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dc conductivity as a geometric phase
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The zero-frequency conductivity (Dc), the criterion to distinguish between conductors and insulators, is
expressed in terms of a geometric phase. Dc is also expressed using the formalism of the modern theory of
polarization. The tenet of Kohn [Phys. Rev. 133, A171 (1964)], namely that insulation is due to localization
in the many-body space, is refined as follows. Wave functions, which are eigenfunctions of the total current
operator, give rise to a finite Dc and are therefore metallic. They are also delocalized. Based on the value of Dc

it is also possible to distinguish purely metallic states from states in which the metallic and insulating phases
coexist. Several examples which corroborate the results are presented, as well as a numerical implementation.
The formalism is also applied to the Hall conductance, and the quantization condition for zero Hall conductance
is derived to be e�B

Nhc
= Q

M
, with Q and M as integers.
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I. INTRODUCTION

What makes conductors conducting and insulators insulat-
ing? In classical physics this question is answered by consid-
ering the localization of individual charge carriers. Localized,
bound charges do not contribute to conduction. Quantum
mechanics has rendered the answering of this question more
difficult. In band theory, conduction can be attributed to the
density of electron states at the Fermi level: if ρ(εF ) �= 0, the
system is conducting; if ρ(εF ) = 0, it is insulating. However,
simple band theory is not able to explain insulation of
strongly correlated systems. In 1964 Kohn suggested1 that
the criterion that distinguishes metals from insulators is local-
ization of the total position of all charge carriers. Kohn also
derived1 the quantum criterion of dc conductivity, the Drude
weight (Dc).

For several decades, testing Kohn’s hypothesis was difficult,
due to the fact that in crystalline systems (systems with
periodic boundary conditions) the total position operator is ill
defined. This limitation was overcome by the modern theory
of polarization,2–5 in which the expectation value of the total
position is expressed in terms of a geometric phase.6–8 The
geometric phase arises upon varying the crystal momentum
across the Brillouin zone. In numerical applications the
polarization is easiest to calculate in terms of the ground state
expectation value of the total momentum shift operator.9,10

These developments have simplified the calculation of the
polarization considerably, and are now in widespread use in
electronic structure calculations.

Moulopoulos and Ashcroft11 have also suggested a con-
nection between conduction and a Berry phase related to the
center of mass. Recently, the author has shown12 that the total
current can be expressed as a phase associated with moving
the total position across the periodic cell, and that it can be
written as a ground state expectation value of the total position
shift operator. We note that topological invariants can also
characterize metals13 as well as insulators.

II. PURPOSE

We demonstrate that Dc can also be expressed in terms
of a geometric phase. The formal expression for Dc derived
here consists of an expectation value of single-body operators

and a geometric phase arising from the variation of the total
momentum and the total position. Its form is similar to that of
the Hall conductance.14 The second term is also expressed in
terms of the total momentum and total position shift operators,
in other words, based on a formalism similar to that of the mod-
ern theory of polarization. The resulting formula establishes
the precise connection between localization and conductivity
as suggested by Kohn.1 If the ground state wave function of
a system is an eigenstate of the total current operator, Dc is
finite. Such wave functions are also delocalized according to
the criterion defined by Resta.9,10 The calculation of the Drude
weight is also straightforward: for metals, the Dc = πα

L
[Eq.

(6), where L denotes the size of the system); for insulators, it is
zero. For wavefunctions corresponding to coexistence between
metallic and insulating phases it holds that 0 < Dc < πα

L
.

One calculates the spread in total current, and if this spread
is zero, then Dc = πα

L
. These results are independent of

dimensionality. The formalism is also used to derive the Hall
conductance,14 and a quantization condition for that quantity
being zero is derived. The condition coincides with the well-
known experimental results for the fractional quantum Hall
effect.15

III. DEFINITIONS

Let |�〉 denote the ground state wave function of an N

particle system. In coordinate space one can write �(x1 +
X, . . . ,xN + X), where X denotes a shift of all coordinates,
or equivalently one can write in momentum space �(k1 +
K, . . . ,kN + K). A wave function can be labeled by X or
K [|�(X)〉, |�(K)〉]. One can define the shift operators in
position or momentum space as

e−i�KX̂|�(K)〉 = |�(K + �K)〉,
(1)

e−i�XK̂ |�(X)〉 = |�(X + �X)〉,

where X̂ = ∑N
i=1 x̂i and K̂ = ∑N

i=1 k̂i . In lattice models the
current operator in momentum space takes the form K̂ =∑N

i=1 sin(k̂i). The explicit construction of the shift operators
is given in Refs. 12 and 16.
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IV. MAIN RESULTS

A. Conductivity as a geometric phase

The Drude weight1 is defined as

Dc = π

L

∂2E(0)

∂�2
, (2)

where � denotes a perturbing field, and the derivative is the
adiabatic derivative. The second derivative with respect to �

can be expressed as

∂2E(0)

∂�2
= α + γ, (3)

where

α = i

N∑
j

〈�|[∂̂kj
,∂̂xj

]|�〉, (4)

and where

γ = − i

2π

∫ π/L

−π/L

∫ L

0
dK dX[〈∂K�|∂X�〉 − 〈∂X�|∂K�〉].

(5)

This expression is derived in Appendix B. γ has the form
of an integrated Berry curvature over a surface in the two-
dimensional space K-X, and can be converted into a geometric
phase by application of the Stokes theorem. Note that the
Drude weight is the sum of two terms, one proportional to the
sum of the commutators of each momentum and position, and
a “commutator” of the variables related to the total position
and total momentum of the system.

B. Analog of Dc based on the modern theory of polarization

Dc, in particular the term γ , can also be expressed using
total momentum and total position shift operators. For charge
carriers with mass one, the one-body term is

α =
{

N for continuous models,

−〈�|T̂ (0)|�〉
2 for lattice systems.

(6)

The geometric phase term can be written as

γ = − lim
�X,�K→0

1

�X�K

[
Im ln

〈�|ei�KX̂ei�XK̂ |�〉
〈�|ei�XK̂ |�〉

+ Im ln
〈�|ei�XK̂e−i�KX̂|�〉

〈�|ei�XK̂ |�〉

]
. (7)

This expression is derived in Appendix C.

V. INTERPRETATION

The first term of Dc, proportional to α, is an extensive
quantity, a sum over single-body operators. For any nontrivial
system it is expected to be finite. For an insulator, the many-
body term (proportional to γ ) must cancel the single-body
term.

We consider a general wave function of the form
�(x1, . . . ,xN ) corresponding to an unperturbed ground state.
Acting on this function with the shift operators according to

the first and second terms of γ [Eq. (7)], respectively, results in

ei�KX̂ei�XK̂�(x1, . . . ,xN )

= eiN�K�Xei�K
∑N

i=1 xi �(x1 + �X, . . . ,xN + �X),

ei�XK̂e−i�KX̂�(x1, . . . ,xN )

= e−i�K
∑N

i=1 xi �(x1 + �X, . . . ,xN + �X). (8)

Evaluating the scalar products, one can then show that apart
from the term eiN�K�X in Eq. (8) the two terms in Eq. (7)
are complex conjugates of each other. The term eiN�K�X

gives a contribution of −N to the conductivity cancelling the
single-body term. When this derivation is valid the system is
insulating. This derivation, of course, has limits of validity,
for example, if discontinuities are present in the momentum
distribution.17

If the function |�〉 is an eigenfunction of the current
operator, then γ is zero; hence the system is metallic. To show
this, one considers that the eigenvalue of the current operator
for an unperturbed ground state is zero, which means that the
total position shift operator will have no effect at all. In this
case the two terms of γ are complex conjugates of each other,
and their sum will have no imaginary part.

If a wave function is an eigenstate of the total current
operator, it also follows that the system is delocalized. Indeed
the localization criterion defined by Resta9,10 is

σ 2
X = − 2

�K2
Re ln〈�|e−i�KX̂|�〉. (9)

The function resulting from the total momentum shift operator
acting on an eigenfunction of the total current will be
orthogonal to the original function, resulting in a divergent σ 2

X.
To decide whether a particular ground state eigenfunction

is an eigenfunction of the current one can calculate the spread
in current,12 defined as

σ 2
K = − 2

�X2
Re ln〈�|e−i�XK̂ |�〉. (10)

If σK is zero, then the wave function is indeed a current
eigenstate and the system is metallic; moreover, γ = 0 and
the Dc = πα

L
. Otherwise, the wave function corresponds to

an insulating state. To show this one can use the fact that
for an eigenfunction of the current with eigenvalue zero the
expectation value 〈�|e−i�XK̂ |�〉 = 1 must give one, but for
any other case 〈�|e−i�XK̂ |�〉 < 1. In calculating conductivity,
one can also use Eq. (9), but this quantity is expected to diverge
when the system becomes metallic; hence calculations based
on σK can be expected to be more stable.

We remark that a wave function could be a linear combi-
nation of an eigenstate of the current operator and a localized
state corresponding to the coexistence of the insulating and
metallic states. In this case, the single-body term will be
partially canceled by the many-body term and a finite Drude
weight will result.

VI. EXAMPLES

A. Fermi sea, BCS

For both the Fermi sea and BCS wave functions Dc = πα
L

.
The Fermi sea is diagonal in the momentum representation and
corresponds to an eigenstate of K̂ with eigenvalue zero. A BCS
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wave function consists of a linear combination of wave func-
tions with different number of particles, but all have eigenvalue
of K̂ = 0, and the argument for the Fermi sea extends.

B. Gutzwiller metal

The Gutzwiller variational wave function was proposed to
understand the Hubbard model,18–20 and is of the form

|�G(γ̃ )〉 = e−γ̃
∑

i n̂i↑n̂i↓ |FS〉. (11)

The state |FS〉 denotes the Fermi sea, out of which doubly
occupied sites are projected out via the projector e−γ̃

∑
i n̂i↑n̂i↓ .

This wave function has been shown21,22 to be metallic for finite
values of the variational parameter γ̃ (Dc = απ

L
).

Indeed, the geometric phase term γ vanishes. To see this,
consider that the shift operator ei�XK̂ commutes with the
projector e−γ̃

∑
i n̂i↑n̂i↓ , since shifting the position of every

particle will not affect the number of doubly occupied
sites.12 Thus ei�XK̂ will operate on the Fermi sea, which has
eigenvalue K̂|FS〉 = 0, and then the same reasoning applies
as in the case of the Fermi sea.

C. Baeriswyl insulating wave function for a spinless system

An insulating variational solution for spinless fermions on
a lattice with nearest neighbor interaction (t-V model) in one
dimension is the Baeriswyl wave function,23 which in this case
has the form

|�B(α̃)〉 =
∏
RBZ

[e−α̃εk c
†
k + eα̃εk c

†
k+π ]|0〉, (12)

where the product is over the reduced Brillouin zone. This
wave function is easily shown to be insulating;23 hence we
expect that it gives Dc = 0.

This can be shown readily by considering again the action
of the shift operators on |�B(α̃)〉. The scalar products in γ

evaluate to

〈�B(α̃)|ei�KX̂ei�XK̂ |�B(α̃)〉
=

∏
RBZ

[ei�X sin(k+�K)e−α̃(εk+εk+�K )

+ e−i�X sin(k+�K)eα̃(εk+εk+�K )],

〈�B(α̃)|ei�XK̂e−i�KX̂|�B(α̃)〉
=

∏
RBZ

[ei�X sin(k)e−α̃(εk+εk−�K ) + e−i�X sin(k)eα̃(εk+εk−�K )].

(13)

Substituting into the definition of γ and taking the limits
�K,�X → 0 lead to Dc = 0 as expected for an insulating
state. The above derivation is also valid for the mean-field
spin or charge-density wave solutions of strongly correlated
lattice models.

TABLE I. Results from diagonalization of Anderson localization
model for a system with 1024 lattice sites and 512 particles. �K =
�X = 0.001.

U σK Dc × L/π −〈T 〉
2 σX

0 0 327.95 327.95
1 5.8(2) 0.01154(4) 297(7) 38(4)
2 9.8(2) 0.0087(1) 233(3) 17.8(9)
3 12.8(2) 0.0066(2) 175(5) 11.7(5)
4 15.1(2) 0.0051(2) 136(5) 8.4(4)
5 16.7(3) 0.0041(2) 110(5) 6.5(3)

D. Anderson localized system

We have evaluated the above formula for a model which
exhibits Anderson localization,24 with Hamiltonian of the form

H = −t
∑

i

c
†
i ci+1 + H.c. + U

∑
i

ξini, (14)

where ξi is a number drawn from a uniform Gaussian distribu-
tion. By diagonalizing the Hamiltonian we have calculated the
localization parameter9,10 for different system sizes, and have
found that the larger system sizes are always more localized
for finite U (results not shown). We have also calculated the
Drude weight and the quantity σK . The results are shown in
Table I.

For the metallic state σK gives zero as expected, and the
Drude weight is equal to minus one-half the kinetic energy.
For all insulating cases the Drude weight is very near zero, in
particular if one compares its magnitude to that of the kinetic
energy. While one can calculate the Drude weight directly,
this may be difficult in some applications, since phases have to
be evaluated. However, evaluating the kinetic energy and the
spread in current allows the determination of the Drude weight
unambiguously.

VII. HALL CONDUCTANCE

The Hall conductance can also be expressed in terms of
a Berry phase 14, similar in form to the conductivity derived
above (Eq. (5)). It is possible to express the Hall conductance
as a ground state observable.25,26 Here we express it via shift
operators, and derive a quantization condition for zero Hall
conductance in a quantum Hall system. The momentum shift
operators in this case take forms which are different from those
used in expressing dc conductivity.

Our starting point is the form derived by Thouless et al.14,

σH
xy = ie2

2πh

∫
dKx dKy[〈∂Kx

�|∂Ky
�〉 − H.c.], (15)

which, using the formalism above converts to

σH
xy = e2

h
lim

�Kx�Ky→0

1

�Kx�Ky

[
Im ln

〈�|Ux(�Kx)Uy(�Ky)|�〉
〈�|Uy(�Ky)|�〉 + Im ln

〈�|Uy(�Ky)Ux(−�Kx)|�〉
〈�|Uy(�Ky)|�〉

]
, (16)
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where Ux(�Kx) and Uy(�Ky) are momentum shift operators
in the x and y directions. Using the forms of the total
momentum shift operators in Eqs. (1) (applicable when the
wavefunctions can be written in the coordinate or momentum
representations) we can show that in the limit �Kx,�Ky → 0
the Hall conductivity takes the form

σH
xy = ie2

h

∑
i

〈�|[x̂i ,ŷi]|�〉. (17)

Using Eq. (16) applied to a Landau state one can also derive
a quantization condition for the values of the magnetic field at
which σH

xy must be zero. A Landau level has the form

ψ(x,y) = eikxxφn(y − y0), (18)

where y0 = kx
h̄c
eB

. As far as the x direction is concerned
this function is neither in the momentum nor in the position
representations. However, the momentum shift operators can
be constructed, considering that a momentum shift in the
x-direction is also a position shift in the y direction. It is
easy to check that in this case

Ux(�Kx) = ei�Kxxei�Yky , (19)

with �Y = �Kx
h̄c
eB

. The momentum shift in the y direction
remains

Uy(�Ky) = ei�Kyy. (20)

Applying the shift operators to the Landau state results in

Ux(�Kx)Uy(�Ky)ψ(x,y) = ei�Ky (y−y0)ei�Kxxψ(x,y + �y), (21)

Uy(�Ky)Ux(−�Kx)ψ(x,y) = ei�Ky�yei�Ky (y−y0)ei�Kxxψ(x,y − �y),

where �y = �Kx
h̄c
eB

. If �Kx�y = �Kx�Ky
h̄c
eB

= 2πM ,
with M integer, then the phase in the second of Eqs. (21) is one,
and in this case taking the limits �Kx,�Ky → 0 results in a
Hall conductance of zero. We can take the momentum shifts to
be �Kx = qx

2π
Lx

and �Ky = qy
2π
Lx

, with qx,qy integers, which

corresponds to equivalent states for the adiabatic case27,28 it
follows that for a system with N particles the quantization
condition is

e�B

Nhc
= Q

M
, (22)

where �B denotes the magnetic flux, and Q is an integer.
Indeed, the maxima in the Hall resistivity occur15 precisely at
values of the magnetic flux given by Eq. (22).

VIII. CONCLUSION

In this work it was shown that the zero-frequency conduc-
tivity can be expressed in terms of a Berry phase. Subsequently,
the conductivity was also expressed in terms of shift operators
(total momentum and total position) leading to expressions
which provide clear physical insight, as well as a good starting
point for numerical work. It was argued that a metallic
state is one which is the eigenstate of the total current
operator. Such states were also shown to be delocalized.
These conclusions were supported by analytic and numerical
calculations on a number of examples, both metallic and
insulating. If the wavefunction is a linear combination of a
total current eigenstate and an insulating wavefunction then a
finite dc condutivity results which is smaller than the allowed
maximum. Hence, based on the value of the dc conductivity
it is possible to distinguish metallic and insulating states
from ones in which conducting and insulating states coexist.
Subsequently, the formalism was used to express the Hall
conductance, and to derive the quantization condition at which
the Hall conductance is zero. The condition coincides with the
well-known experimental results.
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APPENDIX A: PERTURBED HAMILTONIAN

The dc conductivity1 is proportional to the second derivative
of the ground state energy with respect to the Peierls phase �

at � = 0. For a continuous system, taking the mass of charge
carriers to be unity, the Hamiltonian has the form

Ĥ (�) =
∑

j

(k̂j + �)2

2
+ V̂ . (A1)

In the case of discrete models, one can write

Ĥ (�) = T̂ + V̂ , (A2)

with

T̂ (�) = −
∑

j

tei�c
†
j+1cj + H.c. (A3)

(For a detailed discussion, see Refs. 1 and 29.) For both
continuous and lattice Hamiltonians, it holds that

H ′(0) = i[Ĥ ,X̂] = K̂ (A4)

and

H ′′(0) = i[K̂,X̂], (A5)

where X̂(K̂) are defined as

X̂ =
∑

j

x̂j , K̂ =
∑

j

k̂j , (A6)

for continuous systems, and

X̂ =
∑

j

j n̂j , K̂ = −it
∑

j

c
†
j+1cj + H.c., (A7)
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for lattice models. One can also write H ′′(0) as a sum of
one-body operators as

H ′′(0) = −
∑

j

[k̂j ,∂̂kj
] = −

∑
j

[
∂̂xj

,x̂j

]
. (A8)

One can also show that

H ′′(0) =
{

N for continuous models,

−T̂ (0) for lattice systems.
(A9)

One can expand the Hamiltonian and the ground state wave
function up to second order as

H (�) ≈ H (0) + �H ′(0) + �2

2
H ′′(0),

(A10)

|�(�)〉 ≈ |�(0)〉 + �|� ′(0)〉 + �2

2
|� ′′(0)〉,

and express the second derivative of the ground state energy
with respect to � at � = 0 as

∂2
�E(�)|�=0 = 〈�(0)|H ′′(0)|�(0)〉 + 2〈� ′(0)|H ′(0)|�(0)〉

+ 2〈�(0)|H ′(0)|� ′(0)〉. (A11)

APPENDIX B: DC CONDUCTIVITY AS
A GEOMETRIC PHASE

In this appendix the dc conductivity is derived in terms of
a geometric phase. As shown in Ref. 12 the first derivative
of the ground state energy with respect to � for a continuous
Hamiltonian is given by

∂�E(�) = α� − i

L

∫ L

0
〈�(X; �)|∂X|�(X; �)〉, (B1)

where

α =
{

N for continuous models,

−〈�|T̂ (0)|�〉 for lattice systems.
(B2)

Taking the derivative with respect to � and setting � to zero
results in

∂2
�E(�)|�=0 = α − i

L

∫ L

0
dX[〈∂��(X)|∂X|�(X)〉

+ 〈�(X)|∂X|∂��(X)〉]. (B3)

Since � corresponds to a shift in the crystal momentum K the
derivative with respect to � can be replaced with a derivative
with respect to K . Subsequently, an average over K can be
taken, resulting in

∂2
�E(�)|�=0 = α + γ, (B4)

with

γ = − i

m2π

∫ L

0

∫ π/L

−π/L

dX dK[〈∂K�|∂X�〉−〈∂X�|∂K�〉].
(B5)

The quantity γ in Eq. (B4) is a surface integral over a Berry
curvature, which can be converted into a line integral around
the included surface via the Stokes theorem, as for the Hall
conductivity.14

The quantity α can be written with the help of Eq. (A8)
as

α = i
∑

j

〈�|[∂xj
,∂kj

]|�〉. (B6)

In other words, the conductivity corresponds to the difference
between the sum of one body commutators of the position and
momenta and the commutator of the total position and total
momentum.

APPENDIX C: DC CONDUCTIVITY IN TERMS
OF SHIFT OPERATORS

Our starting point is the current12 written in terms of shift
operators,16

∂�E(�) = α� − 1

�X
Im ln〈�(�)|ei�XK̂ |�(�)〉. (C1)

Taking the derivative with respect to � results in

∂�E(�) = α + γ, (C2)

with

γ = 1

�X
Im

[ 〈∂��(�)|ei�XK̂ |�(�)〉
〈�(�)|ei�XK̂ |�(�)〉

+ 〈�(�)|ei�XK̂ |∂��(�)〉
〈�(�)|ei�XK̂ |�(�)〉

]
. (C3)

We can set the derivative in � equal to the derivative in the
crystal momentum, and set � = 0. For now we will consider
only the first term in Eq. (C3), but the steps for the second
term are essentially identical. We can write this term as

1

�X�K
Im

[
�K〈∂K�(0)|ei�XK̂ |�(0)〉

〈�(0)|ei�XK̂ |�(0)〉

]
, (C4)

where we have divided and multiplied by �K . For small �K

we can replace this term with

1

�X�K
Im ln

[
1 + �K〈∂K�(0)|ei�XK̂ |�(0)〉

〈�(0)|ei�XK̂ |�(0)〉

]
, (C5)

which can be converted to

1

�X�K
Im ln

[ 〈�(�K)|ei�XK̂ |�(0)〉
〈�(0)|ei�XK̂ |�(0)〉

]
, (C6)

and using the total momentum shift operator results in

1

�X�K
Im ln

[ 〈�|ei�KX̂ei�XK̂ |�〉
〈�|ei�XK̂ |�〉

]
. (C7)

Applying exactly the same steps to the second term of Eq. (C3)
results in

γ = 1

�X�K

[
Im ln

( 〈�|ei�KX̂ei�XK̂ |�〉
〈�|ei�XK̂ |�〉

)

+ Im ln

( 〈�|ei�XK̂e−i�KX̂|�〉
〈�|ei�XK̂ |�〉

)]
, (C8)

which is the discretized form for the Drude weight.
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