

†
↑ψ↑ψ↓(0). Consider the diagram in Fig. 3(c):

∫
ddq

(2π )d

∫
dω

2π
[iT (0,q,k)]G0(ω,q)G0(E − ω, − q) =

{−4iξ
∫ 1

0 dx xiξ

(1+x)2 (3D),

−2iξ
∫ 1

0 dx xiξ−1/2

1+x
(2D).

(B4)

The full matrix element of ψ
†
↓ψ

†
↑ψ↑ψ↓(0) contains three additional diagrams:

〈k|ψ†
↓ψ

†
↑ψ↑ψ↓(0)|k〉 =

⎧⎨
⎩

[
4
∫ 1

0 dx xiξ d
dx

x
(1+x)2

]2 ≈ 1
4ξ 4 (3D),[

2
∫ 1

0 dx xiξ d
dx

x1/2

1+x

]2 ≈ 1
16ξ 4 (2D),

(B5)

where we have expanded the result to leading order in k.

2. Momentum distribution

To obtain the asymptotic form of the momentum distribution (30), one performs an OPE of the nonlocal operator
ψ†

σ (− r
2 )ψσ ( r

2 ), whose expectation value gives the one-particle density matrix γ ( r
2 , − r

2 ) [cf. Eq. (7)]. Since insertions
of this operator on external legs are matched by bilinear operators, the only relevant diagram that contributes to the
Wilson coefficient of the contact operator involves scattering in both initial and final states as shown in Fig. 3(d). As we
are only interested in the leading-order nonanalyticity of the Wilson coefficient of the zero-distance pair correlator, we
expand the T matrix, as well as our diagram, as a power series in k around k = 0. This procedure introduces infrared
divergences, which we regulate by introducing an infrared cutoff μ. The expansion of the T matrix with respect to k ∼ 1/ξ is
given by

iT (0,q,k) =
⎧⎨
⎩

i 2πe2

ξ 2q2 = limμ→0 i 2πe2

ξ 2(q2+μ2) (3D),

i πe2

2ξ 2q
= limμ→0 i πe2

ξ 2
√

q2+μ2
(2D).

(B6)

In addition, we expand our propagators as 1/(q2 − k2) = 1/(q2 + μ2) + O(k2). In the limit k → 0, Fig. 3(d) is given by∫
ddq

(2π )d

∫
dω

2π
eiq·r[iT (0,q,k → 0)]2G0(ω,q)2G0(E − ω, − q) =

{
π

48a2
0ξ 4

[
3
μ5 − r2

2μ3 + r4

8μ
− r5

15

] + O(r6) (3D),
π

16a2
0ξ 4

[
1

2μ4 − r2

8μ2 + r4

32

(
3
4 − ln eγE μr

2

)] + O(r5) (2D).

(B7)

The matrix elements of the one-particle operators [Fig. 3(e)] match the analytic terms in this expansion. The remainder is of
order O(r5) and O(r4 ln r) and is matched by the contact operator:

WOc
(r) =

{
−(

4π
a0

)2 r5

2880π
+ O(r6) (3D),

−(
2π
a0

)2 r4

128π

( − 3
2 + ln eγE r

2

) + O(r5) (2D).
(B8)
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(a) (b) (c)

FIG. 4. Leading-order contributions to the structure factor (a), (b)
and momentum distribution (c).

3. Green’s function OPE

In addition to the derivation outlined in the previous section,
the high-momentum tail of the structure factor can also be
obtained from a short-time and -distance OPE of the time-
ordered density Green’s function

iGn(ω,q) =
∫

dt

∫
ddx eiωt−iq·x 〈T n(t,x)n(0,0)〉. (B9)

For q �= 0, it is related to the structure factor by

S(q) − 1 = 1

n
lim

t→0−

∫
dω

2π
e−iωt iGn(ω,q). (B10)

The integral is evaluated by closing the contour in a large
semicircle in the lower half of the complex ω plane. Only
Wilson coefficients with poles in both half-planes contribute
to the high-momentum tail. In the limit of negligible external
scales, diagrams have vanishing residue if they can be traversed

from one operator insertion to the other by following the
fermion lines. The Wilson coefficient of the operator Oc are
read off directly from the diagrams in Figs. 4(a) and 4(b):

WOc
(ω,q) =

{ 8πe2

q2
1

(ω−εq+i0)(−ω−εq+i0) (3D),
4πe2

q2
1

(ω−εq+i0)(−ω−εq+i0) (2D),
(B11)

where εq = q2/2m, and the external lines couple to the contact
g↑↓(0). Performing the contour integration reproduces the
result (26).

We can apply a similar argument to determine the high-
momentum tail of the momentum distribution, which is
related to the single-particle Green’s function iGσ (t,x) =
〈T ψσ (t,x)ψ†

σ (0,0)〉 by3

nσ (q) = − lim
t→0−

∫
dω

2π
e−iωt iGσ (q,ω). (B12)

This relation was used to derive the momentum distribution of
a Fermi gas with short-range interactions.54 The first nonzero
contribution is given by the contact operator, which has the
Wilson coefficient [cf. Fig. 4(c)]

WOc
(ω,q) =

{(
4πe2

q2

)2 −1
(ω−εq+i0)2(−ω−εq+i0) (3D),(

2πe2

q

)2 −1
(ω−εq+i0)2(−ω−εq+i0) (2D).

(B13)

Calculating the residue in Eq. (B12) yields the previous
result (32).
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47A. V. Ivlev, H. Löwen, G. E. Morfill, and C. P. Royall, Complex
Plasmas and Colloidal Dispersions: Particle-Resolved Studies
of Classical Liquids and Solids (World Scientific, Singapore,
2012).

48K.-F. Berggren, Phys. Rev. A 1, 1783 (1969).
49A. A. Vedenov and A. I. Larkin, Zh. Eksp. Teor. Fiz. 36, 1133

(1959) [Sov. Phys.–JETP 36, 806 (1959)].
50P. F. Bedaque and G. Rupak, Phys. Rev. B 67, 174513 (2003).
51G. Rupak, Phys. Rev. Lett. 98, 090403 (2007).
52D. B. Kaplan and S. Sun, Phys. Rev. Lett. 107, 030601 (2011).
53X. Leyronas, Phys. Rev. A 84, 053633 (2011).
54D. T. Son and E. G. Thompson, Phys. Rev. A 81, 063634 (2010).
55J. Hofmann, Phys. Rev. A 84, 043603 (2011).
56Y. Nishida, Phys Rev. A 85, 053643 (2012).
57C. Sternemann, S. Huotari, G. Vanko, M. Volmer, G. Monaco,

A. Gusarov, H. Lustfeld, K. Sturm, and W. Schulke, Phys. Rev.
Lett. 95, 157401 (2005).

58A. J. Glick and W. F. Long, Phys. Rev. B 4, 3455 (1971).
59Y. Pavlyukh, A. Rubio, and J. Berakdar, arXiv:1212.3486.
60A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys.

Rev. Lett. 94, 160401 (2005).
61K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm,

and F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012).
62M. Lu, N. Q. Burdick, and B. L. Lev, Phys. Rev. Lett. 108, 215301

(2012).
63W. Dittrich, Am. J. Phys. 67, 768 (1999).
64J. C. Y. Chen and A. C. Chen, Adv. At. Mol. Phys. 8, 71 (1972).

235125-11

http://dx.doi.org/10.1103/PhysRevC.86.064304
http://dx.doi.org/10.1103/PhysRevB.18.2339
http://dx.doi.org/10.1103/PhysRevB.18.2339
http://dx.doi.org/10.1016/j.aop.2011.05.010
http://dx.doi.org/10.1016/j.aop.2011.05.010
http://dx.doi.org/10.1103/PhysRevB.66.235116
http://dx.doi.org/10.1103/PhysRevB.66.235116
http://dx.doi.org/10.1103/PhysRevB.14.2371
http://dx.doi.org/10.1103/PhysRevB.79.085414
http://dx.doi.org/10.1103/PhysRevB.79.085414
http://dx.doi.org/10.1103/PhysRevLett.107.110402
http://dx.doi.org/10.1103/PhysRevB.10.3052
http://dx.doi.org/10.1103/PhysRev.176.589
http://dx.doi.org/10.1103/PhysRev.176.589
http://dx.doi.org/10.1016/S0081-1947(08)60116-2
http://dx.doi.org/10.1103/PhysRevB.61.7353
http://dx.doi.org/10.1103/PhysRevB.61.7353
http://dx.doi.org/10.1103/PhysRevLett.88.256601
http://dx.doi.org/10.1103/PhysRevLett.88.256601
http://dx.doi.org/10.1103/PhysRevA.73.032506
http://dx.doi.org/10.1103/PhysRevB.44.13291
http://dx.doi.org/10.1103/PhysRevB.44.13291
http://dx.doi.org/10.1103/PhysRevA.1.1783
http://dx.doi.org/10.1103/PhysRevB.67.174513
http://dx.doi.org/10.1103/PhysRevLett.98.090403
http://dx.doi.org/10.1103/PhysRevLett.107.030601
http://dx.doi.org/10.1103/PhysRevA.84.053633
http://dx.doi.org/10.1103/PhysRevA.81.063634
http://dx.doi.org/10.1103/PhysRevA.84.043603
http://dx.doi.org/10.1103/PhysRevA.85.053643
http://dx.doi.org/10.1103/PhysRevLett.95.157401
http://dx.doi.org/10.1103/PhysRevLett.95.157401
http://dx.doi.org/10.1103/PhysRevB.4.3455
http://arXiv.org/abs/1212.3486
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1103/PhysRevLett.108.215301
http://dx.doi.org/10.1103/PhysRevLett.108.215301
http://dx.doi.org/10.1119/1.19123
http://dx.doi.org/10.1016/S0065-2199(08)60019-6



