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We study several aspects of the realization of global symmetries in highly entangled phases of quantum matter.
Examples include gapped topological ordered phases, gapless quantum spin liquids, and non-Fermi liquid
phases. An insightful window into such phases is provided by recent developments in the theory of short-ranged
entangled symmetry protected topological (SPT) phases. First, they generate useful no-go constraints on how
global symmetry may be implemented in a highly entangled phase. Possible symmetry implementation in gapped
topological phases and some proposed gapless spin/Bose liquids are examined in this light. We show that
some previously proposed spin liquid states for 2D quantum magnets do not in fact have consistent symmetry
implementation unless they occur as the surface of a 3D SPT phase. A second SPT-based insight into highly
entangled states is the development of a view point of such states as SPT phases of one of the emergent excitations.
We describe this in the specific context of time-reversal symmetric 3D U(1) quantum spin liquids with an emergent
photon. Different such spin liquids are shown to be equivalent to different SPT insulating phases of the emergent
monopole excitation of such phases. The highly entangled states also in turn enrich our understanding of SPT
phases. We use the insights obtained from our results to provide an explicit construction of bosonic SPT phases
in 3D in a system of coupled layers. This includes construction of a time-reversal symmetric SPT state that is not
currently part of the cohomology classification of such states.
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I. INTRODUCTION

A focus of modern quantum condensed matter physics
is the study of phases of matter whose characterization
is not captured by the concepts of broken symmetry and
associated Landau order parameters. Striking examples are
gapped phases of matter with topological order. These are
characterized by emergent excitations with unusual quantum
statistics and ground-state degeneracies that depend on the
topology of the underlying manifold.1 Other examples are
gapless phases of matter where the gaplessness is protected
but not by a broken symmetry. The most familiar example
of such a phase is a Fermi liquid but gapless spin liquids
and various non-Fermi liquid phases provide other examples.
A common characterization of these different phases is the
presence of nonlocal many-body quantum entanglement in
their ground-state wave function. Such phases have come to
be known as “highly entangled phases” of matter.

A simpler example of phases of matter that are not captured
by notions of broken symmetry are the celebrated electronic
topological insulators.2 These phases are gapped in the bulk
and are short-ranged entangled but nevertheless are distin-
guished from trivial electronic band insulators. Symmetry
plays a key role in maintaining the distinction between
these different short-ranged entangled phases. The electronic
topological insulators are well described by free-fermion
models that have nontrivial surface states protected by global
symmetries. They clearly do not have bulk topological order
or fractionalization. The free fermion topological insulator is a
member of a more general class of phases—dubbed symmetry
protected topological (SPT) phases—which all have no
bulk topological order but have protected surface states.
A well-known example is the Haldane spin chain in one
dimension. A general formal classification of such phases in
diverse dimension has been proposed.3,4 Very recently, their
physical properties in both two5–7 and three dimensions8,9

have been elaborated.

The story of the electronic and bosonic topological insu-
lators raises the important question of the role that symmetry
plays in the characterization of highly entangled phases. In
the specific context of gapped highly entangled phases, the
interplay of symmetry and topological order has recently at-
tracted renewed interest. For gapless phases and critical points,
global symmetry obviously plays a much more important role,
which is very poorly understood. In this paper, we will study
several aspects of the realization of symmetry in these exotic
phases—both gapped and gapless, and in both two and three
space dimensions. Of particular importance to us are the results
of Ref. 8 on the protected surface states of three-dimensional
bosonic SPT phases. The surface phase diagram was argued to
admit a phase with surface topological order though the bulk
itself has no such order. Furthermore, this surface topological
order implements the defining global symmetry in a manner
not allowed in strictly two-dimensional systems.

We are thus lead to consider in detail a consistent imple-
mentation of global symmetries in several highly entangled
quantum phases. First, we obtain several new results and
insights into both gapped and gapless phases that are allowed
to exist in strictly 2D systems. These results have immediate
application to theories of quantum spin liquid insulators and
of non-Fermi liquid metals. Along the way, we also obtain
an explicit construction of the various 3D symmetry protected
topological insulators of bosons studied recently in Ref. 8.
In particular, we construct a time-reversal symmetric 3D SPT
phase that was suggested to exist in Ref. 8 but is not currently
part of the cohomology classification of Ref. 3.

Second, we study symmetry realization in three-
dimensional gapless quantum spin liquids with an emergent
photon. Focusing on time-reversal symmetry and on phases
that can exist in strictly 3D systems, we show that different
such spin liquids may be distinguished by whether the
emergent electric charge excitation is a Kramers singlet or
doublet and its statistics. We show that this distinction is nicely
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captured by viewing these phases as different SPT insulators
of the dual “magnetic” particle (the monopole).

Reference 10 proposed a formal classification of the two-
dimensional topological order described by a deconfined Z2

gauge theory in the presence of global symmetries. The
topological quasiparticles can, in principle, carry fractional
quantum numbers of the global symmetry. More formally,
this means that they are allowed to transform projectively
under the global symmetry group. The approach of Ref. 10
involves finding all consistent ways of assigning projective
representations to the different topological quasiparticles. A
different classification has also appeared11 that considers
topological order with unitary symmetry but restricts to phases
where one of the bosonic quasiparticles has trivial global
quantum numbers. Earlier, Refs. 12 and 13 classified all two-
dimensional time-reversal invariant gapped Abelian insulators
using a Chern-Simons/K-matrix approach. It is expected that
all such insulators can always be described by a multicompo-
nent Chern-Simons theory. The key idea of Refs. 12 and 13 is
that the bulk two-dimensional theory can be completely char-
acterized by studying the 1 + 1-dimensional edge theory at
the interface with the vacuum (or equivalently a topologically
trivial gapped insulator). This is a multicomponent Luttinger
liquid theory in which operators corresponding to various bulk
quasiparticles can be easily identified. In particular, constraints
coming from global symmetries can be straightforwardly
implemented. This approach has recently been used to study
other symmetry enriched 2D topological order in Refs. 14
and 15.

How does the interplay of symmetry and topological order
that is only allowed at the surface of 3D systems fit in with the
emerging results on the classification of 2D topological order
with symmetry? In the first part of this paper, we address this
question in details for a few examples. Specifically, we restrict
attention to boson systems with a few simple internal global
symmetries. We also restrict to topological order described by
a deconfined Z2 gauge theory. We first use the procedure of
Ref. 10 to obtain all distinct allowed implementation of the
global internal symmetry. Some of these can be realized at the
surface of 3D SPT phases. Then we use elementary arguments
and the results of Ref. 13 to determine which ones of the phases
are allowed in strictly 2D systems. Interestingly, the remaining
phases are all shown to be realized at the surface of 3D SPT
phases.

Why does the Chern-Simons/edge theory approach selects
out only those phases that can exist in strict two dimensions,
while the approach of Ref. 10 does not? The key point is that
the former approach assumes that the state in question can have
a physical edge with the vacuum (equivalently, a topologically
trivial gapped insulator) while preserving the symmetry. For
topological order realized at the surface of a 3D SPT phase, this
possibility simply does not exist. A trivial gapped symmetry
preserving state to which the surface topological ordered state
can have an interface is forbidden at the SPT surface. In
contrast, the methods of Ref. 10 only worry about consistent
assignment of symmetries to the various topological quasipar-
ticles. The requirement that the state allow a physical edge to
the vacuum is not part of the considerations of this method.

We will denote states that allow a physical edge to the
vacuum as “edgable.” The topologically ordered states at the

surface of a 3D SPT phase are not edgable, while those allowed
in strictly 2D are edgable. The concept of edgability will
prove to be a powerful criterion in deciding which topological
ordered states with symmetry are allowed in strictly 2D
systems and which not.

Below, we will flesh all this out in several concrete
examples. We first study 2D gapped Z2 topological order with
a few different symmetries in Secs. II–IV. Next, we use the
insights from these results to provide an explicit construction
of SPT phases with the same symmetries in a system of
coupled layers in Sec. V. We provide a brief discussion of the
relationship between the possible surface topological order in
a 3D SPT and its bulk topological field theory in Sec. VI. We
turn our attention then to highly entangled gapless phases. In
Sec. VII, we argue that a previously proposed gapless vortex
fluid (dubbed the “algebraic vortex liquid”) cannot exist with
time-reversal symmetry in strictly 2D systems. Section VIII
contains our results on 3D U(1) quantum liquids. We conclude
in Sec. IX with a discussion. The two appendixes contain
important details. In particular, in Appendix B, we describe
the surface Landau-Ginzburg theories for the 3D SPT phases
of interest in terms of dual vortices with nontrivial structure
and discuss the surface phase structure. We also provide an
explicit derivation of this dual surface vortex theory.

II. TOPOLOGICAL ORDERED BOSON INSULATORS:
SYMMETRY U(1) � ZT

2

We begin by considering a system of bosons with a global
U(1) symmetry and time reversal (ZT

2 ). The bosons are taken to
have charge 1 under the global U(1) symmetry. In this section,
we assume that the boson destruction operator b → b under
ZT

2 . This means that the global symmetry group is U(1) � ZT
2 .

We will assume that the topological order in question has 2
nontrivial bosonic particles (dubbed e and m) and a fermion
(dubbed ε). Any two of these are mutual semions. Further, any
one of these may be thought of as a bound state of the other
two. This corresponds precisely to the excitation structure of a
deconfined Z2 gauge theory in two space dimensions. What are
the allowed topological phases with Z2 gauge structure accord-
ing to the analysis of Ref. 10? The time-reversal operation T
when it acts on physical states of the bosons must satisfy T 2 =
1. Let us denote by Te,m the action of time reversal on the e and
m particles. The only restriction on these is that they satisfy

T 2
e = μe, (1)

T 2
m = μm (2)

with μe,m = ±1. A value −1 of either of these means that the
corresponding particle forms a Kramers doublet. What about
symmetry under global U(1) rotations? Here, the distinct
possibilities correspond to whether the (e,m) particles carry
integer or fractional charge. In the latter case, their charge
must be shifted from an integer by 1

2 . These possibilities are
nicely distinguished by asking about the action of a 2π global
U(1) rotation R2π . On physical states, R2π = 1. Let us again
denote by R

e,m
2π the action on the e and m sectors. We then have

Re
2π = σe, (3)

Rm
2π = σm (4)
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TABLE I. Symmetry action U(1) � ZT
2 for Z2 topological ordered

states. The first five are allowed in strict 2D, while the last five can
only be realized at surface of 3D SPT phases (or derived from them).

Phase σe σm μe μm Comments

e0m0 1 1 1 1 No fractionalization
eT 1 1 −1 1 No fractional charge but Kramers
eC −1 1 1 1 b = �2

eCT −1 1 −1 1 b = εαβfαfβ ; fα in trivial band
eCmT −1 1 1 −1 b = εαβfαfβ ;fα in topological band
eT mT 1 1 −1 −1 3D SPT surface
eCmC −1 −1 1 1 3D SPT surface
eCT mC −1 −1 −1 1 eCmC ⊕ eCmT

eCT mT −1 1 −1 −1 eT mT ⊕ eCmT

eCT mCT −1 −1 −1 −1 eCT mC ⊕ eCT mT

with σe,m = ±1. The realization of the symmetry in this
topologically ordered state is thus described by the numbers
(σe,μe,σm,μm). Naively, this gives 16 phases, but we must
remember that interchanging e and m does not produce a new
phase. This removes six possibilities so we are left with a
total of 10 phases for this symmetry.

In Table I, we display the quantum numbers of the e and m

excitations of these ten phases. We label these phases by the
excitations that carry nontrivial charge (C) or time-reversal
(T ) quantum numbers. Thus e0m0 means both the e and m

particles carry trivial quantum numbers, while mT refers to a
phase where the m particle is Kramers doublet and neither e

nor m carry half-integer charge, etc.
Note that the discussion above made no reference to the

edgability of the state. To consider only edgable states, let
us now switch gears and consider the possibilities for Z2

topological order with the same symmetry as above but within
the Chern-Simons/edge theory approach of Ref. 13. This
naturally selects out edgable states and hence will enable us
to decide which of the ten states in Table I can be realized in
strictly 2D systems. We will show that only the first five of
these are captured in the Chern-Simons approach.

In the Chern-Simons description of an Abelian two-
dimensional insulator, the effective Lagrangian is given by
a multicomponent Chern-Simons term:

L = KIJ

4π
εμνλaI

μ∂νa
J
λ + 1

2π
τI ε

μνλAμ∂νa
I
λ, (5)

where the current density of quasiparticle I is given by j I
μ =

εμνλ∂νa
I
λ

2π
. The K matrix gives the topological information of the

system, while the charge vector τI is an integer valued charge
of each quasiparticle through coupling with the external gauge
field Aμ. The allowed quasiparticles carry integer charge under
the different gauge fields aI , which can be expressed in terms
of an integer valued vector l. The mutual statistics of two
quasiparticles labeled by l and l′ is θll′ = 2πlT K−1l, while the
self-statistics of a quasiparticle is θl = πlT K−1l. To describe
Z2 topological order, we begin with a 2 × 2 K matrix

K =
(

0 2

2 0

)
, (6)

which captures the statistics of the e and m particles. We will
determine the distinct ways in which the U (1) � ZT

2 symmetry

can be realized. First of all, note that the electrical Hall conduc-
tivity is given by σxy = τT K−1τ = τ1τ2. Thus time-reversal
invariant states must necessarily have at most one of τ1,2 �= 0.
Henceforth, without loss of generality, we will therefore set
τ1 = 0 and τ2 = t . Next, the physical charge of a quasiparticle
labeled by l is given by ql = ltK−1τ = l1t

2 . Since we only want
to distinguish a half-integer physical charge from an integer
one, the distinct possibilities correspond to t = 0,1. Let us
now demand time-reversal invariance of the Chern-Simons
Lagrangian. The symmetry realizations classified by the first
approach above assume that the symmetry transformation
does not interchange e and m particles. Therefore we restrict
attention to that subclass here. For the first term to be a
time-reversal invariant, it must be that the spatial components
a1i ,a2i transform oppositely under time reversal. Further, if
τ2 = t is nonzero, then εij ∂ia2j must be even under time
reversal. Thus we choose the action of time reversal on the
aI

i to be aI
i → TIJ aJ

i with

T =
(−1 0

0 1

)
. (7)

As described in Ref. 13, we also need to describe the
transformation of the quasiparticle creation operators. This is
conveniently accomplished by using the standard edge theory
that corresponds to the bulk Chern-Simons Lagrangian:

L = 1

4π
(KIJ ∂xφI ∂tφJ + · · · ) + 1

2π
εμντI ∂μφIAν. (8)

Quasiparticle creation operators corresponding to l = (1,0)
and l = (0,1) are eiφ1 and eiφ2 , respectively. The time-reversal
transformation of aIi fixes the transformation of φI up to an
overall phase. Thus we write

eiφ1 → ei(φ1+α1), (9)

eiφ2 → e−i(φ2+α2). (10)

However, by a shift of φ1, we can always set α1 = 0. This is
not possible for α2. A further constraint comes from requiring
that all physical operators transform such that T 2 = 1. In
particular, T 2 should take e2iφ2 → e2iφ2 . This imposes the
restriction that α2 = πx

2 with x = 0,1. If x = 0, then the
particle created by eiφ2 is a Kramers singlet. If x = 1, however,
T 2 takes eiφ2 → −eiφ2 so that the particle is a Kramers doublet.

Thus within this 2 × 2 K matrix, we have four possible
states corresponding to the four possible values of the pair
t,x. In terms of Table I, these correspond to the four phases
e0m0,eT ,eC,eCmT . Actually, a fifth phase eCT is also
allowed in strict 2D but requires a 4 × 4 K matrix. To see
why this is so, it is useful to better understand the physics of
the four states described so far.

First, note that with the K matrix in Eq. (6), the edge
phase fields φ1,φ2 satisfy commutation relations such that
the fields f± = ei(φ1±φ2) satisfy fermion anticommutation
relations. Indeed, these correspond to l = (1,1),l = (1,−1)
and describe the bulk fermionic ε particle. f± are the right- and
left-moving fermions of the one-dimensional edge Luttinger
liquid theory. Under a global U(1) symmetry rotation Uθ by
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angle θ and time reversal, the f± transform as

U
†
θ f±Uθ = ei tθ

2 f±, (11)

T −1f±T = e∓i πx
2 f∓. (12)

Note that as the ε particle may be regarded as a bound
state of e and m, it has quantum numbers σε = σeσf and
μf = μeμf . For the four cases described above in terms
of edge Lagrangians, this is consistent with the symmetry
transformation of the edge fermion fields.

Further insight is obtained by understanding how the four
phases corresponding to the four choices of (t,x) are obtained
within a slave particle (parton) construction in the bulk.
Consider a slave particle (parton) construction obtained by
writing the boson operator br = arsr at each site r of the lattice.
Here, ar destroys a bosonic parton with charge 1 while sr is an
Ising parton (with charge 0). We may take them to belong to the
e sector. Under time reversal, ar,sr remain invariant. Further,
as the ar,sr carry only an integer charge, σe = μe = 1. First,
we take the ar to form a simple bosonic Mott insulator and
sr to form a simple Ising paramagnet. Then the vison of the
Z2 gauge field associated with the slave particle construction
will have trivial quantum numbers so that σm = μm = 1. This
corresponds to phase e0m0 in Table I.

Phase eT can be likewise constructed if we start with
two species of physical bosons b1,2 and require b1 ↔ b2

under time reversal (e.g., spin-half bosons). Then we write
the boson operators as b1,2 = a1,2s1,2 and put the system
into a state such that time reversal is implemented through
(a1,a2) → (−a2,a1) and (s1,s2) → (−s2,s1). The e particles
in this phase (a1,2 and s1,2) are Kramer’s doublets, while the
m particle (the vision) transforms trivially under time reversal.
Nothing carries fractional charge in this phase.

Phase eC is a familiar one and can be obtained in
a slave particle construction by writing br = �2

r . The �r

destroys a charge-1/2 bosonic parton (denoted “chargon” in
the literature). Under time reversal, �r is invariant. Explicit
microscopic models for the corresponding phase were studied
in Refs. 16–18 with the standard implementation of the
time-reversal symmetry for bosons (b → b).

Phase eCT is also a familiar one. It can be obtained
through a parton construction by writing the boson operator
as br = εαβfrαfrβ with frα a fermion. We will refer to α =
1,2 as a pseudospin index. The fermions carry charge-1/2.

Time reversal is implemented through frα → i(σy)αβfrβ . Now
consider a mean-field ansatz where the fermion frα forms
a (topologically trivial) band insulator that preserves time
reversal but does not conserve any component of the fermion
pseudospin. The result is a Z2 topologically ordered state with
symmetry implemented as defined for phase 4.

Phase eCmT is obtained from the same parton construction
as for phase eCT but when the frα band structure is topo-
logically nontrivial, i.e., the fermions form a 2D topological
insulator. Then a π flux seen by the fermions (which we
may take to be the m particle) is known to bind a Kramers
doublet.19 Indeed, in the edge theory above, if we choose
t = 1 and x = 1, the edge Lagrangian becomes identical to
that of a fermionic topological insulator formed by the ε

particle. Thus this parton construction has the symmetries

of phase 5. Three-dimensional analogs of these phases were
studied in Refs. 20 and 21.

It is clear now that the phase eCT can exist in strictly 2D
systems but is not captured by a Chern-Simons/edge theory
description with a 2 × 2 K matrix. This can also be seen by
noting that since the physical charge is invariant under time
reversal, one cannot have a particle that’s nontrivial under
both U(1) and T symmetries within this 2 × 2 K-matrix
formulation.

Note that for eCmT the edge theory is gapless so long
as the global symmetry is preserved. In contrast, for the
phases e0m0,eT ,eC, the edge theory can be gapped by adding
symmetry-allowed perturbations. Similarly, from the parton
construction, we know that though the ε particle carries the
same quantum numbers for both eCmT and for eCT , the edge
theory for eCT can be gapped. From the theory of the fermion
topological insulator, it follows that trivial band structure for
the ε can be built up from the topological band structure
by taking two copies and allowing all symmetry allowed
perturbations. This suggests that the minimal description of
eCT uses a 4 × 4K matrix. Specifically consider

K =

⎛
⎜⎜⎜⎝

0 0 1 1

0 0 1 −1

1 1 0 0

1 −1 0 0

⎞
⎟⎟⎟⎠ , T =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ (13)

with the charge vector τ = (0,1,0,0). Time reversal is imple-
mented on the edge boson fields φI through φI → TIJ (φI +
αI ) with α = (0,0,π,0). It is readily seen that this describes
the eCT phase.

In passing, we note that we can easily generate other 2D
Z2 topological phases with this symmetry by simply adding a
layer of the 2D SPT phase allowed with U(1) � ZT

2 symmetry
to one of the five examples discussed above. This obvious
extension does not affect our subsequent discussion and we
will not consider it further.

In Appendix A, we explain in detail why all the other
phases are not possible within the K-matrix formulation. In
the next section, we argue that, independent of the K-matrix
formulation, the existence of those phases on SPT surfaces
implies their nonexistence in strict 2D systems.

For now, we make a few comments. Note that in the first
four phases, the m particle has trivial quantum numbers. It is
only natural that such states, where one of the e or m particles
have trivial quantum numbers, can always be realized in strictly
2D systems. From such states, we can always destroy the Z2

topological order by condensing the m particle to produce a
trivial symmetry preserving insulator. This will not be possible
for states that can only be realized at the surface of 3D SPT
phases. In phase eCmT , both the e and m carry nontrivial
quantum numbers. Despite this, as we have seen, it can be
realized in strict 2D.

Now lets move to the last five phases of Table. I. Reference 8
showed that phases eT mT and eCmC both arise at the surface
of 3D SPT phases. To discuss the other phases, we first define
the concept of “surface equivalence” of topologically ordered
phases.
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A. Surface equivalence

We say that two topologically ordered states at the surface
of a 3D SPT phase are “surface equivalent” if one can be
obtained from the other by combining with a strictly 2D
states with the same symmetry. The notion of combining
two states will be described in detail below. Consider two
Z2 topologically ordered states—say states A and B—with
distinct realizations of the global symmetry. This means that
at least one of the e,m particles transform differently under the
global symmetry for the two states. Assume now that A and B
have the same symmetry for the e particle or—in obvious
notation—that (σeA,μeA) = (σeB,μeB ) ≡ (σe,μe). Then we
must have (σmA,μmA) �= (σmB,μmB ).

Now consider the composite system A + B. We allow A
and B to couple through all symmetry allowed short-ranged
interactions. For weak interaction strengths, the two states will
be decoupled, and the combined system will have deconfined
Z2 × Z2 topological order. However, for stronger interactions,
eA can mix with eB as they have the same symmetry. This
partially confines the Z2 × Z2 topological order to a simpler
topological ordered state with just a single deconfined Z2

gauge structure. We will denote this new phase A ⊕ B. In this
new state, the m particles of A and B will be confined together
to produce a new particle mA⊕B ∼ mAmB . Thus A ⊕ B has
the quantum numbers (σe,σmAσmB,μe,μmAμmB).

This concept of combining phases enables us to see several
equivalences in Table I. For instance, it is clear that phase
eCT can be obtained as eC ⊕ eT (by letting the m particles
mix). Let us now consider surface equivalence. Phases eCmC

and eCmT share the same quantum numbers for the e

particle. Thus we may combine them to produce a new Z2

phase eCmC ⊕ eCmT , which, by inspection, has the same
symmetries as phase eCT mC (after a relabeling of e and
m). This means that phases eCmC and eCT mC are surface
equivalent. Specifically, consider the 3D SPT phase with phase
eCmC as its surface topological ordered state. We may then
deposit a layer of phase eCmT (which is allowed in strict 2D)
at its surface, and then let the e particles mix. This mixing will
induce a surface phase transition where the surface topological
order becomes that of phase eCT mC. It follows that phase
eCT mC can also only be realized at the surface of the 3D SPT
boson insulator.

Similarly, the m particle of phase eT mT has the same
quantum numbers as the m particle of phase eCmT . Letting
them mix, we get phase eCT mT . Phase eCT mCT is also
readily seen to be eCT mC ⊕ eCT mT .

Thus we see that the last five phases of Table I are all
obtained at the surface of 3D SPT phases. All these five
phases are obtained from two “root” phases (phases eT mT

and eCmC) by combining with phases that are allowed in
strict 2D or with each other.

It is interesting to notice that the realization of the five
phases at the SPT surfaces implies their absence in strict
2D systems, independent of K-matrix consideration. One can
understand this as follows: if a surface state can also be realized
in strict 2D, then one can deposit such a 2D system onto the
surface. The quasiparticles in the two systems [let us call them
(e1,e2) and (m1,m2)] will then have exactly the same symmetry
properties, and the bound states of two particles of the same

kind in the two systems (e1e2 and m1m2) will be trivial under
all symmetries. Moreover, e1e2 and m1m2 are mutual bosons
to each other. Hence one can condense both e1e2 and m1m2

without breaking any symmetry. However, this will confine
all the fractional quasiparticles since any one of them will
have mutual π statistics with either e1e2 or m1m2, and the
surface will become a trivial phase, i.e., symmetric, gapped,
and confined. By definition, the corresponding bulk cannot be
an SPT state. Hence the states at SPT surfaces must not be
realizable in strict 2D. This will have interesting implications
for 2D systems, and an example will be given toward the end
of this paper.

It is also interesting to view this result from a different point
of view, which inverts the logic followed above. Consider
the problem of identifying 3D boson SPT states with this
symmetry. The results of this section show that there are
precisely two distinct “root” Z2 topological orders that can
only occur at the surface of SPT phases. This then gives
us two “root” 3D SPT states with this symmetry. This is
the same conclusion arrived at by direct consideration of
surface theories in Ref. 8 and ties in nicely with the formal
cohomology classification (which also gives two root states).
Note, in particular, that of the two root states, eT mT is simply
inherited from the 3D SPT with ZT

2 symmetry alone. Thus
the only nontrivial SPT state that is unique to the extra U(1)
symmetry is the one with surface topological order eCmC as
was suggested in Ref. 8.

III. TOPOLOGICAL Z2 SPIN LIQUIDS

Here, we repeat the exercise above for symmetries ap-
propriate to quantum spin systems. We consider two cases:
symmetry U(1) × ZT

2 and symmetry ZT
2 . The former describes

time-reversal symmetric quantum spin Hamiltonians with
a conserved component of spin. In the latter, we only
assume time-reversal symmetry. The consistent symmetry
assignments for Z2 topological order with bosonic e and m

particles are given in Tables II and III.
Let us first consider U(1) × ZT

2 in which case the U(1)
charge goes to minus itself under time reversal. The analysis
of Ref. 10 again gives the same ten phases as before and we
will use the same labels. However, a difference appears in the

TABLE II. Symmetry action U(1) × ZT
2 for Z2 topological

ordered states. The first four are allowed in strict 2D, while the last
six can only be realized at surface of 3D SPT phases (or derived from
them).

Phase σe σm μe μm Comments

e0m0 1 1 1 1 No fractionalization
eT 1 1 −1 1 No fractional charge but Kramers
eC −1 1 1 1 b = �2

eCT −1 1 −1 1 b = εαβfαfβ

eT mT 1 1 −1 −1 3D SPT surface
eCT mT −1 1 −1 −1 3D SPT surface
eCT mCT −1 −1 −1 −1 3D SPT surface
eCmT −1 1 1 −1 eT mT ⊕ eCT mT

eCT mC −1 −1 −1 1 eCT mT ⊕ eCT mCT

eCmC −1 −1 1 1 eCT mC ⊕ eCmT
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TABLE III. Symmetry action ZT
2 for Z2 topological ordered

states. The first two are allowed in strict 2D, while the last one can
only be realized at the surface of 3D SPT phases.

Phase μe μm Comments

e0m0 1 1 No fractionalization
eT −1 1 Kramers
eT mT −1 −1 3D SPT surface

K-matrix classification. For this symmetry class, we will see
that a 2 × 2 K matrix is enough to describe all the 2D states.
We have again

K =
(

0 2

2 0

)
, T =

(−1 0

0 1

)
, (14)

but now the charge vector must be taken to be τ = (t,0) with
t = 0,1 due to the different transformation of the density of
the global U(1) charge under time reversal. Time reversal on
the edge boson fields continues to be implemented as �I →
TIJ (φI + αI ) with α = (0, πx

2 ) (x = 0,1). With this symmetry
implementation, we see that the edge field eiφ2 creates a particle
that can either carry 1/2 charge, be a Kramers doublet, or
both. The other edge field eiφ1 creates a particle with trivial
quantum numbers. This leads to four phases corresponding to
e0m0, eT , eC, and eCT .

The standard slave boson or fermion construction of Z2 spin
liquids—as in the classic work of Refs. 22 and 23—give [when
the spin symmetry is U(1)] the state eCT . The spinon in these
constructions both carries spin 1/2 and is a Kramers doublet.
The easy axis kagome lattice spin model of Ref. 24 provides
an explicit microscopic model for a Z2 spin liquid with U(1) ×
ZT

2 symmetry. In the standard interpretation, the spin Sz of that
model labels the two members of a Kramers doublet states of a
microscopic Ising spin. Time reversal is then implemented in
terms of the spin operators as usual through 
S → −
S. In that
case, in the Z2 spin liquid phase, the spinons are readily seen
to both carry Sz = ± 1

2 and be Kramers doublets to realize the
eCT class. There is a different implementation of time-reversal
symmetry in this easy-axis kagome spin model. If Sz labels
two members of a microscopic non-Kramers doublet, then we
must interpret 
S as a “pseudospin” 1/2 operator that acts in
this two-dimensional Hilbert space at each site. Time reversal
takes Sz → −Sz,S

+ → S−. In that case, the spinons in the Z2

spin liquid phase will have spin Sz = ± 1
2 but will be Kramers

singlets. Thus we have a realization of the eC phase in the
model of Ref. 24.

Phase eCmT , which was allowed earlier in Sec. II, now
does not appear. Physically, this is because the “topological
band” in the U(1) � ZT

2 symmetry becomes trivial in the
U(1) × ZT

2 case. The easiest way to see this is to consider the
edge theory, which has two counterpropagating fermions. With
U(1) × ZT

2 symmetry, one can mix the two fermions (hence
gap out the edge) without breaking any symmetry, even if the
fermions form Kramer’s pairs.

The absence of the eCmT phase in strict 2D modifies
the equivalence relation established in the last section. In
particular, the last three phases in Table I will not be equivalent
to either eT mT or eCmC. Actually, in Ref. 8, three distinct

“root” SPT phases were discussed corresponding to those with
surface topological orders eT mT , eCT mT , and eCT mCT .
The last three phases in Table II are thus surface topological
orders corresponding to other SPT phases that may be obtained
by combining these root phases. This is in perfect agreement
with the results of Ref. 8.

Next, we consider ZT
2 symmetry alone, which is much

simpler. It is straightforward to see that the phases e0m0 and
eT m0 can be realized in strict 2D, while eT mT can only
appear on an SPT surface. The corresponding table is simply
a subset of the previous two.

IV. ALL-FERMION Z2 LIQUIDS

We now extend our analysis to a very interesting topological
order where there are three distinct topological quasiparticles,
all of which are fermions f1,2,3, and there is a mutual π

statistics between any two of them. This can be viewed as a
variant of the usual Z2 liquid in which both the e and m particles
become fermions. Since they have a mutual π statistics, the
bound state ε = em is still a fermion and has π statistics with
both e and m.

The statistics of this phase is perfectly compatible with
time-reversal symmetry, but the realization in strict 2D turns
out to be always chiral and hence breaks time reversal. One
way to understand this is to start from a conventional Z2

topologically ordered liquid with bosonic e and m particles.
Then we put the fermionic ε particle into a band structure
such that the vison also becomes a fermion. This may be
fruitfully discussed in terms of the edge Lagrangian for the
ε field. The vison operator appears as a “twist” field that
creates a π phase shift for ε. For a single branch of chiral
(complex) fermion on the edge eiφL,R , the twist operator is
eiφL,R/2. This has conformal spin ±1/8 so that in this case, the
vison is an anyon with fractional statistics. Very generally, take
a theory with nR right-moving and nL left-moving fermions
all of which correspond to the same bulk ε particle that sees
a single common vison. This acts as a common twist field
for all the edge fermions and hence has conformal spin nR−nL

8 .
Therefore to make the vison fermionic, one needs nL − nR = 4
mod 8. One such realization is given by the 4 × 4 K matrix:

K =

⎛
⎜⎜⎜⎝

2 −1 −1 −1

−1 2 0 0

−1 0 2 0

−1 0 0 2

⎞
⎟⎟⎟⎠ , (15)

which has chiral central charge 4. Since the chiral central
charge is nonzero, this phase clearly cannot arise in a time-
reversal invariant strictly 2D system.

However, Ref. 8 suggested that such an all fermion Z2 topo-
logical order can arise at the surface of a 3D SPT phase with
time-reversal symmetry. In this state, if the surface is gapped
by breaking time-reversal symmetry, then there is a quantized
thermal Hall conductivity κxy = ±4. However, if time-reversal
symmetry is present and the surface is gapped, there will be
surface topological order. Reference 8 proposed that this is a
Z2 topological order, which is a time-reversal symmetric all
fermion state. To understand why this is reasonable, consider
starting from the all fermion surface topological ordered state.
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TABLE IV. Symmetry action ZT
2 for all-fermion Z2 states. Both

states can only be realized at surfaces of 3D SPT phases.

Phase μe μm Comments

ef 0mf 0 1 1 All fermions, singlets
ef T mf T −1 −1 ef 0mf 0 ⊕ eT mT

What should we do to confine all the fermion excitations in the
surface? It is clear from the discussion above that if we take one
of the fermions and put it in a Chern band such that the surface
κxy = ±4, then the other two topological quasiparticles will
become bosons. These bosons can now be condensed to get a
confined surface state. However, this clearly requires broken
time-reversal symmetry and will give a κxy = ±4, which is,
indeed, the right ZT

2 broken surface state for this proposed
SPT. This kind of 3 +1-D SPT phase with ZT

2 symmetry is
not present in the cohomology table of Ref. 3. Including this
3D SPT surface state and using the language in the last few
sections, we have a new table (Table IV).

The second phase in the table is obtained from the first by
adding a usual Z2 liquid in the eT mT phase, then condense
the bound state of the εf = ef mf in the fermionic liquid
and the ε = em in the eT mT liquid. Since the eT mT phase
cannot be realized in strict 2D, the two phases ef 0mf 0 and
ef T mf T should be viewed as inequivalent, hence they give
rise to two distinct SPT phases with time-reversal symmetry
in addition to the one with the eT mT surface Z2 topological
order. Thus, in total with ZT

2 symmetry, we actually have three
nontrivial SPT phases corresponding to a Z2

2 classification.
(The cohomology classification of Ref. 3 gives instead a Z2

classification.)

V. CONSTRUCTING SPT WITH COUPLED
LAYERS OF Z2 LIQUIDS

From the considerations in the previous sections, it is clear
that to construct a 3 +1-D SPT state, we only need to construct
the corresponding topological order on the surface but have
a confined bulk with gapped excitations. In this section, we
give one such explicit construction using coupled layers of
2D Z2 liquids. Specifically, we consider a system of stacked
layers where each layer realizes a Z2 topological order that is
allowed in strictly 2D systems. Then we couple the different
layers together in such a way that the bulk is confined and
gapped, but we show that the surface layer is left unconfined
and further corresponds to the surface Z2 topological order
of an SPT phase. A similar coupled-layer construction of the
free fermion topological insulator was proposed25 to obtain
the single Dirac cone on the surface. We first illustrate this
by constructing the eT mT with ZT

2 symmetry, and it will be
clear later that this can be generalized to all the SPT states
mentioned in this paper.

Consider stacking N layers of Z2 liquids in the eT state,
which is allowed in strictly 2D. Now turn on an interlayer cou-
pling to make the composite particles eimi+1ei+2 condensed,
where i is the layer index running from 1 to N − 2. Note that
the eimi+1ei+2 all have the bosonic self and mutual statistics so
that they may be simultaneously condensed. As illustrated in
Fig. 1, this procedure confines all the nontrivial quasiparticles

1

2

3

4

5

6

m e

e m

m e

e m

m e

e m

FIG. 1. Coupled-layer construction of SPT states. The particle
composites in the ellipses are condensed, and only the four surface
particles in the dotted ellipses survived as deconfined topological
quasiparticles.

in the bulk. However, four particles on the surfaces survive as
the only deconfined objects: e1,m1e2,eN ,mNeN−1. Notice that
e1 and m1e2 are mutual semions and have self-boson statistics.
Thus they form a Z2 liquid at the top surface. Similarly, eN

and mNeN−1 are self-bosons, have mutual semion statistics,
and form a Z2 liquid at the bottom surface. The key point,
however, is that all these particles have T 2 = −1. Thus either
surface is in the eT mT state though the bulk has no exotic
excitations. By the analysis above, we identify this with the
3D SPT state with ZT

2 symmetry.
This construction can be immediately generalized to other

SPT states. For example, to get the eCmC (or eCT mCT ) state
with U(1) � ZT

2 or U(1) × ZT
2 symmetry, just stack layers of

eC (or eCT ) states and condense eimi+1ei+2.
Most interestingly, the all-fermion Z2 surface topological

state with global ZT
2 symmetry, which is quite hard to

construct using other methods, can also be constructed in
this way: simply start with stacked 2D Z2 liquids where
all particles e,m,ε are invariant under T reversal. Such a
Z2 state is obviously allowed in strict 2D. Now condense
εimi+1εi+2 instead of eimi+1ei+2 in the above constructions,
where εi = eimi is the fermion in the 2D Z2 gauge theory.
Again, the εimi+1εi+2 have both self- and mutual boson
statistics so that they may be simultaneously condensed. This
confines all bulk topological quasiparticles. The surviving
surface quasiparticles will be ε1,m1ε2 at the top surface and
εN,mNεN−1 at the bottom surface. These particles are all
fermions, and the two particles at either surface have mutual
semion statistics. It follows that either surface realizes the
all-fermion Z2 topological order but now in the presence of
ZT

2 symmetry. We have thus explicitly constructed the SPT
phase discussed in Sec. IV.

This coupled layer construction gives very strong support to
the results of Ref. 8 on the various SPT phases. In particular, it
removes any concerns on the legitimacy of the state of Sec. IV
with ZT

2 symmetry not currently present in the cohomology
classification.
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VI. RELATION WITH BULK TOPOLOGICAL
FIELD THEORIES

Here, we provide an understanding of the results obtained
above from topological field theories in the bulk. It was shown
in Ref. 8 that bosonic topological insulators in 3D with [U(1)]N

symmetry have a bulk response to external “probe” gauge
fields AI characterized by a θ term with θ = π :

Lθ = θ

8π2
KIJ εijkl∂iA

I
j ∂kA

J
l . (16)

If under symmetry transformations (e.g., time reversal) the
θ -angle transforms as θ → −θ , then the θ = π term is
symmetric in the bulk, but on the boundary, it reduces
to a (mutual) Chern-Simons term with symmetry violating
responses. This was a familiar issue in the noninteracting
fermionic topological insulator, where a single Dirac cone
was introduced on the boundary to cancel the time-reversal
violating response through parity anomaly.

In our cases, let us understand how this works out when
the surface is in a symmetry preserving gapped topological
ordered phase of the kind studied in this paper. We will show
that the symmetries of the topological order on the boundary
are such as to cancel the Chern-Simons response arising from
the θ term. To illustrate the idea, we take KIJ = σx , which
applies to a large class of SPT phases in 3D. This will give a
mutual Chern-Simons term on the boundary:

LCS = 1

4π
εijkA1,i∂jA2,k. (17)

This term alone would give a response that breaks time-reversal
symmetry. To cure it, we put a Z2 topological liquid on
the boundary, with the e and m particles coupling to A1,2,
respectively. The Lagrangian is given by

LZ2 = 1

π
εijka1,i∂j a2,k

+ 1

2π
(εijkA1,i∂j a1,k + εijkA2,i∂j a2,k). (18)

Integrating out a1,2 induces a mutual Chern-Simons term for
A1,2, which exactly cancels what arose from the bulk θ term
and hence restores time-reversal symmetry.

The topological ordered states with symmetry that are
forbidden in strict 2D realize the symmetry in an “anomalous”
way. The corresponding topological field theories cannot be
given consistent lattice regularizations, which implement the
symmetry in a local manner. The discussion in this section
illustrates how these theories can nevertheless be given a higher
dimensional regularization as the boundary of a nonanomalous
field theory. This has the same essence with the anomaly
cancellation in free fermion TI. It will be interesting for the
future to have criteria to directly identify such anomalous
symmetry in a topological field theory.

VII. CONSTRAINTS ON GAPLESS 2D QUANTUM SPIN
LIQUIDS: ABSENCE OF ALGEBRAIC

VORTEX LIQUIDS

We now turn to gapless quantum liquids in two space
dimensions. Examples are gapless quantum spin liquid phases
of frustrated quantum magnets or non-Fermi liquid phases of

itinerant fermions or bosons. Symmetry plays a very crucial
role in the stability of these phases. The example of the
topologically ordered gapped states considered in previous
sections lead us to pose the question of what kinds of
putative gapless phases and critical points are allowed to
exist with a certain symmetry in strictly 2D systems. First
of all, we note that in contrast with gapped topologically
ordered phases, global symmetries typically play a much more
important role in protecting the gaplessness of a phase. The
symmetry may forbid a relevant perturbation to the low-energy
renormalization group fixed point that, if present, may lead to a
flow to a gapped fixed point. Here, however, we are interested
in a more general question. We wish to consider gapless fixed
points that can be obtained by tuning any finite number of
relevant perturbations. This includes not just bulk 2D phases
but also critical or even finitely multicritical quantum systems.
We are particularly interested in such gapless 2D fixed points
with symmetry that cannot exist in strict 2D but may only exist
at the surface of a 3D insulator (SPT or otherwise).

To set the stage, consider a simple and familiar example
in a free fermion system. The surface of the celebrated time-
reversal symmetric electron topological insulator (symmetry
U(1) � ZT

2 has an odd number of Dirac cones. Such a gapless
state cannot exist in strict 2D fermion systems with the same
symmetry even as a multicritical point. However, if we give
up time-reversal symmetry, this state is allowed as a critical
point in strict 2D. An example is provided by a 2D free fermion
model poised right at the integer quantum Hall transition. Thus
symmetry provides a strong restriction on what gapless fixed
points are allowed in strict 2D.

We focus now on a very interesting gapless state proposed26

to exist in strict 2D in frustrated XY quantum magnets
[symmetry U(1) × ZT

2 ] or in boson systems [symmetry U(1) �

ZT
2 ]. This state—dubbed an algebraic vortex liquid (AVL)—

was obtained in a dual vortex description by fermionizing
the vortices and allowing them to be massless. A suggestive
approximation was then used to derive a low energy effective
field theory consisting of an even number of massless two-
component Dirac fermions (the vortices) coupled to a non-
compact U(1) gauge field. The AVL state has been proposed
to describe quantum spin liquid states on the Kagome and
triangular lattices. In terms of development of the theory of
gapless spin liquids and non-Fermi liquids, the AVL proposal
is extremely important. To date, the only known theoretical
route to accessing such exotic gapless phases of matter (in
d > 1) is through a slave particle construction where the spin,
electron operator is split into a product of other operators. If
some of the resulting slave particles are fermions, they can be
gapless. In contrast, the AVL presents a new paradigm for a
gapless highly entangled state that is likely beyond the standard
slave particle approach. It is therefore crucial to explore and
understand it thoroughly.

We now argue that the AVL state cannot exist in strictly
2D models with either U(1) � ZT

2 or U(1) × ZT
2 symmetry.

This is already hinted at by several observations. First, it
has never been clear how to implement time reversal in a
consistent way in the AVL theory. The AVL is obtained
from the usual bosonic dual vortex theory through a flux
attachment procedure to fermionize the vortices. This leads
to an additional Chern-Simons gauge field that couples to the
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fermionized vortices. However, this new gauge field can be
absorbed into the usual dual gauge field to leave behind a three
derivative term for a residual gauge field. It was argued that
this three derivative interaction is formally irrelevant in the
low-energy effective theory. This argument is delicate though.
In the simplest context27 where such an approximation was
made, an alternate description in terms of a sigma model
revealed the presence of a topological θ term at θ = π . The
topological term also has three derivatives, but its coefficient is
protected by time-reversal symmetry and does not flow under
the RG, its presence presumably crucially alters the physics
of the model. Thus one may worry about the legitimacy of the
approximations invoked to justify the AVL phase.

Note that the fundamental issue that needs to be addressed
with the AVL phase is whether it realizes symmetry in a manner
that is allowed in 2D spin/boson systems. This is of course
the kind of question that is the essence of this paper. A final
hint that the AVL phase may not exist in strict 2D comes from
recent work8 showing that gapless quantum vortex liquids with
fermionic vortices can actually arise at the surface of time-
reversal symmetric 3D SPT phases. This strongly suggests that
such phases cannot arise in strict 2D with the same symmetries.
Below we will sharpen these arguments.

Consider the proposed effective field theory for the AVL
phase:

L = ψα(i /∂μ − i/aμ)ψα + 1

2e2
(εμνλ∂νaλ)2

+ 1

2π
aμεμνλ∂νA

ext
λ . (19)

Here, ψα (α = 1,...,2N ) are the fermionized vortices, aμ is a
noncompact U(1) gauge field whose curl is 2π times the global
U(1) current, and Aext

μ is an external probe U(1) gauge field.
Note that the vortices themselves do not carry physical U(1)
charge. As mentioned above the realization of time reversal
in terms of these fermionized vortex fields has always been
a tricky issue for the AVL theory. To sharpen the issue, we
now consider a phase that is accessed from the AVL phase
by pairing and condensing the ψα fields. In the original AVL
literature,26 a number of phases proximate to the AVL were
studied by assuming that four fermion interactions were strong
enough to give a mass to the fermions. A number of different
such mass terms leading to various symmetry breaking orders
were examined. Here instead, we imagine a mass term that
corresponds to vortex pairing that preserves the global internal
symmetry.

The vortex pair condensation will gap out the gauge field aμ

and will give an insulator. However, as the ψα fields are vortices
of the original boson, this is a phase with Z2 topological
order. The fermionized vortices survive as “unpaired” gapped
quasiparticles in this topological phase. We may identify
them with the ε particle, which in this case, has zero global
U(1) charge. In the notation of previous sections, σε = 1.
Furthermore, the pair condensation will quantize the gauge
flux 
∇ × 
a in units of π so that one of the topological
quasiparticles (which we take to be the e particle) has 1/2
charge, i.e., σe = −1.

Now it is clear from Tables I and II that in strict 2D such
a state can exist only if the ε particle also carries 1/2 charge,
i.e., σε = −1. However, we just argued that the Z2 topological

ordered state realized from the AVL state has σε = 1, i.e.,
it carries zero global U(1) charge. It follows that such a Z2

topological ordered state cannot exist in strict 2D. Note that
we did not explicitly rely on time-reversal symmetry in our
analysis (though it is implicit in deciding which Z2 states are
allowed in 2D).

Thus the Z2 topological ordered states that descends from
the AVL is not allowed to exist in strict 2D. This then implies
that the AVL itself cannot exist in strictly 2D systems so long
as both global U(1) and ZT

2 symmetries are present.
Can gapless quantum vortex liquids ever exist in strictly

2D? One option is to break time-reversal symmetry. Then our
arguments do not prohibit the formation of fermionic vortices,
which can then be in a gapless fluid state. Indeed, such a gapless
magnetic-field induced vortex metal state was proposed to exist
in 2D superconducting films in Ref. 29. A different option—
which we will elaborate elsewhere30—that preserves internal
symmetries is obtained by fractionalizing the vortices into
fermionic partons, which can then be gapless.

VIII. TIME REVERSAL SYMMETRIC U(1) QUANTUM
LIQUIDS IN 3 + 1 DIMENSIONS

We now turn our attention to three dimensional highly
entangled states with time-reversal symmetry. In three dimen-
sions, interesting gapless quantum liquids with an emergent
gapless U(1) gauge field are possible.31 Explicit lattice models
for such phases were constructed and their physics studied in
Refs. 17 and 32–37. Interest in such phases has been revived
following a recent proposed realization38 in quantum spin ice
materials on three-dimensional pyrochlore lattices. It is thus
timely to understand the possibilities for the realization of
symmetry in such phases with emergent photons. Here, we
will restrict attention to time-reversal symmetry in keeping
with the theme of the rest of the paper.

The excitation spectrum of the U(1) quantum liquid
consists, in addition to the gapless photon, point “electric”
charges (the e particle) and point “magnetic” charges (the m

particle or monopole). We will only consider the situation in
which both the e and m particles are gapped, and will focus on
phases that can be realized in strictly 3D systems (as opposed
to U(1) phases allowed at the boundary of 4 + 1-dimensional
SPT phases). Following the discussion of previous sections, a
simple restriction that ensures this is to assume that one of the
e or m particles has trivial global quantum numbers and is a
boson. Without loss of generality, we will assume that it is the
m particle.

The low-energy long wavelength physics of the U(1) liquid
state is described by Maxwell’s equations. As usual, they
imply that the emergent electric and magnetic fields transform
oppositely under time reversal. We will distinguish two cases
depending on whether the electric field is even or odd under
time reversal.

A. Even electric field

First, we consider the case 
E → 
E, 
B → − 
B under time
reversal. This is what happens in the usual slave particle
constructions of U(1) spin liquids through Schwinger bosons
or fermions. The electric field on a bond gets related to
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the bond energy, which is clearly even under time reversal.
Consistent with this, the magnetic field gets identified with the
scalar spin chirality which is odd under time reversal. Then
the electric charge qe → qe and magnetic charge qm → −qm.
Let us introduce creation operators e†,m† for the e and m

particles. With the assumption that m† has trivial global
quantum numbers and is a boson, it must transform under
time reversal as

T −1m†T = eiαmm. (20)

However, the phase αm has no physical significance. It can
be removed by combining T with a (dual) U(1) gauge
transformation that rotates the phase of m (more detail follows
in Sec. VIII C). So we may simply set αm = 0. Let us consider
now the e particle. If there is just a single species of e particle,
then we must have

T −1e†T = eiαe e†. (21)

Now the phase αe can be absorbed by redefining the e operator
and so we set αe = 0. The e particle transforms trivially under
ZT

2 . There are nevertheless two distinct phases depending
on whether e is a boson or a fermion. More phases are
obtained by considering a 2-component e field: e = (e1,e2).
The new nontrivial possibility is that this two-component e

field transforms as a Kramers doublet under ZT
2 :

T −1e†T = iσye
†. (22)

Clearly, we have T −2e†T 2 = −e† but the action of T 2

on physical (gauge invariant local) operators gives 1. For
instance, e

†
1e2 is a physical operator and we clearly have

T −2e
†
1e2T 2 = e

†
1e2. When e is a Kramers doublet, it can again

be either a boson or a fermion. The former is obtained in the
standard Schwinger boson construction and the latter in the
Schwinger fermion construction. Thus we have a total of four
possible phases corresponding to e being a Kramers singlet or
doublet with Bose or Fermi statistics and a boson monopole
with trivial global quantum numbers.

B. U(1) quantum liquids as monopole topological insulators

The four U(1) quantum liquids described above were
distinguished by the symmetry and statistics of the e particle.
We now develop a very interesting alternate view point where
we understand these four states as different SPT insulators of
the bosonic monopole with trivial global quantum numbers.
As the magnetic charge is odd under time reversal, the
monopole transforms under Ug(1) × ZT

2 where Ug(1) is the
gauge transformation generated by the monopole charge. It is
useful (though not necessary) to perform an electric-magnetic
duality transformation; this exchanges the e and m labels:

e ↔ md, (23)

m ↔ ed . (24)

We included a subscript d on the right side to indicate that these
are the dual labels. Now ed is a gapped boson that transforms
under Ug(1) × ZT

2 . Thus we may regard the U(1) quantum
liquids as insulating phases of ed obtained by gauging the U(1)
part of a U(1) × ZT

2 symmetry. Note that ed transforms under
a linear (i.e., not projective) representation of Ug(1) × ZT

2 . As

discussed in previous sections such bosons can be in a number
of different SPT phases. We now study their fate when the
U(1) symmetry is gauged.

1. Gauged bosonic SPT phases in 3D

In 2D, Ref. 39 studied the fate of bosonic SPT insulators
with discrete global unitary symmetry when that symmetry
is gauged. It was shown that the result was a topologically
ordered gapped quantum liquid with long-range entanglement.
A general abstract discussion of such gauged SPT phases for
unitary symmetry groups (i.e., not involving time reversal) has
also appeared.40 Here, we are interested in 3D SPT phases with
U(1) × ZT

2 symmetry. A gauged 3D SPT phase with U(1) �

ZT
2 was also studied very recently in a beautiful paper.41 Using

the known θ = 2π electromagnetic response,8 it was argued
that the monopole of this gauged SPT is a fermion, and this
was used as a conceptual starting point to discuss the surface
of this SPT. Here, we will discuss the gauged SPT from a
different and more general point of view that will enable us to
also discuss SPT phases where the electromagnetic response
has no θ term (necessary for the results in this subsection).

References 8 and 9 show that a key distinction between
different SPT phases with the same symmetry is exposed by
considering the end points of vortex lines of the boson at
the interface with the vacuum. It will be convenient to label
the SPT phases by their possible surface topological order
(whether or not such order is actually present in any particular
microscopic realization). For one simple example, the SPT
phase (the one whose surface topological order is eCmC),
these papers argued that a surface Landau-Ginzburg theory is
obtained in a dual description in terms of fermionic vortices.
In another SPT phase (labeled by surface topological order
eCmT ), the surface vortex is a boson but is a Kramers doublet.
By stacking these two phases together we can get a third
SPT phase where the surface vortex is a fermionic Kramers
doublet. In contrast, for topologically trivial insulators, the
surface vortex is a bosonic Kramers singlet. In Appendix B, we
describe these surface dual Landau-Ginzburg theories and their
implied surface phase structure. We also provide an explicit
derivation that is complementary to the arguments of Ref. 8.

Closely related to this we can also consider external point
sources for vortex lines directly in the bulk. In the Hilbert
space of the microscopic boson model, the vortex lines do
not have open ends in the bulk. So these external sources
for vortex lines must be thought of as “probes” that locally
modify the Hilbert space. These will behave similarly to the
surface end points of vortices. For example, in the SPT labeled
eCmT , Ref. 9 shows that the ground-state wave function is a
loop gas of vortices where each vortex core is described as
a Haldane spin chain. An externally imposed open end for
a vortex string will terminate the core Haldane chain so that
there is a Kramers doublet localized at this end point. In this
case, the external vortex source is a bosonic Kramers doublet.
In the other example, the SPT labelled eCmC, the vortices
are ribbons with a phase factor (−1) associated with each
self-linking of the ribbon. Open end points of such vortex
strings are fermionic Kramers singlets. Obviously stacking
these two phases together produces an SPT where bulk vortex
sources are fermionic Kramers doublets. In contrast, in trivial
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TABLE V. Phases of U(1) quantum liquids (ZT
2 symmetry and

even emergent electric field), labeled by symmetry properties of
the electric charge, and the corresponding type of monopole SPT,
conveniently labeled by the possible surface topological order.

Electric particle Monopole insulator

T 2 = 1, boson Trivial
T 2 = −1, boson SPT -eCmT

T 2 = 1, fermion SPT-eCmC

T 2 = −1, fermion SPT- eCT mC = eCmT ⊕ eCmC

boson insulators, such bulk external vortex sources are bosons
with trivial quantum numbers under global symmetries.

This understanding of the different SPT phases immediately
determines what happens when the U(1) symmetry is gauged.
As these phases are gapped insulators (at least in the bulk)
there will now be a dynamical photon. More interesting for
our purposes is the fate of the magnetic monopole md . The
monopole serves as a source of 2π magnetic flux for the ed

particle. Thus it should precisely be identified with the source
of vortex lines. It follows that md can therefore either be a
Kramers singlet or doublet and have Bose or Fermi statistics.

Reversing the duality transformation we see that these are
precisely the four distinct U(1) quantum liquids discussed
in the previous subsection. We have thus established our
promised claim that these different U(1) quantum liquids may
be equivalently viewed as different bosonic monopole SPT
insulators.

In Table V, we list all the distinct phases of the U(1)
gauge theory with their monopole quantum numbers and the
corresponding SPT states (labeled by the surface topological
states) formed by the bosonic matter field. Notice that SPT
states descended from that of ZT

2 symmetry (the eT mT and
the all-fermion states) did not appear in Table V. One can
understand this by thinking of these states as combinations of
trivial insulators and ZT

2 SPT states formed by charge-neutral
bosons, hence the U(1) gauge field is decoupled from the SPT
states and the vortex source (i.e., monopole md = e) remains
trivial.

C. Odd electric field

We now consider U(1) liquid states where under time
reversal the electric field is odd and the magnetic field is even.
In the convention of Ref. 33, this includes the case of quantum
spin ice. Again we restrict attention to U(1) liquids where
the magnetic monopole m is bosonic and transforms trivially
under ZT

2 . What then are the possibilities for the e particle?
Based on the insights of the previous section, let us first

see what we can learn by considering different monopole SPT
phases. Now the magnetic charge qm → qm under time reversal
so that

T −1m†T = m†. (25)

Thus m (or equivalently ed after the duality transformation)
transforms under Ug(1) � ZT

2 .
For bosons with global symmetry U(1) � ZT

2 , there is one
nontrivial SPT phase, which is, again, conveniently labeled
by its surface topological order eCmC. Other SPT phases are

inherited from ZT
2 and hence are not pertinent to our present

concerns (see the end of Sec. VIII B1). Thus we have two
possible phases: the trivial insulator and the SPT insulator
labeled by eCmC. In the former case, external probes where
bulk vortex lines end are bosons, while in the latter, they are
fermions. In both cases, the vortex sources are Kramers trivial.

Let us now follow the logic of the previous section and
gauge the U(1) symmetry. The resulting monopole md will
be identified with the vortex source and will therefore be a
Kramers singlet, which can be either boson or fermion. Thus
this reasoning suggests that for the odd electric field case there
are only two possibilities for the e particle (=md )—it is a
Kramers singlet that is either boson or fermion.

Let us understand the above claim directly from the gauge
theory point of view, independent of the argument based on
SPT. With odd electric field the electric charge at any site
qe is also odd under time reversal. This implies that the e

particles transform under Ug(1) × ZT
2 , where Ug(1) is the

gauge transformation generated by qe. Notice that we have
UθT = T Uθ for U(1) × ZT

2 symmetry, where Uθ gives the
U(1) rotation. Allowing for the possibility of a multicomponent
field eI , time reversal will be implemented by

T −1eIT = e−iαeTIJ e
†
J . (26)

We can always change the common phase αe by defining a
new time-reversal operator T̃ = U (θ )T . As U (θ ) is a gauge
transformation T̃ and T will have the same action on all
physical operators. We therefore can set αe = 0 (or any other
value for that matter). In particular, under this redefinition,
T 2 goes to (UθT )2 = U2θT 2, so that the over all phase in the
action of T 2 on e can be changed at will, and one can always
choose T 2 = 1. The algebraic structure of Ug(1) × ZT

2 still
guarantees a degenerate doublet structure, but the degeneracy
here is protected by Ug(1) × ZT

2 as a whole rather than by
ZT

2 alone as in Kramer’s theorem. In particular, one can
lift the degeneracy by breaking the Ug(1) symmetry but
still preserving time-reversal invariance, which is in sharp
contrast with the Kramer’s case. It is appropriate to regard
the electric charge qe = ±1 as a non-Kramers doublet. Hence
with Ugauge(1) × ZT

2 symmetry, any charged particle should
always be viewed as time-reversal trivial. This implies that the
e particle is always time reversal trivial for a U(1) gauge theory
where the electric field is odd, in full agreement with what we
obtained from the SPT point of view.

Before concluding this section, let us briefly discuss the
putative U(1) spin liquid in quantum spin ice from this
point of view. We have just argued that the “spinons” (in
the notation of Ref. 33) are not Kramers doublets. If the
quantum spin ice Hamiltonian has Sz conservation then
the spinons will generically carry fractional Sz. However, the
realistic Hamiltonians currently proposed38 for quantum spin
ice do not have conservation of any component of spin. Thus
the “spinons” of the possible U(1) spin liquid in quantum
spin ice do not carry any quantum numbers associated with
internal symmetries. Their non-Kramers doublet structure is
independent of whether or not the microscopic Ising spin
is itself Kramers or not. Further microscopically there are
two species of electric charge e1,e2 (associated with two
sub lattices of the diamond lattice formed by the centers of
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pyrochlore tetrahedra). Time reversal should be implemented
by letting e1 → e

†
1,e2 → ±e

†
2, so that the physical spin

operator e
†
1e2 transforms as appropriate with − sign for a

microscopic Kramers doublet spin and the + sign for a
non-Kramers doublet.

Finally, we note that current theoretical work treats the
spinons in quantum spin ice as bosons. This is reasonable as
the electric strings connecting them are simply made up of
the physical spins and do not have the ribbon structure and
associated phase factors expected if they were fermions.

IX. DISCUSSION

In this paper, we studied many aspects of the realization
of symmetry in highly entangled quantum phases of matter.
We relied heavily on insights obtained from recent work
on short-range entangled symmetry protected topological
phases. Despite their short-range entanglement, the SPT
phases provide a remarkable window into the properties of
the much more nontrivial highly entangled phases. In turn,
the connections to the highly entangled phases enhances our
understanding of SPT phases themselves. Below we briefly
reiterate some of our results and their implications.

The very existence of SPT phases emphasizes the role
of symmetry in maintaining distinctions between phases of
matter even in the absence of any symmetry breaking. For
highly entangled states, this leads to the question of whether
symmetry is realized consistently in the low energy theory of
such a state. We addressed this for the example of 2D gapped
topological phases described by a Z2 gauge theory with time-
reversal symmetry [and possibly a global U(1) symmetry]. By
combining the methods of two different recent approaches10,13

to assigning symmetry to the topological quasiparticles, we
showed that there are consistent symmetry realizations that
nevertheless are not possible in strictly 2D systems. Such states
were, however, shown to occur at the surface of 3D bosonic
SPT phases. Conversely, we provided simple arguments that
if a Z2 topological order can occur at the surface of a 3D SPT,
then it is not allowed to occur in strictly 2D systems. Crucial to
our discussion was the concept of edgability. A topologically
ordered state with (internal) symmetry is allowed in strictly
2D if and only if it is edgable, i.e., it must admit a physical
edge with the vacuum. Topological ordered states that are
only allowed at the surface of a 3D SPT phase are clearly not
edgable.

Thus illustrates how the study of SPT surfaces can provide
a very useful “no-go” constraint on what kinds of phases
are acceptable in strictly d-dimensional systems. If a phase
occurs at the surface of a (d + 1)-dimensional SPT phase
(for d > 1) then it cannot occur with the same realization of
symmetry in strictly d dimensions. A nice application of this
kind of no-go constraint is to the possibility of gapless vortex
fluid phases proposed to exist26 in two space dimensions in
boson spin systems with both time-reversal and global U(1)
symmetries. Such phases were argued to exist at the surface
of 3D SPT phases in Ref. 8, thereby strongly suggesting that
they cannot exist in strictly 2D. We sharpened this conclusion
by considering a descendant Z2 topological ordered phase that
is obtained by pairing and condensing vortices of this putative

vortex fluid. We showed that the result was a phase that cannot
exist in strict 2D but can of course exist at the surface of 3D
SPT.

The study of SPT surfaces thus gives us valuable guidance
in writing down legal theories of strictly d-dimensional
systems. It thus becomes an interesting exercise to study
boundary states of SPT phases in 4 + 1 dimensions as a
quick route to obtaining some restriction on physically relevant
effective field theories of strictly (3 + 1)-dimensional systems.
Quite generally, the issue of consistent symmetry realization
is likely related to the existence of “quantum anomalies” in
the continuum field theory. For instance, the surface field
theory of free fermion topological insulator are “anomalous”
and require the higher dimensional bulk for a consistent
symmetry-preserving regularization. For other states such as,
for example, topological quantum field theories it will be
interesting if there is a useful direct diagnostic of whether
the theory is anomalous or not.

A different aspect of our results is the development of
a view point on some highly entangled states as phases in
which one of the emergent excitations itself is in an SPT
phase. A similar result was first established in d = 2 in the
work of Levin and Gu.39 We discussed how three-dimensional
quantum phases with an emergent U(1) gauge field may be
viewed as SPT phases of the magnetic monopole excitations.
In the context of 3 + 1-d U(1) spin liquids with time-reversal
symmetry, whether the electric charges are “spinons” (i.e.,
Kramers doublet under time reversal) and whether they are
bosonic or fermionic is equivalent to the different possible SPT
insulating phases of the dual magnetic monopole. This new
view point may potentially be useful for future studies of these
interesting gapless spin liquids and their phase transitions. As
we demonstrated, there is a nice consistency between possible
symmetry realizations in such spin liquids and the possible
corresponding SPT phases.

Finally, a very interesting outcome of our results is the
explicit construction of coupled layer models for 3D SPT
phases. For all the symmetry classes discussed in Ref. 8, we
provided such a construction. The strategy is to start from a
layered 3D system where each layer is in a Z2 topological
ordered state that is allowed in strict 2D. We then coupled
the layers together to confine all topological excitations in the
bulk but left behind a deconfined Z2 topological state at the
surface. This surface topological order was shown to match
the various possible such orders at SPT surfaces. In particular,
this scheme provides an explicit construction of a 3D SPT
state whose surface is a time-reversal symmetric gapped Z2

topological ordered state with three fermionic excitations that
are all mutual semions. This topological order is expected to
occur at the surface of a bosonic SPT state with time-reversal
symmetry proposed in Ref. 8 and is not currently part of the
classification of Ref. 3.
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APPENDIX A: K MATRIX DESCRIPTIONS OF Z2

TOPOLOGICAL ORDER

In this Appendix, we consider 2D states in detail. In most
cases, a 2 × 2 K matrix is enough to describe the state
because we can identify all particles with the same symmetry
and topological properties through condensing appropriate
combinations of them, and there remains only one species
of e and m particles, respectively. For example, consider a
Kramer’s doublet carrying spin-1/2 b±, the combination b+b−
is a singlet under time reversal and carries no spin, so we can
condense it and identify b− ∼ b

†
+, and time reversal could be

realized through b+ → ib
†
+ so that T 2 = −1.

The 2 × 2 K matrix was considered thoroughly in the main
text, and it was straightforward to get all the possible states
within the framework. It is also clear from the analysis above
that 2 × 2 K matrix is enough to describe every state with ZT

2
and U(1) × ZT

2 (spin) symmetries. For U(1) � ZT
2 (charge)

symmetry, the 2 × 2K matrix describes most of the states,
except when there is at least one particle that carries both
half-charge and Kramer’s doublet in which case there is no
particle bilinear that preserves all symmetries, and we should
really consider two species of such particles. For these states,
a 4 × 4 K matrix is needed.

The general form of such K matrices was given in Ref. 13,
with slight modifications due to the bosonic nature of our
systems here. There are three possible forms of K and T

matrices. The simplest one of them

K =
(

0 A2×2

A2×2 0

)
, T =

(−12×2 0

0 12×2

)
(A1)

does not work because the T matrix does not allow a particle
to carry both charge and Kramer’s doublet structure. The next
possibility

K =
(

K2×2 W2×2

WT
2×2 −K2×2

)
, τ =

⎛
⎜⎜⎜⎝

τ1

τ2

τ1

τ2

⎞
⎟⎟⎟⎠ ,

(A2)

T =
(

0 12×2

12×2 0

)

with W2×2 antisymmetric, does not work either. To see this,
simply look at the charge carried by any particle ql = lIK

−1
IJ τJ .

The entries of K−1
IJ are either integers or half-integers. From

the structure of the T -matrix and the assumption that time
reversal does not interchange e and m particles, we find that
the only half-integer entries of K−1 are K−1

12 = K−1
21 ,K−1

14 =
K−1

41 ,K−1
23 = K−1

32 ,K−1
34 = K−1

43 . Then from the structure of the
τ vector it is easy to see that the charge ql = lIK

−1
IJ τJ must be

an integer for any integer vector l, so there is no quasiparticle
that carries half-charge.

The only possibility left is thus

K =

⎛
⎜⎜⎜⎝

0 A B B

A 0 C −C

B C D 0

B −C 0 −D

⎞
⎟⎟⎟⎠ , τ =

⎛
⎜⎜⎜⎝

0

τ2

τ3

τ3

⎞
⎟⎟⎟⎠ ,

(A3)

T =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠

with detK = (AD − 2BC)2 = 4. The inverse of the K matrix
is thus

K−1 = sgn(AD − 2BC)

2

⎛
⎜⎜⎜⎝

0 D −C −C

D 0 −B B

−C −B A 0

−C B 0 −A

⎞
⎟⎟⎟⎠ .

(A4)

Therefore to have the right self- and mutual statistics, we
need A = 4m,D = 2n, and B,C odd, which makes particle
1 [l = (1,0,0,0)] or 2 [l = (0,1,0,0)] having π statistics with
particle 3 [l = (0,0,1,0)] or 4 [l = (0,0,0,1)], and all the other
mutual or self-statistics trivial.

It is clear from the T matrix that particle 2 is time-reversal
trivial. Since the bound state of particles 1 and 2 [l = (1,1,0,0)]
has trivial statistics with any particle from the structure of
K−1, it must be physical hence time-reversal trivial, which
implies that particle 1 should also be time-reversal trivial. Now
consider the charge of these two particles. It is straightforward
to see that with the given charge vector τ , the charge carried
by particle 1 or 2 q1,2 = τIK

−1
IJ lJ ,(J = 1,2) can only be an

integer. Hence particles 1 and 2 carry neither fractional charge
nor Kramer’s doublet.

Recall that our purpose here is to describe phases with a
particle that carries both charge-1/2 and Kramer’s doublet.
Hence particles 3 and 4 must form a Kramer’s doublet and
carry charge 1/2. So we want the charge vector that makes
q = τIK

−1
IJ lJ half-integer when l ∈ {(0,0,1,0),(0,0,0,1)}. It

is then straightforward to show that we need τ2 to be odd and
τ3 = τ4 to be any integer. What we have shown above is that
if the e particle carries both charge-1/2 and Kramer’s doublet
structure, the m particle must be trivial under both symmetry
transforms, i.e., the phase has to be eCT .

APPENDIX B: DUAL LANDAU-GINZBURG THEORY
OF SPT SURFACE

In this Appendix, we briefly describe the Landau-Ginzburg
theory of the surface of 3D SPT states [symmetry U(1) � ZT

2
or U(1) × ZT

2 ] in terms of dual vortex fields. Reference 8
showed that the difference with a trivial surface is captured
very simply in terms of the difference in the structure of the
vortex (this should be understood as the point of penetration of
the 3D vortex line with the surface). Here, we elaborate on this
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dual theory and present an explicit derivation starting from the
surface topological ordered phase.

Let us consider U(1) × ZT
2 and consider the phase labeled

by surface topological order eCmC [the symmetry U(1) �

ZT
2 analysis is essentially the same]. According to Ref. 8,

the boundary vortex is then a Kramers singlet fermion. The
corresponding surface Landau-Ginzburg Lagrangian may be
written schematically:

Ld = L[c,aμ] + 1

2π
Aμεμνλ∂νaλ. (B1)

The first term describes a (spineless) fermionic field c coupled
minimally to the dual internal gauge field aμ, and Aμ is an
external probe gauge field. The field c describes the fermionic
vortex. The global U(1) current is as usual

jμ = 1

2π
εμνλ∂νaλ. (B2)

If, instead, the field c were a boson, the Lagrangian above
would be the standard dual Lagrangian for a system of strictly
2D bosons. Let us first describe the phase structure of this
dual fermionic vortex theory. We will then provide an explicit
derivation that is complementary to the general considerations
of Ref. 8.

If the fermionic vortex c is gapped and in a trivial “band”
insulator, then, as usual, we get a surface superfluid. Note
that as c is a fermion it cannot condense. This precludes the
usual mechanism of vortex condensation to obtaining a trivial
boson insulator as expected for an SPT surface. The surface
superfluid order can be killed if pairs of c condense, i.e., 〈cc〉 �=
0. This leads to a surface topological order described by a
Z2 gauge theory. There is the unpaired fermion that survives
as a gapped excitation carrying zero global U(1) charge. We
identify this with the neutral ε particle. The pair condensation
quantizes flux of aμ in units of π . This carries global U(1)
charge 1/2, and we identify this with the e particle. It follows
that this is the eCmC phase.

As described in Ref. 8, if we break time reversal at the
surface we can get a gapped phase without topological order.
This is obtained by simply letting the c-fermionic vortices
completely fill a topological band with Chern number ±1, i.e.,
the Hall conductivity of the c fermion is σ c

xy = ±1. To see that
this indeed describes the correct T -broken surface state, we
use a Chern-Simons description of this state. First, we rewrite
the fermion current jf in terms of a dual gauge field ã:

jf
μ = 1

2π
εμνλ∂νãλ. (B3)

When the fermion has Hall conductivity, say +1, the effective
Chern-Simons Lagrangian in terms of (a,ã) becomes

L = 1

4π
ãdã + 1

2π
adã + 1

2π
Ada. (B4)

(We have used the compact notation da ≡ εμνλ∂νaλ.) This is
a two-component Chern-Simons theory with a K matrix

K =
(

1 1

1 0

)
(B5)

with charge vector τ = (0,1). This state has electrical Hall
conductivity σxy = τT K−1τ = −1. Further, as this K matrix

has one positive and one negative eigenvalue, it is a nonchiral
state with κxy = 0. Finally, there is no surface topological
order as |detK| = 1. These are exactly the right properties of
the T -broken surface state without topological order at this
SPT surface.

Thus the fermionic vortex Landau-Ginzburg theory cor-
rectly reproduces the surface phase structure of this SPT phase.
We note that if the c-fermion has a band structure with an even
number of gapless Dirac fermions, we get exactly the proposed
Lagrangian for the AVL phase, consistent with the claim in
Sec. VII that the AVL state can only occur at the surface of an
SPT state (with T reversal) and not in strict 2D.

A different SPT state with U(1) × ZT
2 symmetry has a

bosonic Kramers doublet vortex zα , α = 1,2. The correspond-
ing dual Landau-Ginzburg theory takes the form

Ld = L[zα,aμ] + 1

2π
Ada. (B6)

Under time reversal, zα → iσ
y

αβzβ . Finally, by stacking the
two SPT phases described above, we obtain a third SPT with
a fermionic Kramers doublet vortex field cα with Lagrangian

Ld = L[cα,aμ] + 1

2π
Ada. (B7)

The surface phase structure of these other SPTs can be
readily discussed in terms of these dual Landau-Ginzburg
theories. In all these cases, there is a bulk-edge correspondence
that relates the structure of the surface vortex to the properties
of the bulk monopole when the global U(1) symmetry is
gauged. Including the trivial (i.e., non-SPT) insulator, we have
four possible SPT phases with four distinct surface vortices
(end points of bulk vortex lines). These correspond precisely
to the four possible bulk monopoles of the gauged SPT as
discussed in Sec. VIII B1.

We now provide an explicit derivation of Eq. (B1) for
the corresponding SPT phase. Let us begin with the surface
topological order eCmC. Under time reversal, the e and m

particles transform as

T −1eT = e†, (B8)

T −1mT = m†, (B9)

while the ε particle is left invariant. It is convenient for
our purposes to focus on the e (described by a boson field
b) and ε (described by a fermion f ) particles with mutual
semion interactions. We will implement this in a lattice model
of the surface through two Ising gauge fields σ,μ with a
mutual Ising Chern-Simons term.18 The mutual Chern-Simons
term imposes a constraint relating the integer valued lattice
3-current 
jb to the Ising gauge flux of σ that the fermion sees:

(−1)

jb =

∏
P

σij . (B10)

Here, the plaquette product in the RHS is taken over the space-
time plaquette pierced by the link of the dual lattice on which
the boson current flows. The lattice space-time Lagrangian
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may be taken to be

L = Lb + Lf , (B11)

Lb = κ 
j 2
bα + i 
jbα

( 
Aα)

2
, (B12)

Lf = −σij (tij f
†
i fj + H.c + · · · ). (B13)

The fermion Lagrangian will, in general, also include pairing
terms fifj + H.c. As before, A is the external probe gauge
field. We now implement a standard duality transformation on
the b field by first writing 
jb = 
∇ × 
α with α an integer. As
this kind of duality has been explained in detail in Refs. 18
and 28, we will be very brief. The mutual semion constraint
Eq. (B10) can be solved to write

(−1)α = σ. (B14)

This means that the integer α = 2α′ + π
2 (1 − σ ) with α′ an

integer. Imposing the integer constraint on α′ softly leads to a
term

−λ cos(2πα′) = −λσij cos(παij ). (B15)

We may now define πα = a and extract a longitudinal piece
aij → aij + φi − φj to obtain a dual vortex Lagrangian in
Euclidean space-time:

L = Lφ + Lf , (B16)

Lφ = −λσij cos( 
∇φ + 
a) + κ

π2
( 
∇ × 
a)2 (B17)

+ i
1

2π

A · 
∇ × 
a. (B18)

Finally, tracing over the Ising gauge fields σ gives a dual
vortex theory in terms of two fermionic fields c± defined
through

c± = f ei±φ. (B19)

However, generically due to pairing terms in the f Lagrangian,
c− can mix with c

†
+ so that there is a unique fermion field

c = c+ ∼ c
†
−. This then gives us the dual fermionic vortex

Landau-Ginzburg theory in Eq. (B1). For U(1) × ZT
2 under

time reversal, we must have c → c. The dual vortex theory
for the surface of the U(1) � ZT

2 SPT (with eCmC surface
topological order) can be derived identically and takes the
same form except that under time reversal c → c†.
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