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Anyonic quantum spin chains: Spin-1 generalizations and topological stability
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There are many interesting parallels between systems of interacting non-Abelian anyons and quantum
magnetism occurring in ordinary SU(2) quantum magnets. Here we consider theories of so-called su(2)k anyons,
well-known deformations of SU(2), in which only the first k + 1 angular momenta of SU(2) occur. In this paper,
we discuss in particular anyonic generalizations of ordinary SU(2) spin chains with an emphasis on anyonic spin
S = 1 chains. We find that the overall phase diagrams for these anyonic spin-1 chains closely mirror the phase
diagram of the ordinary bilinear-biquadratic spin-1 chain including anyonic generalizations of the Haldane phase,
the AKLT construction, and supersymmetric quantum critical points. A novel feature of the anyonic spin-1 chains
is an additional topological symmetry that protects the gapless phases. Distinctions further arise in the form of an
even/odd effect in the deformation parameter k when considering su(2)k anyonic theories with k � 5, as well as
for the special case of the su(2)4 theory for which the spin-1 representation plays a special role. We also address
anyonic generalizations of spin- 1

2 chains with a focus on the topological protection provided for their gapless
ground states. Finally, we put our results into the context of earlier generalizations of SU(2) quantum spin chains,
in particular so-called (fused) Temperley-Lieb chains.
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I. INTRODUCTION

Ever since the early days of condensed-matter physics,
quantum magnets have played an integral role in shaping
our understanding of interacting quantum many-body systems.
Following the experimental discovery of the high-temperature
superconductors whose undoped parent compounds typically
are antiferromagnets, the study of quantum magnets has
further intensified, yielding a plethora of deeper insights.
Early on, quantum spin chains—typically one-dimensional
arrangements of SU(2) spins—have become prototypical
systems that proved to be fruitful ground for analytical
descriptions and quasiexact numerical analysis.1 One seminal
result was the exact solution of the antiferromagnetic spin- 1

2
Heisenberg chain via the Bethe ansatz and its description in
terms of conformal field theory. Another crucial contribution
was Haldane’s realization2 that the antiferromagnetic spin-1
Heisenberg chain forms a gapped state with characteristic
zero-energy edge states for open boundary conditions, a
principle observation that holds true for all half-integer and
integer spin chains. More recently, it has been found that
the gapped Haldane phase of the spin-1 chain is an example
of a symmetry protected topological phase3,4 making it a
one-dimensional cousin of topological insulator states in two
and three dimensions,5 which have attracted much recent
interest.

Over the years, a plethora of physical systems that connect
to the elementary physics of quantum spin chains have been
identified, including transition metal oxides,6 Au quantum
wires on semiconducting surfaces,7 or ultracold atoms in
optical lattices.8 Recently, it has been realized that certain

“deformations” of quantum spins can be used to describe
some of the more peculiar topological properties of exotic
quasiparticles, so-called non-Abelian anyons, that arise in
certain topologically ordered systems, including certain frac-
tional quantum Hall states,9 px + ipy superconductors,10 het-
erostructures of topological insulators and superconductors,11

heterostructures of spin-orbit coupled semiconductors and
superconductors,12 and possibly certain Iridates,13 which may
effectively realize the Kitaev honeycomb model.14 To be more
specific, the deformations of quantum spins are representations
of the anyon theories called su(2)k , which can be described
as theory of ordinary SU(2) quantum spins that is deformed
in such a way that only the first k + 1 (generalized) angular
momenta,

j = 0,
1

2
,1, . . . ,

k

2
,

can occur. These generalized angular momenta capture the
non-Abelian properties of the anyonic quasiparticles present
in the su(2)k theory. For instance, the non-Abelian nature of
the so-called Majorana fermion is captured by the generalized
angular momentum 1/2 of the su(2)2 theory. The same holds
for so-called Ising anyons, while Fibonacci anyons can be
represented by the generalized angular momentum 1 of the
su(2)3 theory. Similar to the coupling of two ordinary spins,
a pair of generalized angular momenta can be combined
(or “fused”) into a new set of joint quantum numbers. For
instance, for k � 2, two generalized angular momenta 1/2 can
be combined to form either a state with generalized angular
momentum 0 or a state with generalized angular momentum
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1, which is written as

1/2 × 1/2 = 0 + 1, (1)

reminiscent of two ordinary spin- 1
2 ’s forming either a singlet

or a triplet state. Similarly, two generalized angular momenta
1 can be combined into

1 × 1 = 0 + 1 + 2 (2)

for deformation parameters k � 4. For lower values of k, the
rules differ because the number of representations is limited
by k. In particular, for k = 3, one finds 1 × 1 = 0 + 1, while
for k = 2, one has 1 × 1 = 0. Finally, for k = 1, the general
momentum 1 is not allowed. For the anyonic theories, the
above equations are often referred to as fusion rules.

The many-body physics of a set of interacting non-Abelian
anyons can be captured by a Hamiltonian that is formed by
pairwise interactions which assign energies to the different
outcomes in the above fusion rules. Such an approach is a
straightforward generalization of the conventional Heisenberg
model, whose pairwise interaction term J �Si · �Sj is simply
a projector onto the singlet state, which is energetically
favored for antiferromagnetic couplings (J < 0) or penalized
for ferromagnetic couplings (J > 0).

The first step in this direction was taken by some of us for
anyonic spin- 1

2 chains in Ref. 15 and later generalized to spin-1
chains in Ref. 16 by the current group of authors. The careful
analysis of the ground states of these one-dimensional systems
has resulted in a number of insights. First, anyonic spin- 1

2
chains typically form gapless ground states which can be
described in terms of conformal field theory.15 These gapless
states turn out to be protected by a topological symmetry
inherent to the anyon chains that renders them stable against
local perturbations.15,17 Moreover, these gapless states can, in
fact, be interpreted as edge states that reveal the true ground
state of a two-dimensional set of anyons, a novel topological
liquid that is separated by the original topological liquids (of
which the anyons are excitations) by an edge.16 This picture
has been verified by a careful analysis of ladder systems, in
which multiple chains are coupled.18

Going beyond spin- 1
2 chains, we began to study the physics

of anyonic spin-1 chains with first results being reported in a
preceding (much more condensed) paper.16 In the paper at
hand, we provide an in-depth discussion of these anyonic
spin-1 chains. We find that many of the distinctive features
of ordinary SU(2) spin- 1

2 and spin-1 chains also hold for their
anyonic cousins. For instance, anyonic spin-1 chains exhibit
a gapped topological phase for antiferromagnetic couplings,
the anyonic generalization of the Haldane phase. Exploring
the phase diagram of chains of pairwise interacting spin-1
anyons, we find a striking resemblance of the anyonic phase
diagram to the one of the ordinary bilinear-biquadratic spin-1
chain. In particular, we find multiple gapless phases (and
phase transitions) in addition to the gapped Haldane phase.
For the former, a similar topological protection mechanism
and edge-state interpretation holds as for the gapless phases of
the anyonic spin- 1

2 chains.16

The focus of this paper is to provide an exhaustive
description of the phase diagram(s) of the anyonic spin-1
chains. Our exploration of these systems has led to a large
amount of results as the phase diagrams turned out to be

much richer than initially anticipated. In particular, we find
two families of phase diagrams depending on whether the
deformation parameter k of the su(2)k anyonic theories is odd
or even. Moreover, we obtain a distinct phase diagram for
k = 4, a result that can be explained by the special role played
by the generalized angular momentum 1 in the su(2)4 theory.

In order to guide the reader through these various results
we have taken some care to structure the paper as follows. We
start with an introduction to the anyonic su(2)k theories and
a description of the anyonic generalization of the Heisenberg
model in Sec. II. The following sections then give a detailed
exposé of our results, devoting Sec. III to the discussion of
anyonic spin-1 chains with odd deformation parameters k � 5,
followed by a discussion of the case of even deformation
parameters k � 6 in Sec. IV. In Sec. V we turn to the
case of k = 4 for which the spin-1 representation plays a
special role and a rich phase diagram is obtained. We then
turn to anyonic spin- 1

2 chains and discuss their physics, in
particular their topological stability in Sec. VI. We end with a
broader discussion of our results, in particular in light of other
deformations of conventional spin chains such as continuous
su(2)q deformations or so-called (fused) Temperley-Lieb spin
chains. The main part of the paper is followed by appendixes
that provide the technical details of our calculations.

II. THE ANYONIC QUANTUM SPIN-CHAIN
HAMILTONIANS

In light of the recent interest in topological phases of matter,
it is of great importance to gain an understanding of topological
models in their simplest incarnation, and we will thus study
one-dimensional chains of interacting non-Abelian anyons. In
this section, we briefly explain the models by drawing parallels
with ordinary one-dimensional spin chains. Moreover, we
explain why the “topological” nature of these models goes
beyond the fact that they are constructed from “topological”
particles, namely, non-Abelian anyons.

One of the prototypical one-dimensional spin-chain models
is the Heisenberg model, in which SU(2) spins interact via a
“spin-spin” interaction of the type �Si · �Sj , where the labels i

and j denote the locations of the interacting spins. Often, one
restricts the interaction to nearest-neighbor or next-nearest-
neighbor pairs of spins. For the description of the anyonic
quantum spin chains, it will be beneficial to think of this
interaction in terms of the total spin of the two interacting spins.
In this paper, we consider only nearest-neighbor interactions.

As a first example, we look at conventional SU(2) spin- 1
2

and consider the total spin �ST = (�Si + �Si+1) of two interacting
spins �Si and �Si+1, whose magnitude is characterized by the
eigenvalue of (�ST )2 =(�Si + �Si+1)2. Because the total spin �ST

can be either 0 or 1, with �S2
T eigenvalues 0 and 2, we can write

(�Si + �Si+1)2 = 0P
(0)
i + 2P

(1)
i , (3)

where the projection operator P
(s)
i projects onto the total spin s

channel of the two spins �Si and �Si+1. Evaluating the left-hand
side, one obtains

�Si · �Si+1 = P
(1)
i − 3

4Ii = −P
(0)
i + 1

4Ii , (4)
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where in the last step we used that we can rewrite the identity
operator as Ii = P

(0)
i + P

(1)
i , which holds in the case of spin- 1

2 .
We conclude that the Heisenberg interaction assigns energy
to two interacting spins, depending on their combined spin,
and the Heisenberg Hamiltonian can be written in terms of
projectors as

H = J
∑

i

P
(0)
i , (5)

where J = −1 corresponds to an antiferromagnetic coupling,
and J = 1 to the ferromagnetic version.

For spin-1, one can similarly write the bilinear and
biquadratic terms �Si · �Si+1 and (�Si · �Si+1)2, respectively, in
terms of the projection operators P

(1)
i and P

(2)
i . In particular,

the relations

(�Si + �Si+1)2 = 2P
(1)
i + 6P

(2)
i ,

(6)
(�Si + �Si+1)4 = 4P

(1)
i + 36P

(2)
i ,

can be rewritten as

(�Si · �Si+1) = P
(1)
i + 3P

(2)
i − 2Ii ,

(7)
(�Si · �Si+1)2 = −3P

(1)
i − 3P

(2)
i + 4Ii .

Consequently, the bilinear-biquadratic spin-1 Hamiltonian,

Hbb =
∑

i

cos(θbb)(�Si · �Si+1) + sin(θbb)(�Si · �Si+1)2, (8)

can be expressed in terms of the projectors P
(1)
i and P

(2)
i as

follows:

Hbb =
∑

i

J2P
(2)
i + J1P

(1)
i

=
∑

i

cos θ2,1P
(2)
i − sin θ2,1P

(1)
i . (9)

Here, the relation between the two angles θ2,1 and θbb is
given by

tan θ2,1 = tan θbb − 1/3

1 − tan θbb
, tan θbb = tan θ2,1 + 1/3

1 + tan θ2,1
. (10)

We now shift our attention to anyonic degrees of freedom.
Details about anyon models, in particular those of type su(2)k ,
can be found in Appendix A. A general introduction can be
found, e.g., in Refs. 14, 19, and 20. Here, we only introduce
those concepts that are necessary for defining the chain
Hamiltonians. The Hamiltonians for the anyon chains that we
consider in this paper are of the form of Eq. (9). The projectors
P

(j )
i in that equation have, however, a different meaning for

anyons (as compared to ordinary spins), which are defined in
Eq. (12) below.

Anyons are labeled by generalized angular momenta, or—
in the language of anyons models—“topological charges.”
These generalized angular momenta correspond to quantum
numbers, just as in the case of ordinary spin degrees of
freedom. The notion of combined spin, or tensor product of
spins, corresponds to the notion of “fusion” in the language
of anyons, and can in general result in more than one type of
anyon. The possible outcomes are called “fusion channels.”
The generalization of the Heisenberg interaction for spins to

the anyonic case is to assign an energy to two interacting
anyons based on their fusion channel. How this is done
in practice, will be described in more detail below and in
Appendix C.

The class of anyons considered in this paper is derived
from SU(2) where spin-S ranges from S = 0,1/2,1,3/2, . . ..
In contrast, su(2)k anyons contain only a subset of generalized
angular momenta, namely,

j = 0,
1

2
,1, . . . ,

k

2
.

The truncation, characterized by the “level” k, has two impor-
tant consequences which we will describe in the following.

The first consequence concerns the fusion rules of the
anyons. The tensor product of two SU(2) spins S1 and S2

decomposes as

S1 ⊗ S2 = |S1 − S2| ⊕ · · · ⊕ (S1 + S2).

The process of taking tensor products is associative, and the
same is true for the fusion rules. Because of the truncation
in the su(2)k theory, the SU(2) tensor product rule has to be
modified. It turns out that there is only one way of doing
this, consistent with the requirement that the fusion rules are
associative. In particular, the fusion rules of su(2)k anyons read

j1 × j2 = |j1 − j2| + (|j1 − j2| + 1) + · · ·
+ min(j1 + j2,k − j1 − j2). (11)

The second important consequence of the truncation fol-
lows from the fusion rules. The dimension of the Hilbert space
of a number N of ordinary SU(2) spin- 1

2 ’s is equal to 2N ,
and the spins can add up to a maximum spin of N/2. In
contrast, the dimension of the Hilbert space of a number N

of j = 1/2 anyons in the su(2)k theory is smaller than 2N .
In Appendix A, it is shown that the dimension of the Hilbert
space for N j = 1/2 anyons grows as dN

1/2, asymptotically
for large N , where d1/2 = 2 cos( π

k+2 ) is the so-called quantum
dimension of the j = 1/2 anyon. For 1 < k < ∞, this implies
that the effective number of degrees of freedom for each anyon
is irrational. This is less mysterious than it sounds: All this is
saying is that one cannot think of the Hilbert space of N anyons
as a tensor product of N one-anyon Hilbert spaces.

Because the Hilbert space does not have a tensor product
structure, an alternative description of the state space and the
Hamiltonian acting on it is needed. We describe here how this
can be done, but leave the details for the appendixes, where we
also give an explicit description of the Hamiltonians studied
in this paper.

The Hilbert space of a chain of anyons can be described
in terms of a so-called “fusion tree.” In Fig. 1, the fusion tree
for a chain of “spin-1” anyons is displayed. The lines in the
fusion tree carry a label indicating the type of anyon the line
corresponds to. The lines coming from above correspond to the
spin-1 anyons which constitute the chain. The horizontal lines,

x1 x2 x3x0 . . .

1 1 1 1 1

FIG. 1. The anyonic spin-1 chain.
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x1 x3x0 . . .
x̃2F

1 1 1 1 1

x1 x2 x3x0 . . .

1 1 1 1 1

FIG. 2. (Color online) The basis transformation for the anyonic
spin-1 chain.

labeled by xi , are the actual degrees of freedom. The possible
“values” of the xi are the same as those of the anyons present
in the anyon model, namely, xi = 0,1/2, . . . ,k/2, in the case
of su(2)k anyons. The xi cannot be chosen arbitrarily, but may
only take values such that the fusion rules are obeyed at the
trivalent points. For example, the anyon type x1 has to appear
in the fusion product of x0 × 1, the anyon type x2 appears
in the fusion product x1 × 1, and so on. Each labeling of the
fusion tree that is consistent with the fusion rules corresponds
to a (orthonormal) state in the Hilbert space, and these states
span this space.

Typically, we use periodic boundary conditions xL = x0,
which implies that x0 has to appear in the fusion product
xL−1 × 1, where L denotes the number of sites of the chain.
States in the Hilbert space are written as |x0,x1, . . . ,xL−1〉.

The Hamiltonian assigns an energy based on the fusion
channel of two neighboring anyons in the chain. However, in
the above-discussed representation of the Hilbert space (see
Fig. 1), the fusion channel of two neighboring anyons is not
explicit. To remedy this problem, we employ a local basis
transformation which changes the order in which the anyons
are fused. This is permissible because of the associativity
of the fusion rules. For ordinary SU(2) spins, this basis
transformation is described in terms of the Wigner 6j symbols.
In the case of anyons, this basis transformation is described
by what are known as the F symbols. A detailed discussion of
the F symbols, as well as explicit representations for su(2)k
anyons, can be found in Appendix B.

The basis transformation is depicted in Fig. 2. On the
left-hand side, x1 is fused with a spin-1 anyon, resulting in
x2, which is subsequently fused with the next spin-1 anyon,
resulting in anyon type x3. After the basis transformation, one
first fuses the two spin-1 anyons, resulting in x̃2, which is
fused with x1, resulting in the anyon type x3. Both bases are
equivalent; however, in the second basis, the fusion channel
of the two spin-1 anyons is explicit, namely, x̃2. Thus, after

performing this basis transformation, one can assign the
appropriate energy based on the value of x̃2. Subsequently, one
transforms back to the original basis. The operator projecting
onto the anyon j channel of two neighboring anyons i and
i + 1 is thus given by

P
(j )
i = F−1

i �
(j )
i Fi, (12)

where Fi is shorthand for the local basis transformation
depicted in Fig. 2. The operator �

(j )
i projects onto the fusion

channel x̃i = j ; i.e., the fusion of two anyons into an anyon
of type j is penalized with energy E = 1, while the other
possible fusion channels are assigned E = 0. For explicit
matrix representations of P

(j )
i we refer to Appendix C.

It is important to realize that the form of the projector (12)
is universal and applicable to anyonic chains composed of
arbitrary types of anyons. Changing to a different anyon model
will merely result in a different structure of the Hilbert space
and different F symbols.

A. Topological symmetry

In this section, we present a detailed discussion of the “topo-
logical symmetry operator.” The Hamiltonians considered in
this paper commute with the topological symmetry operator,
and the associated symmetry plays a crucial role in the analysis
of the anyonic chain models.

In panel (a) of Fig. 3, a chain of type-j anyons with periodic
boundary conditions is displayed (in this particular case, L =
3). For each type of anyon l, there exists a topological operator
Yl . The action of this operator Yl on the state |x0,x1, . . . ,xL−1〉
[panel (a) of Fig. 3] for L = 3 can be described as follows.
First, an additional anyon of type l is created inside the spine
of the fusion tree, as displayed in panel (b) of Fig. 3. This
additional spin-l anyon is “merged” with the fusion diagram

by applying an F matrix, namely, (Fx0,x0,l
l )

x ′
0

0 , resulting in the
state ∑

x ′
0

(
F

x0,x0,l
l

)x ′
0

0 |x ′
0,x1, . . . ,xL−1〉,

as depicted in panel (c) of Fig. 3. Next, one “moves” the
additional spin-l anyon around the ring, by applying additional

x0
x1 x2 x0

j j j(a)

x0
x1 x2 x0

j j j

l

(b)

x0
x1 x2 x0

x0

j j j

l

(c)

x1 x2 x0

x0

x1

j j j

l

(d)

x2 x0

x0

x1 x2

j j j

l

(e)

x0
x0

x1 x2 x0

j j j

l

(f)

FIG. 3. Various stages in the calculation of the topological symmetry operator.
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F matrices. After the first step, one obtains the state∑
x ′

0,x
′
1

(
F

x0,x0,l
l

)x ′
0

0

(
F

j,x1,l

x ′
0

)x ′
1

x0
|x ′

0,x
′
1, . . . ,xL−1〉,

as illustrated in panel (d) of Fig. 3. Another move of this sort
gives∑

x ′
0,x

′
1,x

′
2

(
F

x0,x0,l
l

)x ′
0

0

(
F

j,x1,l

x ′
0

)x ′
1

x0

(
F

j,x2,l

x ′
1

)x ′
2

x1
|x ′

0,x
′
1, . . . ,xL−1〉,

as shown in panel (e) of Fig. 3. Finally, after L steps, one has
come full circle, giving rise to the states

∑
x ′

0,x
′
1,...,x

′
L

(
F

x0,x0,l
l

)x ′
0

0

L−1∏
i=0

(
F

j,xi+1,l

x ′
i

)x ′
i+1

xi
|x ′

0,x
′
1, . . . ,x

′
L−1〉,

as depicted in panel (f) of Fig. 3, for L = 3. From the general
properties of anyon models (see, e.g., Refs. 14 and 19), we
find that x ′′

0 = x ′
0 (the overall topological quantum number of

an isolated set of anyons cannot change). We can now remove
the additional spin-l anyon in the same way as we added it,
thereby finishing the operation of acting with Yl on the state
|x0,x1, . . . ,xL−1〉. Thus, we obtain the expression

Yl|x0,x1, . . . ,xL−1〉 =
∑

x ′
0,x

′
1,...,x

′
L−1

L−1∏
i=0

(
F

j,xi+1,l

x ′
i

)x ′
i+1

xi

× |x ′
0,x

′
1, . . . ,x

′
L−1〉. (13)

We can now state the matrix elements of the topological
operator Yl in the fusion tree basis:

〈x ′
0,x

′
1, . . . ,x

′
L−1|Yl|x0,x1, . . . ,xL−1〉 =

L−1∏
i=0

(
F

j,xi ,l

x ′
i+1

)x ′
i

xi+1
.

(14)

The above definition of the topological operator does not
depend on whether the additional spin-l anyon is encircled by
the anyon chain [as in panels (b)–(f) of Fig. 3] or whether
the additional spin-l anyon encircles the entire anyon chain.
When using the latter description of the topological operator,
one can think of the additional spin-l anyon as going around
the “fusion product” of all the spin-j anyons constituting the
anyonic chain, or better, encircling the flux through the chain.
This flux i through the chain is related to the additional spin-l
anyon via the modular S matrix, as depicted in Fig. 4. For
a derivation of this relation, see, e.g., Refs. 14 and 19, and
the explicit form of S in the case of su(2)k anyons is given in
Appendix A.

The definition of the topological operator contains elements
of the F matrices only. This is also true for the anyonic
spin Hamiltonians we consider in this paper. It follows

l

i

=
Sl,i

S0,i

i

FIG. 4. Relation between the flux i through the chain and the
additional spin-l anyon.

that the operators Yl commute with the Hamiltonian and
that a topological quantum number can be assigned to all
the eigenstates. This has far-reaching consequences for the
stability of the critical phases. Excited states which are relevant
in the renormalization group sense (i.e., have energy smaller
than 2) may lie in a different topological sector than the ground
state and thus do not drive the system into a different phase.
In addition, we see that the operators Yl play an important
role in the zero-energy ground states at the AKLT point in the
Haldane-gapped phase of the spin-1 models.

III. ANYONIC SU(2)k SPIN-1 CHAINS: ODD k � 5

A. Introduction

We start our discussion of anyonic quantum spin chains with
the anyonic version of the ordinary SU(2) spin-1 Heisenberg
chain, which has long been appreciated as one of the paradig-
matic spin chain models. For antiferromagnetic couplings
the spin-1 chain is well known to form a gapped phase, in
distinction from the gapless spin- 1

2 Heisenberg chain.2

In the following sections, we discuss in detail the anyonic
su(2)k deformations of the ordinary SU(2) spin-1 chain. We
see that much of the seminal features of the SU(2) spin-1
chain carry over to these anyonic deformations with a number
of new subtleties arising. One is a dependence of the observed
phases and phase diagrams on the deformation parameter k.
In particular, we find an even/odd effect in k for k � 5 and
a distinctive behavior for k = 4. We have therefore split our
discussion of the anyonic spin-1 chains into three different
sections. We address anyonic spin-1 chains with odd k � 5 in
the remainder of this section, in which we also give a brief
recount of the phase diagram of the ordinary SU(2) spin-1
chain. The subsequent section is devoted to the case of k � 6
with k being even. Finally, an entire section is devoted to a
detailed account of the physics for the special case of k = 4.

B. The ordinary SU(2) Heisenberg spin-1 chain

Before addressing the physics of the anyonic spin chains we
briefly recapitulate the phase diagram of the ordinary SU(2)
spin-1 Heisenberg chain. While the latter is typically discussed
as a circle phase diagram in terms of bilinear and biquadratic
spin exchange, we recast the phase diagram in terms of the
projector representation in Eq. (9), the generic representation
of anyonic spin chains. Figure 5 shows the phase diagram
in the projector representation of Eq. (9). It contains four
different phases, of which two are gapped phases and two are
gapless phases. The well known Haldane phase2 extends in the
parameter regime − arctan(2/3) < θ2,1 < π/2 and includes
the so-called Affleck-Kennedy-Lieb-Tasaki (AKLT) point21

at θ2,1 = 0 (in which only the projector P (2) is present in the
Hamiltonian), at which the exact form of the ground-state
wave function in terms of a valence bond solid state can
be obtained. The conventional (gapped) Heisenberg chain
(bilinear in spin-1 operators) with antiferromagnetic coupling
corresponds to θ2,1 = − arctan(1/3). The second gapped phase
is a (spontaneously) dimerized phase22 that occurs in the
parameter regime −π/2 < θ2,1 < − arctan(2/3). The phase
transition at θ2,1 = − arctan(2/3) between the two gapped
phases is described by the su(2)2 conformal field theory with
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nematic

SU(3)

SU(3)

dimerized

Haldane

AKLT

SU(2)2

ferromagnet

c = 2

c = 3/2

SU(3)

SU(2)    spin-1 chains

FIG. 5. (Color online) Phase diagrams of the ordinary SU(2) spin-
1 chain in a projector representation (9) with J1 = − sin(θ2,1) and
J2 = cos(θ2,1).

central charge c = 3/2, which happens to possess N = 1
supersymmetry, a result that can be obtained by means of
a (nested) Bethe ansatz.23

At the other end of the Haldane gapped phase, θ2,1 = π/2,
there is a phase transition to gapless phase that extends over the
range π/2 < θ2,1 < 3π/4. This critical phase can be described
by a conformal field theory with central charge c = 2. There
are characteristic quadrupolar (nematic) spin correlations24 in
this phase, as well as a three-sublattice structure25 resulting in
soft modes at momenta K = 0,2π/3,4π/3. At the transition
from the gapped Haldane phase to this critical nematic phase
at θ2,1 = π/2, the system has enhanced SU(3) symmetry. This
point in the phase diagram of the spin-1 SU(2) chain represents
actually the SU(3) chain with a fundamental representation
at each site, which is known to be described by the SU(3)1

conformal field theory. (This chain is again exactly solvable
by a Bethe ansatz.26,27)

Finally, there is a gapless ferromagnetic phase, extending
over the parameter range 3π/4 < θ2,1 < 3π/2. The phase
transitions from this phase to both the adjacent dimerized
phase and the nematic phase are first order. In the vicinity
of the transition between the dimerized and ferromagnetic
phase, early analytical work28 suggested the possibility of an
intermediate nematic phase, which, however has later been
found to not materialize.24,29,30

C. Phase diagram of the anyonic spin-1 chains: Overview

In this section, we provide an overview of the phase diagram
of the anyonic spin-1 chains for odd k � 5. This phase diagram
bears great resemblance to the corresponding phase diagram
of the SU(2) spin-1 Heisenberg chain (Fig. 5). The generic
phase diagram for the su(2)k spin-1 chain is given in Fig. 6.
In Figs. 7 and 8, we display the phase diagrams for k = 5 and
k = 7, respectively, as well as the characteristic spectra of the
four different phases and the (N = 1) supersymmetric critical
point which separates the Haldane gapped phase and the phase
which is called the “Z2 sublattice phase” [this is the phase in-
tervening between the Haldane phase and the Zk-parafermion

‘Haldane’
Zk-parafermions AKLT

su(2)k−4 × su(2)4
su(2)k

su(2)k−1 × su(2)1
su(2)k

super CFT
(N = 1)

su(2)k−2 × su(2)2
su(2)k

su(2)k    spin-1 chains (odd k)

FIG. 6. (Color online) Phase diagrams of the anyonic su(2)k spin-
1 chain with odd k in a projector representation (9), where J1 =
− sin(θ2,1) and J2 = cos(θ2,1). With increasing (odd) index k � 5 the
phase boundaries move as indicated by the arrows.

phase, and it encompasses the angles θ2,1 � −0.19π ≈
− arctan(2/3)].

The spin-1 anyonic spin chain is gapped in a finite region
around θ2,1 = 0. This gapped phase is the anyonic analog of
the Haldane gapped phase, and the point θ2,1 = 0 is equivalent
to the AKLT point. At this point, the Hamiltonian penalizes the
fusion of two neighboring anyons in the spin-2 channel. The
ground states with periodic boundary conditions can be found
exactly at this point, for all k, and the ground-state degeneracy
is (k + 1)/2.

For θ2,1 < 0, there is a phase transition at θ2,1 ≈ −0.19π

into an extended critical region. The position of this phase
transition did not show any appreciable dependence on the
value of k (remember that k � 5 throughout this section). This
gapless region occurs where the ordinary SU(2) spin-1 chain
is in the gapped dimerized phase. This difference in behavior
is the most remarkable distinction between the ordinary SU(2)
spin-1 chain and the anyonic spin-1 chains.

The critical point at θ2,1 ≈ −0.19π ≈ − arctan(2/3), sep-
arating the Haldane phase and the extended critical region,
is described in terms of an N = 1 supersymmetric minimal
conformal model.

For angles θ2,1 > 0, there is a phase transition from the
Haldane phase into another extended critical region which
bears some resemblance to the extended nematic region in
case of the ordinary spin-1 chain. In particular, this phase has
a Z3 sublattice structure. The location of the phase transition
does depend on k, and moves towards θ2,1 = π/2 with
increasing k.

Finally, there is an extended critical region in the vicinity
of θ2,1 = π , the point where the fusion of two neighboring
anyons into the spin-2 channel is favored. This critical phase is
the anyonic analog of the ferromagnetic phase of the ordinary
spin-1 chain, and the critical behavior is described by the Zk

parafermion conformal field theory.
The phase transitions from the ferromagnetic phase to the

neighboring extended critical regions are first order. The phase
transition into the anyonic version of the nematic phase occurs
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FIG. 7. (Color online) The su(2)5 spin-1 chain. The energy spectra for the various phases of the phase diagram are shown in the top left
panel. For the critical phases/points the energy spectra have been rescaled to match the CFT prediction given in Eq. (15). Green squares indicate
the location of the primary fields; red circles indicate the descendant fields. The energies predicted by CFT are given in green (red) for primary
(descendant) fields. The topological symmetry sector is indicated by the violet index. Data shown are for system sizes L = 18 and L = 15,
respectively.

at θ2,1 = 3π/4, independent of the value of k. The location of
the other phase transition depends on k, and moves towards
θ2,1 = 3π/2 for increasing k.

Below, we discuss in detail each of the phases mentioned
above. We focus on the topological properties and the
similarities to the ordinary SU(2) spin-1 chain.
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FIG. 8. (Color online) The su(2)7 spin-1 chain. The energy spectra for the various phases of the phase diagram are shown in the top left
panel. For the critical phases/points the energy spectra have been rescaled to match the CFT prediction given in Eq. (15). Green squares indicate
the location of the primary fields, red circles indicate the descendant fields. The energies predicted by CFT are given in green (red) for primary
(descendant) fields. The topological symmetry sector is indicated by the violet index. Data shown are for system sizes L = 16 and L = 14,
respectively.

D. Critical phases

We investigate the phase diagram of our model numerically
using exact diagonalization. In our analysis, we follow a
standard procedure to determine the conformal field theory

describing the behavior of the extended critical regions and
the critical points: The numerically obtained spectrum is first
shifted (by some constant offset) such that the ground state
has zero energy. The spectrum is then rescaled such that the
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TABLE I. Critical theories in the su(2)k spin-1 chains for k � 5.

Central charge

Gapless theory Coset description k k = 5 k = 7 SU(2) (k → ∞)

Zk phase su(2)k/u(1)2k c = 2 k−1
k+2 c = 8/7 c = 4/3 c = 2

Z2 phase su(2)k−1 × su(2)1/su(2)k c = 1 − 6
(k+1)(k+2) c = 6/7 c = 11/12 c = 1

Z3 phase su(2)k−4 × su(2)4/su(2)k c = 2 − 24
(k−2)(k+2) c = 6/7 c = 22/15 c = 2

Superconformal point su(2)k−2 × su(2)2/su(2)k c = 3
2 − 12

k(k+2) c = 81/70 c = 55/42 c = 3/2

energy of the lowest lying excitation matches the energy of the
lowest lying excitation of the conformal field theory (CFT)
describing the phase. The so-obtained energy spectrum is
finally compared to the energy spectra of candidate CFTs. The
CFT (if any) which matches the numerically obtained energy
levels is the one describing the system at the angle θ . We note
that the list of candidate CFTs is limited: If the chain is critical,
each energy level in the spectrum corresponds to a field in the
applicable CFT. These fields satisfy fusion rules which have
to be compatible with the fusion rules of the underlying su(2)k
theory. This constraint restricts the candidate CFTs that could
describe the criticality of anyonic quantum chains.

The eigenenergies in a system of finite size described by a
CFT take the form31

E = E1L + 2πv

L

(
− c

12
+ h + h̄

)
, (15)

where the velocity v is an overall scale factor and c is the central
charge of the CFT. The scaling dimensions h + h̄ take the form
h = h0 + n, h̄ = h̄0 + n̄, with n and n̄ non-negative integers,
and h0 and h̄0 are the holomorphic and antiholomorphic
conformal weights of the primary fields in the given CFT. The
momenta K (in units 2π/L) are such that K = h − h̄ + K0 or
K = h − h̄ + K0 + L/2, where K0 is a constant shift of the
momentum that determines at which momentum the primary
field occurs. This shift can be determined from the numerics
and is not fixed by conformal symmetry. Thus, different
microscopic realizations of the same CFTs can give rise to
different values for K0. In Table I, we give the CFTs describing
the various different critical behavior observed in the anyonic
quantum chains.

As explained in Sec. II, the anyonic spin chains have
a topological symmetry; all the states in the spectrum can
therefore be assigned a topological quantum number. The
possible eigenvalues of the topological symmetry operator,
also denoted as topological quantum numbers, are in one-to-
one correspondence with the types of anyons which appear in
the particular anyon theory considered.

1. Zk-parafermion phase

We begin the discussion of the phase diagram given in
Fig. 6 with the Zk-parafermion phase, which corresponds to
the gapless ferromagnetic phase in the SU(2) spin-1 chain.
In the anyonic spin-1 chains, this phase contains the point
θ2,1 = π , where it is favorable for two neighboring anyons to
be in the spin-2 channel. One of the phase boundaries of this
phase is located at θ2,1 = 3π/4. The location of the other phase
boundary depends on k: With increasing k, it moves towards

the location of the phase boundary in the SU(2) spin-1 chain
(at angle θ2,1 = 3π/2).

The spectra at angle θ2,1 = π for k = 5 and k = 7 are
displayed in the middle panel of Figs. 7 and 8, respectively. The
energy spectra were rescaled such that the energy of the lowest
excitation matches the energy predicted by the Zk parafermion
CFT.32 Some details of this CFT are reviewed in Appendix E 4.
In the figures, we indicate the locations of the energies of the
states corresponding to the primary fields by green squares,
while blue crosses correspond the numerically obtained energy
levels. We find good agreement between numerically obtained
energy spectra and the Zk parafermion CFTs for both the su(2)5

and the su(2)7 anyon models. For su(2)5, we also indicate the
location of a few descendant fields that match the numerical
prediction. Generally, the identification of descendant fields is
more difficult due to finite size effects.

The fields of the Zk parafermion theory carry two labels
(l,m) that take the values l = 0,1, . . . ,(k − 1), and m =
0,2, . . . ,2(k − 1). The momentum and topological quantum
number of the fields is determined by the labels m and l, re-
spectively. The topological quantum number simply is given by
l. For the momentum, the following relation holds: K = 2mπ

k
.

We find that there are no relevant primary fields which have
the same set of quantum numbers as the identity field. This
implies that there are no relevant operators that can be added to
the Hamiltonian to drive a phase transition if both translational
and topological symmetry are left unbroken. This phase is an
example of a critical phase whose criticality is protected by
the topological symmetry.

2. Z2 phase: (A,D) modular invariant of coset
su(2)k−1 × su(2)1/su(2)k

Upon increasing θ2,1, one encounters a first-order transition
from the Zk parafermion phase into a different extended critical
phase that has a Z2 sublattice symmetry. We identified the
CFTs describing these critical phases for k = 5 and k = 7
as Virasoro conformal minimal models, with central charge
c = 1 − 6

(k+1)(k+2) . However, the field content describing the
criticality is not the “usual” minimal model—the diagonal
(A,A) modular invariant—but the so-called (A,D) modular
invariant which contains a different number of fields. De-
tails of these different modular invariants can be found in
Refs. 33–35. For our purposes, it suffices to notice that some
of the primary fields in the (A,A) invariant do not appear in
the (A,D) invariant while others appear twice. The details of
this CFT are summarized in Table VII in Appendix E 1. The
scaling dimensions of the fields are given in Eq. (E1).
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Again, it is possible to identify the topological sectors and
the momenta at which the various fields occur from the labels
of the fields. As discussed in Appendix E 1, the fields can
be labeled by (r,s), where s takes the values s = 1,3, . . . ,k.
The topological sector is determined by (s − 1)/2, while the
momenta are fixed by the r label. In particular, for k = 5, the
fields with labels r = 1,5 occur at K = 0, while the fields
with label r = 3 occur both at K = 0,π . For k = 7, the fields
with r = 1,3,5,7 occur at K = 0, while the fields at r = 4 are
doubly degenerate and occur K = π .

3. Z3 phase: Coset su(2)k−4 × su(2)4/su(2)k

At θ2,1 = 3π/4, there is a first-order transition between the
Zk “ferromagnetic” phase and a critical region of criticality that
exhibits a Z3 sublattice symmetry. We determined that the CFT
describing the Z3 critical region is a series of coset models with
S3 symmetry, namely, su(2)4×su(2)k−4

su(2)k
. In Appendix E 3, we list

some details of these coset models, in particular, the scaling
dimensions of the primary fields (a detailed analysis can be
found in Refs. 36 and 37). The primary fields are labeled by
two integers (r,s). As was the case for the Z2 critical phase,
only a subset of the fields appear in the spectrum, namely those
with r + s even. In addition, the label s has to be odd, and it
determines the topological quantum number via (s − 1)/2. The
location of the second end point of this Z3 critical region (i.e.,
the transition to the Haldane gapped phase) is found to vary
with k.

In Figs. 7 and 8, we display representative energy spectra
for this phase (angle θ2,1 = 0.7π ). In these spectra, we indicate
the topological sectors of some of the low-lying fields and give
the scaling dimensions of the primary fields.

4. Superconformal critical point

The transition between the Z2 phase and the Haldane
gapped phase occurs at the angle θ2,1 ≈ −0.19π , which
shows little dependence on the level k. The critical point
itself is described by a N = 1 superconformal minimal
model,38 su(2)2×su(2)k−2

su(2)k
. Details on this theory can be found in

Appendix E 2. In the limit of k → ∞, this theory approaches
the su(2)2 theory, which describes the critical point in the
SU(2) spin-1 bilinear-biquadratic spin chain.

In the spectra for k = 5 and k = 7 of the anyonic spin-1
chain at this critical point, we indicate the scaling dimensions
and topological sectors of the primary fields which are labeled
by (r,s). As in the other coset models (excluding the Zk

parafermion theory), the label s is associated with the su(2)k
denominator of the coset and hence labels the topological
sector. The momentum at which the primary fields appear
is determined by K = (r + s mod 2)π .

The superconformal critical point separates the Haldane
gapped phase from the Z2 sublattice critical region. Therefore,
we expect that there will be a relevant perturbation which
drives the phase transition between these two different phases
and that this perturbation does not break any symmetries. A
relevant perturbation is a field which has the same quantum
numbers as the ground state and whose scaling dimension
is smaller than two. Such a field indeed exists: It carries the
labels (r,s) = (3,1) and has scaling dimension 1 + 4

k
; i.e., it is a

relevant field for all k. We note that at K = π , there also is a rel-

evant field with labels (r,s) = (2,1) which has scaling dimen-
sion 3

8 + 3
2k

. As a consequence, a gap is expected to develop if
a perturbation which staggers the chain is added to the system.

5. Stability of the critical phases

We recapitulate that in all three extended critical phases
there is no relevant field in the same symmetry sector as the
ground state, which is a requirement for the phases to be stable.
This notion of topological stability is explained in more detail
in the Sec. VI dealing with the anyonic spin- 1

2 chains, where
we show in detail that the critical behavior of those chains is
protected by the topological symmetry.

As explained above, there is a relevant operator with
the same quantum numbers as the ground state at the
superconformal point. This operator drives the transition from
the superconformal point to the Haldane gapped phase on one
side of the phase diagram and the extended critical region with
Z2 sublattice symmetry on the other side.

E. The gapped Haldane phase

In addition to the gapless phases that were discussed in
detail in the previous section, the spin-1 anyonic chains also
exhibit a gapped phase, as can be seen in Fig. 6. The properties
of this gapped phase are strikingly similar to the properties
of the Haldane phase in the ordinary bilinear-biquadratic
spin-1 chain. For instance, the point θ2,1 = 0 allows for
a straightforward generalization of the AKLT point of the
ordinary SU(2) model. At this AKLT point, the degenerate
ground states can be constructed explicitly (see Sec. III E3).
In Sec. III E4, we discuss the ground states of the open chain
and find the degeneracy of the anyonic spin-1 chain can be
understood in a similar way as the degeneracy of the SU(2)
model at the AKLT point. Before we deal with the ground
states at the AKLT point, we first discuss the energy spectrum
and the phase boundaries of the Haldane phase.

1. Energy spectrum

The energy spectrum in the gapped phase is shown in
Figs. 7 and 8 for coupling parameter θ = 0. It can be seen
that there exists a quasiparticle band whose qualitative shape
is identical to the magnon band of triplet excitations of
the ordinary AKLT point. The complete spectrum is shown
at angle θ2,1 = 0: The ground states occur at momentum
K = 0, and there exists a quasiparticle band (shown in blue)
and a continuum of scattering states (shown in gray). The
quasiparticle band is also displayed for coupling parameters
θ2,1 close to θ2,1 = 0 (in red for θ2,1 > 0, in green for θ2,1 < 0).
It can be seen that when approaching the critical phase
with Z3 sublattice symmetry—i.e., for increasing θ > 0—the
minimum of the quasiparticle band moves away from K = π

towards K = 2π/3 and K = 4π/3. When decreasing the
angle θ2,1 < 0, the quasiparticle band remains at momentum
K = π , which is consistent with the Z2 sublattice symmetry
of the superconformal critical point. From a finite-size scaling
analysis of the energy spectra, we confirm that the gapped
phase does, indeed, extend over a finite range of coupling
parameters θ . Figures 7 and 8 show that the size of the
energy gap (at θ2,1 = 0) increases from �E(k = 5) ≈ 0.16
to �E(k = 7) ≈ 0.24.
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This behavior suggests that the qualitative shape of the
energy spectra at the AKLT point is preserved for all k with the
energy gap at θ2,1 = 0 approaching �E(k → ∞) ≈ 0.41.39

2. Phase boundaries

The Haldane phase and the su(2)k−1 × su(2)1/su(2)k crit-
ical phase are separated by a superconformal critical point,
which is located at coupling parameter θ2,1 ≈ −0.19π for both
k = 5 and k = 7. This is very close to the position of the phase
transition where the Haldane gapped phase gives way for a
different phase in the ordinary SU(2) spin-1 chain (see the
phase diagram in Fig. 6), namely, θ2,1 = − arctan(2/3).

The position of the phase boundary at the other end of the
gapped phase clearly depends on the level k. Comparing the
position of this point for k = 5 and k = 7 suggests that it moves
towards θ2,1 = π/2 for increasing k. This scenario is consistent
with the ordinary model, as can be seen by comparing the
phase diagrams of the anyonic and ordinary SU(2) spin-1 chain
(Figs. 6 and 5, respectively).

3. Ground states in the periodic chain (anyonic equivalent of
AKLT point)

In the ordinary SU(2) spin-1 chain, there exists a point
within the Haldane gapped phase—the so-called AKLT21

point—where the ground state can be obtained exactly. At
the AKLT point, the Hamiltonian penalizes two neighboring
spins that are in the spin-2 channel. To construct the ground
state, it is helpful to think of the spin-1’s as composed of two
spin- 1

2 ’s which are projected onto the spin-1 channel. In the
ground state, each of these spin- 1

2 ’s forms a singlet with a
spin- 1

2 particle that is associated with a neighboring spin-1, as
depicted in Fig. 9. In this situation two neighboring spin-1’s
will never combine into an overall spin-2 and, therefore,
the state has zero energy. It can be shown that for periodic
boundary conditions this ground state is nondegenerate.21

At the corresponding point (angle θ2,1 = 0) in the phase
diagram of the anyonic chains, the Hamiltonian [Eqs. (9)
and (12)] penalizes two neighboring anyons to fuse in the
spin-2 channel. As for the ordinary SU(2) quantum spin model,
the ground state can be obtained exactly at this point. In
contrast to the SU(2) case, there exists a topological symmetry
which dictates that the ground state is degenerate even in the
case of periodic boundary conditions (we will deal with the
open chain in the next section). One of these degenerate ground
states is easily found, while the others can be obtained by
making use of the topological symmetry operator (see Sec. II
for details).

We present the simplest case of k = 5 here and give the
results for arbitrary k in Appendix D. We start by constructing
one zero-energy ground state. For k = 5, the allowed spins are

FIG. 9. (Color online) The AKLT construction of the valence-
bond-solid state on a finite chain of spin-1 degrees of freedom.
Each solid circle represents a spin- 1

2 variable, each dotted ellipse
corresponds to a spin-1 particle, and and each line connecting two
spin- 1

2 variables symbolizes a singlet bond.

0,1,2, and the fusion rules read

0 × 0 = 0 0 × 1 = 1 0 × 2 = 2
1 × 1 = 0 + 1 + 2 1 × 2 = 1 + 2

2 × 2 = 0 + 1.

In particular, the fusion rule 2 × 1 = 1 + 2 implies
that in the labeling of the Hilbert space, the as-
signment (xi−1,xi,xi+1) = (2,2,2) is allowed. In addition,
(xi−1,xi,xi+1) = (2,1,2) is allowed as well. Fixing xi−1 =
xi+1 = 2, one finds that the allowed values of x̃i in the
transformed basis are x̃i = 0,1, because 0 and 1 are the two
possible fusion outcomes of 2 × 2 = 0 + 1. Because at the
AKLT point, only the value x̃i = 2 is penalized, it follows
that the state |v0〉 = |2,2, . . . ,2〉 is a zero-energy ground state
(recall that that Hamiltonian is a positive sum of projectors).

By employing the topological symmetry operators Yl , with
l = 1,2, we can construct other zero-energy ground states. The
operators Yl commute with the Hamiltonian; thus, the states
|v1〉 = Y1|v0〉 and |v2〉 = Y2|v0〉 also have zero energy. It turns
out that |v0〉 is neither an eigenstate of Y1 nor an eigenstate of
Y2. As a result, the number of ground states is three, which is
in accordance with the number of particle types in the model.
We note that Y0 is the identity operator.

The explicit form of the states |v1〉 and |v2〉 is easily written.
First of all, the only basis states with nonzero coefficient in
|v1〉 have xi = 1,2 for all i. Similarly, the only basis states with
nonzero coefficient in |v2〉 have xi = 0,1 for all i. To specify
the coefficients, we introduce the notation #l, which denotes
the number of i’s such that xi = l. In addition, #(l,m) denotes
the number of i’s such that xi = l and xi+1 = m, where we use
periodic boundary conditions, xL = x0.

Then we have

|v1〉 =
∑

xi∈{1,2}
f1({xi}) |x0,x1, . . . ,xL−1〉

(16)
f1({xi}) = (−1)#2d−L

1 d
L/2
2 d

3 #(2,1)
2

1 d
− #(2,1)+#(2,2)

2
2 ,

as well as

|v2〉 =
∑

xi∈{0,1}
f2({xi}) |x0,x1, . . . ,xL−1〉 ,

(17)
f2({xi}) = (−1)#1d

−L/2
1 d

L/2
2 d

#1
2

1 d−#1
2 .

Here, d1 and d2 are the quantum dimensions of particles
with spin-1 and -2 respectively, and are given by d1 =
1 + 2 sin(3π/14) and d2 = 2 cos(π/7), respectively.

We labeled the ground states at the AKLT point by |vl〉
with l = 0,1,2 for a good reason. In Sec. II, we explained
that the topological symmetry operators Yl effectively “add”
or fuse a particle of type l to the fusion chain. At the AKLT
point, this notion becomes very explicit. The states |vl〉 are
thought of as states of the chain in the l sector. In particular,
|v0〉 corresponds to the identity sector. Adding a particle of
type l, i.e., acting with the operator Yl , gives rise to a state in
sector l, or |vl〉 = Yl|v0〉. Moreover, if one acts with Yl on the
state |vj 〉, one obtains a combination of states, which is given
by the fusion rules. In particular, Y1|v1〉 = |v0〉 + |v1〉 + |v2〉,
Y1|v2〉 = |v1〉 + |v2〉, and Y2|v2〉 = |v0〉 + |v1〉. Thus, loosely
speaking, the ground states of the periodic anyonic spin-1
chain at the AKLT point form a representation of the fusion
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algebra su(2)k . Because the modular S matrix diagonalizes the
fusion rules, one can easily write down combinations of the
ground states which are also eigenstates of the operators Yl ,
namely, |ψAKLT,i〉 = ∑2

j=0 Si,j |vj 〉, where Si,j is the modular
S matrix for (the integer sector of) su(2)5, and the sum is over
integer values.

For the explicit form of the AKLT ground states in the
general case su(2)k , we refer to Appendix D.

4. Ground states in the open chain (anyonic equivalent
of AKLT point)

Before describing the structure of the ground states of
the open anyonic chains at the AKLT point, we briefly
review the physics of the valence bond solid ground state
at the AKLT point (θ2,1 = 0 in phase diagram Fig. 6) of the
ordinary bilinear-biquadratic spin-1 Heisenberg chain.1,21 The
Hamiltonian at θ = 0 consists only of the projector onto a total
spin-2 of two nearest-neighbor spins with a positive sign. Thus,
in the ground state, a total spin-2 of two nearest-neighbor spins
is suppressed. In the usual tensor product basis of local (site)
states, the valence bond solid ground state is given by

|�ab〉 = εb1a2εb2a3 · · · εbL−1aL
∣∣ψab1

〉 ⊗ ∣∣ψa2b2

〉 ⊗ · · · ⊗ ∣∣ψaLb

〉
,

(18)

where the summation over repeated upper and lower indices
is assumed. The local spin-1 state |ψab〉 is represented as the
symmetric part of the tensor product of two spin- 1

2 variables,

|ψab〉 = 1√
2

(|ψa〉 ⊗ |ψb〉 + |ψb〉 ⊗ |ψa〉), (19)

where ψa denotes one of the two eigenstates of the Sz spin- 1
2

operator, which we label by a = 1,2. The antisymmetric tensor
εab enforces a singlet bond of the spin- 1

2 variables al+1 and
bl . Therefore, the total spin of the two nearest-neighbor spin-1
variables, consisting of four spin- 1

2 variables which are labeled
by al , bl , al+1, bl+1, can only assume the values 0 or 1. For a
chain with open boundary conditions (see Fig. 9) the first and
the last spin- 1

2 variables indexed by a1 and bL do not form a
singlet bond. These two spin- 1

2 variables can add up to a total
spin 0 or a total spin 1, giving rise to a fourfold degeneracy for
the spin-1 bilinear-biquadratic chain at the AKLT point with
open boundary conditions.

With the results above in mind, we now consider the fusion
basis of the anyonic spin-1 chain, as shown in Fig. 1. We
consider a chain of length L with open boundary conditions
in the sense that variables x0 and xL+1 form the ends of the
chain. In analogy with the above discussion, we assume that
variables x0 and xL+1 can add up to a total spin of x0 × xL+1

of 0 or 1 in the zero-energy ground states.
For a given choice of x0 and xL+1, we expect that there

are no zero-energy ground states if |xL+1 − x0| > 1 because
the fusion product x0 × xL+1 does not contain 0 nor 1 in this
case. We expect one ground state to be present if x0 × xL+1

contains 0 or 1, but not both. Finally, if both 0 and 1 appear
in the fusion product x0 × xL+1, we expect two zero-energy
ground states. There is no Sz quantum number in anyonic spin
chains associated with the “spins,” and the state with total
spin-1 (or better, topological charge 1) is thus not degenerate.

The analysis of the previous section is helpful in under-
standing the above-discussed results. We found that the ground
states of the periodic chain have a particular form; namely,
the only basis-states which have nonzero coefficients in these
states are such that all the xi take at most two values that
have to differ by one. Thus, there is a ground state with all
the xi ∈ {0,1}, one ground state with the xi ∈ {1,2}, etc. In
addition, the state with all xi = (k − 1)/2 is also a zero-energy
ground state.

The ground states of the open chain must be such that the
bulk part of these states does not give an energy contribution.
Thus, for a particular choice of boundary conditions x0 and
xL+1, one can construct one ground state if |x0 − xL+1| = 1,
because there is exactly one corresponding zero-energy ground
state with periodic boundary conditions. For x0 = xL+1 = 0,
there is also one zero-energy ground state, while for x0 =
xL+1 > 0, there are two zero-energy ground states. For |x0 −
xL+1| > 1, one finds that there are no zero-energy ground
states. All of this is in accordance with the considerations
above.

We computed the ground-state degeneracies for all possible
choices of fixed boundary occupations (x0,xL+1) for both the
k = 5 and the k = 7 model and find that the above-described
picture is indeed the appropriate one. At the AKLT point
θ2,1 = 0, the ground-state energy is independent of the system
size. In the Haldane gapped phase away from the AKLT
point, the ground-state degeneracy is not exact and finite
size effects occur. In Fig. 10, we show the lowest energies
�Ei(x0,xL+1) = Ei(x0,xL+1) − E0(x0,xL+1), i � 1, of the
su(2)5 spin-1 chain at coupling parameter θ2,1 = −0.01π . The
energy E0(x0,xL+1) is the lowest energy of the open chain
with fixed boundary occupations x0 and xL+1, and it is not
necessarily a ground-state energy. By this we mean that the
state is not a perturbation of a zero-energy ground state at
θ2,1 = 0. For the boundary condition x0 = 0, xL+1 = 2, the
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FIG. 10. (Color online) The eigenenergies �Ei(x0,xL+1) :=
Ei(x0,xL+1) − E0(x0,xL+1) (i � 1) of the su(2)5 anyonic spin-1
chain with fixed boundaries x0 and xL+1 as a function of 1/L at
θ2,1 = −0.01π . The legend at the lower left side indicates the values
of x0 and xL+1. The energy E0(x0,xL+1) is the lowest energy and
not necessarily a “ground-state energy.” For x0 = xL+1 = 1 and for
x0 = xL+1 = 2, there are two almost degenerate zero-energy states,
and �E1(x0,xL+1) corresponds to the finite-size splitting of the two
ground states that decay exponentially with system size (see the inset).
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lowest energy E0(0,2) is not a ground state (in the above
sense) since both �E1(0,2) and �E2(0,2) approach zero in the
limit 1/L → 0, as demonstrated in Fig. 10. For the boundary
condition x0 = 1, xL+1 = 1, as well as x0 = 2, xL+1 = 2,
the ground state is twofold degenerate, and the splitting of
the two ground-state energies at finite system size L decays
exponentially in 1/L, as illustrated in the inset of Fig. 10.
Again, this is in agreement with the above discussion because
1 × 1 = 0 + 1 + 2 and 2 × 2 = 0 + 1 [for su(2)5]; i.e., both
fusion products allow for a total spin 0 and a total spin 1.
For all remaining possible boundary conditions, there is one
ground state, as can be seen from Fig. 10, where �E1(x0,xL+1)
approaches a finite energy in the limit 1/L → 0. We also
verified this scheme for the su(2)7 model and for different
values of θ2,1 in the gapped phase.

IV. ANYONIC SU(2)k SPIN-1 CHAINS: EVEN k � 6

In the previous section, we discussed in detail the odd-k
anyonic spin-1 chains. We found that the phase diagram of
these models (see Fig. 5), bears great resemblance to the phase
diagram of the SU(2) spin-1 chain (see Fig. 6). We observed
one striking difference between the ordinary and the anyonic
spin-1 chains, namely, the absence of a (gapped) “dimerized”
phase in the case of the anyonic spin-1 chains. In this section,
we present our result for the even-k anyonic spin-1 chains.
For even k, the phase diagram is very similar to the case of
odd k with the exception of an additional gapped phase which
resembles the dimerized phase of the SU(2) spin-1 chain.

In this section, we focus on the case k = 6; however, our
analysis for k = 8 indicates that the case k = 6 is generic
for k even. The generic structure of the phase diagram for
even k � 6 is analogous to the generic structure of the phase
diagram for odd k � 5. We note that the case k = 4 is special
and is considered in detail in the following section.

The fact that the phase diagrams for k even and odd differ is
a very interesting feature of our model. As far as we are aware,
this is the first time that a dependence on the parity of the
level k has been observed. As we point out in the discussion,
Koo and Saleur40 considered a closely related loop model
which contains a continuous parameter that plays the role of
the discrete level k. The model considered by Koo and Saleur
does not show any sign of the “even-odd” effect we observe.
It would be very interesting to understand the differences and
similarities of these two models in greater detail.

The phase diagram of the k = 6 anyonic spin-1 chain is
presented in Fig. 11. We discuss the similarities and differences
of this phase diagram to the phase diagram of the case k = 5
(Fig. 6). The locations of the phase boundaries in Fig. 11
correspond to the case k = 6. As was the case for k odd,
we observe that some of the phase boundaries change upon
increasing the value of (even) k. The direction of the movement
of the phase boundaries is indicated by the arrows in the phase
diagram.

Comparing the phase diagrams for odd and even k in Figs. 6
and 11, we first note that large parts of the phase diagram have
a similar structure. At angle θ2,1 = 0, we encounter a gapped
Haldane phase, precisely as in the case of odd k. At angle θ2,1 ≈
−0.19π , there is a phase transition that is described by a N = 1
supersymmetric minimal model from the Haldane phase into

‘Haldane’

super CFT
(N = 1)

su(2)k−2 × su(2)2
su(2)k

su(2)k    spin-1 chains (even k)

Zk-parafermions

su(2)k−4 × su(2)4
su(2)k

‘dimerized’

AKLT

FIG. 11. (Color online) Phase diagram of the even-k anyonic
su(2)k spin-1 chain in a projector representation (9), where J1 =
− sin(θ2,1) and J2 = cos(θ2,1). The locations of the phase boundaries
correspond to the case k = 6. Some of the phase boundaries move
with increasing (even) k; the arrows indicate the direction of the
change.

an extended critical region (we comment on the latter critical
region below). At the other end of the gapped Haldane phase,
there is a phase transition at angle θ2,1 ≈ 0.09π (for k = 6)
to a critical region that exhibits a Z3 sublattice symmetry and
is described by the coset su(2)4 × su(2)k−4/su(2)k (we note
that the corresponding critical region for odd k is described
by the same CFT). This critical region extends all the way to
θ2,1 = 3π/4 at which point there is a first-order transition to a
critical region with Zk sublattice symmetry. So far, the phase
diagram for even k has the same structure and phases as the
one for odd k.

The phase diagrams for odd k versus even k begin to diverge
at the angle where, for k odd, the critical region with Zk

sublattice symmetry transitions to a critical phase with Z2

sublattice symmetry. While the former (Zk) critical phase also
appears for k even, the latter (Z2 critical phase) does not;
rather, there is a phase transition at θ2,1 ≈ 1.41π (for k = 6) to
a gapped phase. This gapped phase is characterized by broken
translational invariance, as signified by a zero-energy ground
state at K = π present at the angle θ2,1 = 3π/2. In addition,
there are (k + 2)/2 degenerate ground states at momentum
K = 0 with topological quantum numbers (0,1,2, . . . ,k/2).
The zero-energy ground state at K = π is in topological
symmetry sector k/4. Clearly, the nature of this “dimerized”
gapped phase differs from the Haldane gapped phase.

Between the dimerized gapped phase and the Haldane
gapped phase, we find an extended critical region. Due to
the rather small extent of this critical region and the fact that
we could not study large enough systems (the dimension of
the Hilbert space increases with k), we have not been able to
determine which CFT describes this extended critical region.

It is interesting to note that the structure of the phase
diagram for even k bears closer resemblance to the phase
diagram of the SU(2) bilinear-biquadratic spin-1 chain (see
Fig. 5) than to the phase diagram for odd-k anyonic spin-1
chains. In particular, both the phase diagrams of the ordinary
SU(2) spin-1 chain and the even-k anyonic spin-1 chain
exhibit dimerized phases in the area surrounding the angle
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θ2,1 = 3π/2. It appears that for increasing even k, the phase
diagram of the anyonic chain gravitates towards the phase
diagram of the SU(2) chain. Our results for the k = 8 anyonic
chain are consistent with this picture.

The phase diagram for the k = 6 anyonic spin-1 chain
displays a unique feature; namely, its structure is symmetric in
the line through the points θ2,1 = 3π/4,7π/4. The underlying
reason is that the fusion rules of the su(2)k theory are
symmetric under the exchange j ↔ k/2 − j , where the labels
j take the values j = 0,1/2, . . . ,k/2. In the case of k = 6,
this symmetry exchanges anyon spins 1 ↔ 2. The location
of the symmetry points follow from our parametrization of
the Hamiltonian, as given in Eq. (9). We point out that this
symmetry relates only the sets of energy eigenvalues, but not
the possible degeneracy of the levels or their angular momenta.

For example, the energy levels levels at the point θ2,1 = π—
where the system is described by the Z6 parafermion theory—
are identical to those at angle θ2,1 = π/2. At the latter point,
the system is described by the coset su(2)2 × su(2)4/su(2)6,
which for k = 6 corresponds to the Z6 parafermions. We note
that the momenta of the states are not identical.

Similarly, the energies of the levels in the dimerized gapped
phase are the same as the energies of the levels in the Haldane
phase, even though the nature of these gapped phases is very
different. We return to this issue below. Finally, we note that
the phase transition from the dimerized phase to the critical
region between the dimerized phase and the Haldane phase is
given by an N = 1 supersymmetric model. As far as we can
tell from our numerics, this is only true for the case k = 6. For
k = 8 and higher, we have not been able to determine the CFT
describing this phase transition.

V. ANYONIC SU(2)k SPIN-1 CHAINS: k = 4

Having discussed the anyonic spin-1 models for odd k � 5
and even k � 6, we finally turn our attention to the remaining
case k = 4. We pointed out in the Introduction that the phase
diagram for k = 4 has a different structure than the phase
diagrams for other values of k. The underlying reason is that
the spin-1 particle is special in this case. The symmetry of
the fusion rules under the exchange j ↔ k/2 − j implies that
j = 1 is mapped onto itself for k = 4. In addition, k = 4 is the
lowest k for which a general fusion rule 1 × 1 = 0 + 1 + 2
applies. We refer to the discussion in Sec. VII for more details.

A. Hilbert space and Hamiltonian

The basis of the su(2)4 spin-1 chain is depicted in Fig. 1.
Each labeling {xi}i=0,...,L−1 ∈ {0, 1

2 ,1, 3
2 ,2} that satisfies the

fusion rules at the vertices corresponds to a different basis
state. In fact, the Hilbert space of the su(2)4 spin-1 chain splits
into two independent sectors: The fusion rules impose that
the local basis elements are either all integer valued or all
half-integer valued. We use the following terminology:

(1) integer sector (IS), {xi}i=0,...,L−1 ∈ {0,1,2};
(2) half-integer sector (HIS), {xi}i=0,...,L−1 ∈ { 1

2 , 3
2 }.

We only consider periodic boundary conditions for the
su(2)4 chain, i.e., xL = x0.

We find that the differences in behavior between the IS and
HIS su(2)4 spin-1 chains are rather subtle. We first describe the

behavior of the model in the IS sector, followed by a discussion
of the HIS sector.

As a first minor difference, we note that the number of states
in the HIS is given by 2L + δL,0, where L is the length of the
chain. In the IS sector, however, the number of states is 2L + 1
when L > 0 is even and 2L − 1 when L is odd. The additional
state in the even-L IS occurs at momentum K = π , while the
additional state in the odd-L HIS occurs at momentum K = 0.
Those are the only differences; the remaining 2L (2L − 1)
states where L even (odd) have the same momenta in the IS
and HISs.

As we did for k � 5, we represent the Hamiltonian of
the su(2)4 spin-1 chain in terms of the projectors onto the
1 and 2 channels with couplings J1 and J2, respectively.
These couplings are parametrized by an angle θ2,1, where J2 =
cos θ2,1 and J1 = − sin θ2,1. Explicitly, the Hamiltonians read

H
(k=4)
IS =

∑
i

cos θ2,1P
(2)
i,IS − sin θ2,1P

(1)
i,IS, (20)

H
(k=4)
HIS =

∑
i

cos θ2,1P
(2)
i,HIS − sin θ2,1P

(1)
i,HIS . (21)

The explicit form of the projectors are given in
Appendix C 3 a.

B. Phase diagram in the integer Hilbert space sector (IS)

The phase diagram of the IS su(2)4 spin-1 chain
[Hamiltonian given in Eq. (20)] is shown in the leftmost panel
of Fig. 12. The phase diagram consists of two extended gapped
phases which are separated by two extended gapless regions.
The two phase transitions between the gapped phase with a
Z3-sublattice structure and the two gapless regions are first
order. However, the phase transitions into the gapped phase
with a Z2-sublattice structure are continuous.

The critical behavior of the gapless regions is described
by the Z2 orbifold theory of the u(1)-compactified boson with
central charge c = 1. Interestingly, the compactification radius
varies continuously as a function of θ2,1 in the gapless regions.
We found it difficult to determine the range of compactification
radii which are realized in the model. The reason is that the
finite size data make it difficult to determine the location of
the transition between the gapped phase with the Z2-sublattice
structure and the critical regions. We devote Sec. V D to the
issue of the location of these phase boundaries, dealing with
the IS and the HIS at the same time.

1. Gapped phases (IS)

Gapped phase θ2,1 = π/2. The gapped phase containing the
point θ2,1 = π/2 extends from θ2,1 = 0 to θ2,1 = 3π/4. These
phase boundaries are easy to locate because the transitions to
the gapless regions are first-order transitions, as we show in
Sec. V D.

This gapped phase has a Z3 sublattice symmetry, which
results in a threefold degenerate ground state for system sizes
that are a multiple of 3. These ground states occur at momenta
K = 0,2π/3,4π/3 and their exact form can be established
throughout the whole gapped phase.

At angle θ2,1 = π/2, the Hamiltonian can be solved
exactly. At this point, the Hamiltonian reduces to the equal
sum of two projectors, namely, onto the spin-0 and spin-2
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FIG. 12. (Color online) Phase diagrams of the su(2)4 spin-1 chain in the integer sector and half-integer sector and different projector
representations. The colored circles indicate special points in the c = 1 gapless phase that can be matched to the labeled CFTs.

channels (in addition, there is also a constant term −L).
Throughout the region 0 � θ2,1 � 3π/4, the Hamiltonian is
a sum of two projectors with positive coefficients (for a matrix
representation of the Hamiltonian, see Appendix C 3 ). The
three degenerate ground states are built from the basis state of
the form |11a1 11a2 11a3, . . . ,11aL/3〉 and its two translations,
where the ai represent the states |a〉3i = (|0〉 − |2〉)/√2 at
position 3i. These three states can easily be combined to form
three-momentum eigenstates. These ground states have energy
−L and are eigenstates of the two projectors with eigenvalue 0.
The latter explains that these ground states persist throughout
the whole gapped phase.

Gapped phase θ2,1 = 3π/2. In the gapped phase surround-
ing the point θ2,1 = 3π/2, the spectrum exhibits a Z2 sublattice
symmetry and a cosine-shaped quasiparticle dispersion. For
even-L system sizes, the ground state is threefold degenerate,
with the ground states occurring at momenta K = 0,0,π . Two
of the three ground states at angle θ2,1 = 3π/2 consist of states
of the form |1b1 1b2 1b3, . . . ,1bL/2〉 and its translation by one
site, where |b〉2i = (|0〉 + |2〉)/√2 at site 2i. These two states
can be combined to form the two ground states at momenta
K = 0,π . The state |111 . . . 1〉 is the third ground state and
has momentum K = 0. For odd system sizes, this state is the
only ground state of the system.

2. Gapless phases (IS)

The critical behavior of the su(2)4 spin-1 chain is particu-
larly interesting. We find that the critical behavior depends
continuously on the angle describing the interaction. At
particular values of the angle θ2,1, the behavior matches
particular CFTs with central charge c = 1. In particular, these
CFTs are the Z2 orbifolds of a boson compactified on a circle
of radius R = √

2p. For the p integer, these are rational
CFTs,41,42 described in detail in the Appendix E 5. In this
section, we limit the discussion to the most prominent features
of these theories. In Sec. V D, we point out the particular
orbifold theories that are realized in the su(2)4 spin-1 chain.

To identify the critical theories describing the critical
behavior as a function of the angle, we employ the standard
technique of first shifting the spectrum such that the ground
state has zero energy, followed by a rescaling of the energy to
elucidate the conformal nature of the spectrum.

By means of this procedure, we identified several of the c =
1 orbifold theories. These theories “share” several operators
that appear in the spectrum throughout the critical region.
These operators are the ground state with h0 = h̄0 = 0, two
twist fields σ1,2 with scaling dimension hσ + h̄σ = 1/8, two
twist fields τ1,2 with scaling dimension hτ + h̄τ = 9/8, a field
� with scaling dimension 2, and, finally, two fields 1,2 with
scaling dimension p/2. For p = 1, the fields just described
exhaust the full list, but in general, there are p − 1 additional
fields φλ with scaling dimension λ2

4p
. These fields, as well as

the associated momenta and topological symmetry sectors,
are given in Table II. We checked that the assignments of the
topological symmetry sectors are compatible with the fusion
rules of the orbifold CFTs (for details, see Appendix E 5 ). For
various values of p, the orbifold theories are also known under
specific names, such as the Kosterlitz-Thouless theory (p =
1), the theory of two decoupled Ising models (p = 2), the Z4

parafermion CFT (p = 3), the four-state Potts model (p = 4),
and the superconformal minimal model with c = 1 (p = 6).

We identified several of the c = 1 Z2 orbifold theories,
including the ones with p = 1,2,3,4,5,6. On the left side of
Fig. 13, we show the energy spectra associated with the p = 1
and p = 3 orbifold theories in the Z2 critical region. On the
right side of Fig. 13, we display the energy spectra associated
with the p = 2 and p = 6 orbifold theories in the Z4 critical
region.

In Table III, we list the locations of some of the critical
points as extracted from the numerical data. The procedure we
followed to obtain these locations is described in more detail
in Sec. V D. The location θ ≈ −0.20π of case p = 6—the
superconformal theories—is very close to the location of the
superconformal point for the su(2)k spin-1 chains with k � 5,
namely, θ2,1 ≈ −0.19π .
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TABLE II. The scaling dimensions (h + h̄) of the operators of the Z2 orbifold of the compactified boson on a circle of radius R = √
2p

for some integer p. The following abbreviations are used: sCFT, the (minimal) superconformal CFT with central charge c = 1; Potts, 4-state
Potts CFT; pCFT, Z4 parafermion CFT; (Ising)2, square of the Ising CFT; KT, Kosterlitz-Thouless theory, equivalent to the compactified boson
theory u(1)8. We also list the numerically observed topological quantum numbers (Y symmetry: y0 = y2 = 2, y1/2 = y3/2 = 0, y1 = −1) and
momentum quantum numbers K at which the fields appear in the various critical regions. The symmetry sectors of the fields with scaling
dimensions p/2 depend on p. This is a consequence of the fact that the field with scaling dimension (p − 1)2/2p at radius p corresponds to
the field with dimension p/2 at radius p − 1.

IS IS HIS HIS
p 1 2 3 4 6 Y Z2 Z4 Z2 Z4

h + h̄ KT (Ising)2 pCFT Potts sCFT 9 10 Top. K K K K

0 0 0 0 0 0 0 0 y0 0 0 0 0
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8 y1/2 0 π

2 0 π

2
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8 y1/2 π 3π

2 π 3π

2
9
8

9
8

9
8

9
8

9
8

9
8

9
8

9
8 y1/2 0 π

2 0 π

2
9
8

9
8

9
8

9
8

9
8

9
8

9
8

9
8 y1/2 π 3π

2 π 3π

2

2 2 2 2 2 2 2 2 y0 0 0 0 0
1

2p

1
4

1
6

1
8

1
12

1
18

1
20 y1 π π 0 π

4
2p

2
3

1
2

1
3

2
9

1
5 y1 0 0 0 0

9
2p

9
8

3
4

1
2

9
20 y0 π π 0 π

16
2p

4
3

8
9

4
5 y1 0 0 0 0

25
2p

25
12

25
18

5
4 y1 π π 0 π

36
2p

2 9
5 y0 0 0 0 0

p

2
1
2 1 3

2 2 3 9/2 5 y0,y1 0 0 0 π
p

2
1
2 1 3

2 2 3 9/2 5 y0,y1 0,π π π 0,π

The location of the superconformal point in the Z4 critical
region is θ2,1 ≈ 0.92π . In general, the relation between critical
angle in the Z2 critical region (which we for now denote by
θ2; similarly, θ4 denotes the angle in the Z4 critical region) is

θ4 = π − tan−1(1 + tan θ2), θ2 = − tan−1(1 + tan θ4).

(22)

The spectra in Fig. 13 illustrate the different sublattice
symmetry for the two gapless regions. In these spectra, we
also indicate the topological symmetry sectors of some of
the low-lying states. In the case of su(2)4, the topological
symmetry operator Y has three distinct eigenvalues, which are
given by y0 = y2 = 2, y1/2 = y3/2 = 0, and y1 = −1. We thus
use the labels y = 0,1/2,1 for these sectors.

The presence of the different critical models with the same
central charge c = 1 indicates the presence of a marginal
operator that drives the “transition” between the different
critical theories and that gives rise to continuously varying
critical exponents. Indeed, all the orbifold models share
a marginal operator � with scaling dimension 2 whose
topological symmetry coincides with that of the ground state.
It is this operator which is responsible for the critical region
with continuously changing exponents. It proved difficult to
locate the phase transition between the critical regions and the
gapped phase around θ2,1 = 3π/2. One reason might be that
the transition to the gapped phase is also driven by a marginal
operator, which allows for large finite size effects that thwart
the localization of these critical points.

C. Phase diagram in the half-integer Hilbert space sector (HIS)

The behavior of the su(2)4 spin-1 chain in the HIS mimics
very closely that of the IS. The phase diagram is presented
in the rightmost panel in Fig. 12. The phase boundaries are
located at the same positions, but the details of the observed
phases differ slightly. In the following discussion of the HIS
su(2)4 spin-1 chain, we emphasize the differences between the
two sectors.

1. Gapped phases (HIS)

As noted above, there are some differences in the dimen-
sions of the Hilbert spaces in the IS and the HIS, respectively.
As a consequence, the IS and HIS models have different
sublattice structures in the gapped phases. Namely, in the
HIS, the ground state occurs at momentum K = 0, and it is
nondegenerate. All other features of the gapped phases in the
HIS are very similar to those observed in the IS.

Gapped phase θ2,1 = π/2. In gapped phase that surrounds
the angle θ2,1, the ground state is nondegenerate and occurs
at momentum K = 0 (there is no sublattice structure). The
model can be solved at angle θ2,1 = π/2: The ground state can
be expressed as follows:

|GS〉 =
∑

xi=1/2,3/2

(−1)#(3/2,3/2)|x0,x2, . . . ,xL−1〉.

Here, #(3/2,3/2) denotes the number of times the sequence
(xi,xi+1) = (3/2,3/2) occurs in the state |x0,x2, . . . ,xL−1〉
(note that periodic boundary conditions impose xL = x0). As
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FIG. 13. (Color online) The su(2)4 chain: IS. Energy spectra at various in the gapless phases of the phase diagram in Fig. 12(a). The energy
spectra have been rescaled to match the CFT prediction given in Eq. (15). Green squares indicate the location of the primary fields; red circles
indicate the descendant fields. The topological symmetry sector is indicated by the violet index. Data shown are for system size L = 20.

was the case for the ground state(s) at θ2,1 = π/2 in the IS, this
state is, in fact, the ground state throughout the whole gapped
phase, i.e., for angle 0 � θ2,1 � 3π/4.

TABLE III. The approximate locations of some of the critical
theories of the su(2)4 spin-1 chain (20) in the integer sector (IS) are
listed for both the Z2 and the Z4 critical regions. The angles without
asterisks are obtained directly from exact diagonalization for L = 20;
i.e., we matched the momentum-resolved spectrum to the CFT. The
angles with an asterisk were obtained by using the relations between
the angles θ2 and θ4, as explained in the text. We only list those
values of p for which we could match the CFT description beyond
any doubt.

p Theory Z4 Z2

1 Kosterlitz-Thouless 0.755π∗ −0.01π

2 Ising2 0.77π −0.04π

3 Parafermion 0.80π −0.08π

4 4-state Potts 0.83π −0.13π

5 0.88π −0.17π

6 superCFT 0.92π −0.20π

7 0.96π −0.23π∗

8 0.98π −0.24π∗

Gapped phase θ2,1 = 3π/2. In the gapped phase that
surrounds the angle θ2,1 = 3π/2, the ground state is nondegen-
erate and occurs at momentum K = 0 (there is no sublattice
symmetry). At θ2,1 = 3π/2, the ground state is given by

|GS〉 =
∑

xi=1/2,3/2

(−1)#(1/2,3/2)|x0,x2, . . . ,xL−1〉.

All basis states contribute to the ground state. The sign of a
term is given by the number of times the sequence (xi,xi+1) =
(1/2,3/2) occurs in the basis state |x0,x2, . . . ,xL−1〉 (periodic
boundary conditions are assumed).

2. Gapless phases (HIS)

As in the IS, the phase diagram in the HIS has two extended
regions where the model is critical. The criticality is again
described by Z2 orbifold models. We identified the orbifold
models with parameters p = 2, . . . ,9. Some of the critical
angles are given in Table IV. In Fig. 14, we give the spectrum
of associated with the p = 2 orbifold theory in the Z4 critical
region (left panel), and the p = 3 orbifold theory in the Z2

critical region (right panel).
The difference between the two gapless regions in the

HIS lies in the momentum quantum numbers, as indicated in
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TABLE IV. The approximate locations of some of the critical
theories of the su(2)4 spin-1 chain in the HIS [Eq. (21)] for both the
Z2 and the Z4 critical regions. The angles without asterisk are obtained
directly from exact diagonalization for L = 20 by matching the
momentum-resolved spectrum to the CFT. The angles with asterisks
were obtained by using the relations between the angles θ2 and θ4, as
given in Eq. (22). We only list those values of p for which we were
able to match the CFT description beyond any doubt.

p Theory Z4 Z2

2 Ising2 0.852π −0.148π

3 Parafermion 0.795π −0.078π

4 4-state Potts 0.774π −0.046π

5 0.766π −0.030π

6 superCFT 0.761π −0.020π

7 0.758π∗ −0.015π

8 0.756π∗ −0.011π

Table II. The topological symmetry sectors in the HIS coincide
with those found in the IS (see Table II). While this is to
be expected for topological quantum numbers, it nevertheless
shows that our results are consistent.

A major distinction between the IS and the HIS phase
diagram of the su(2)4 spin-1 chain is the order of the orbifold
theories. By comparing the leftmost and the rightmost panels of
Fig. 12, it can be seen that in the IS, the orbifold theories appear
in ascending p order when moving away from the first-order
transition points, while in the HIS, the orbifold theories appear
in descending p order when moving away from gapped phase I.
We exploit this result in locating the position of the critical end
point of one of the the gapped phases (see following section).

D. The location of the phase boundaries

To locate the boundaries of the gapped and critical regions
of the su(2)4 spin-1 chain, we consider the ground-state energy
as a function of the interaction angle θ . The analysis is most
easily carried out by using an alternative parametrization of
the Hamiltonian. Two spin-1 anyons can fuse into either a

spin-0, a spin-1, or a spin-2 anyon; therefore we can write the
Hamiltonian in terms of projectors onto the spin-2 and spin-0
channels, instead of the spin-2 and spin-1 channels, as we did in
Eq. (20). By making use of the relation I = P (0) + P (1) + P (2),
we find that the Hamiltonian

H
(k=4)
J2−J0 =

∑
i

cos θ2,0P
(2)
i − sin θ2,0P

(0)
i (23)

is related to the Hamiltonian of Eq. (20),

H
(k=4)
J2−J1 =

∑
i

cos θ2,1P
(2)
i − sin θ2,1P

(1)
i , (24)

via

tan θ2,1 = − tan θ2,0

1 + tan θ2,0
, (25)

up to an unimportant shift in energy.
The ground-state energy as a function of the angle θ2,0 is

given in Fig. 15 for a chain of size L = 18. The kinks in
the ground-state energy indicate that there are two first-order
phase transitions. These first-order phase transitions mark the
boundaries of the gapped phase located at −π/2 < θ2,0 < 0 in
the new angle variable θ2,0 (0 < θ2,1 < 3π/4 in terms of the
original variable θ2,1; see phase diagram in Fig. 12).

To identify the location of the continuous transition between
the other gapped phase and the neighboring gapless phases, we
plot the first and second derivatives of the ground-state energy
per site. From these derivatives, it can be concluded that these
transitions are roughly located at θ2,0 = π/2 and θ2,0 = π . In
terms of the original variable θ2,1, these locations correspond to
θ2,1 = −π/4 and θ2,1 = π . This conclusion is corroborated by
Fig. 16, in which we plot the ground-state energy in the gapped
phase surrounding the angle θ2,1 = 3π/2, i.e., θ2,0 = 3π/4 for
system sizes ranging from L = 8 to L = 20.

In order to locate the phase boundaries, we also considered
the structure of the orbifold CFTs describing the gapless
phases (we refer to Appendix E 5 for more details on the
orbifold CFTs). We know that throughout the critical region,
two fields with scaling dimension h + h̄ = 1/8 and two fields
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FIG. 14. (Color online) The su(2)4 chain: HIS. Energy spectra at various points in the gapless phases of the phase diagram displayed in
Fig. 12(c). The energy spectra have been rescaled to match the CFT prediction given in Eq. (15). Green squares indicate the location of the
primary fields; red circles indicate the descendant fields. The topological symmetry sector is indicated by the violet index. Data shown are for
system size L = 20.
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FIG. 15. (Color online) The ground-state energy per site (top
panel) and its first and second derivative (middle and bottom panels,
respectively) of the IS su(2)4 chain. Data shown are for system size
L = 18.

with scaling dimension h + h̄ = 9/8 must appear. In addition,
there are several fields with scaling dimensions λ2/(2p)
(λ = 1, . . . ,p − 1) for some value of p. Depending on the
sector (IS or HIS), and depending on the critical region, these
fields appear at different momenta, as detailed in Table II. This
table also includes our numerical results for the topological
symmetry sectors of the various fields.

The structure of the critical theories describing the critical
region allows us to numerically determine the value of p as
a function of the angle θ2,0. Moreover, in doing so, we gain
insight into the locations of the phase boundaries. We proceed
as follows. We first shift the spectrum such that the ground
state has energy zero, and we rescale the spectrum such that
the two degenerate lowest fields with topological eigenvalue
y = 0 have energy 1/8. Since these fields are always among
the low-lying fields, finite size effects are insignificant. After
shifting and rescaling the energy, we focus on the two states
corresponding to the fields with scaling dimensions 1/(2p) and
4/(2p). By equating the numerical energies to the p-dependent
predictions from the CFT, we obtain a numerical estimate of
p as a function of the interaction angle. We note one has to be
watchful of level crossings when using this procedure.

π/2 3π/4 π
coupling parameter θ2,0

-0.715 -0.715

-0.71 -0.71
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FIG. 16. (Color online) The ground-state energy per site of the
IS su(2)4 chain for system sizes L = 8, . . . ,20, in steps of two.
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FIG. 17. (Color online) Numerical estimate (system size L = 20)
of parameter p from the eigenenergies that are associated with
operators with scaling dimensions 1/2p (red squares) and 4/2p

(blue dots) in the IS gapless phase with twist operators at k = 0
and k = π . The parameter p is about 1 at θ2,0 = 0 and grows to about
9 at θ2,0 = π/2. For angles θ2,0 > π/2, the estimates of p obtained
from the two operators start to deviate. The black dots correspond
the scaling dimension of the fields with dimensions h = 1/8 and
h = 9/8 multiplied by eight, as obtained from exact diagonalization.
The shaded region indicates the range of θ2,0 for which the latter
dimension lies between 8.9 < 8h < 9.1.

In Figs. 17 and 18, we display the numerically obtained
values for p as a function of the angle for system size
L = 20. In these figures, we also show the energy of the
state corresponding to the field with scaling dimension 9/8.
The range of angles θ2,0 over which the field with scaling
dimension 9/8 is constant is shaded in Fig. 17: The shaded
region includes all angles for which the energy associated with
the field multiplied by eight takes values between 8.9 and 9.1.
It is immediately apparent that the two independent numerical
estimates of p agree very well in the range 0 < θ2,0 < π/2.
This applies to both IS and HIS. In addition, the energy of the
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FIG. 18. (Color online) Numerical estimate (system size L = 20)
of parameter p from the eigenenergies that are associated with
operators with scaling dimensions 1/2p (red squares) and 4/2p

(blue dots) in the HIS gapless phase. The black dots correspond
to the scaling dimension of the fields with dimensions h = 1/8 and
h = 9/8 multiplied by eight, as obtained from exact diagonalization.
The shaded region indicates the range of θ2,0 for which the latter
dimension lies between 8.9 < 8h < 9.1.
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state corresponding to the field with scaling dimension 9/8
agrees very well with the prediction over this range. Thus, our
numerical data is consistent with the picture that the Z2 critical
region extends over the range 0 � θ2,0 � π/2, giving way at
θ2,0 = π/2 to the gapped phase with a Z2 sublattice structure.

We do not include similar Figures for the Z4 critical region,
but note that they show very similar behavior. This leads to the
location of the boundaries of this critical region being θ2,0 = π

and θ2,0 = 3π/2, the latter being the location of the first order
transition.

We also studied the various values of p which are realized
in the su(2)4 spin-1 model. The region close to the first-order
transitions is most suitable for identifying the various orbifold
models because of drastic changes in the spectrum in this
region. Since the Z2 orbifold CFTs appear in opposite order
in the IS and HISs, respectively, both the low- and the
high-p orbifold CFTs are observed near the first-order phase
transitions at θ2,0 = 0. In the IS, we identified the p = 1
orbifold CFT (see Fig. 13), which suggests that the gapless
phases in the IS su(2)4 chain include the orbifold CFTs starting
at the lowest integer value p = 1. In contrast, in the HIS, we
were able to match the spectrum for the p = 2 CFT, but we
did not find evidence that the p = 1 model exists in the phase
diagram. Moreover, we found that the values of p in the HIS
increase quite rapidly when decreasing θ2,0 to zero. We were
able to identify the orbifold CFTS up to p = 9. The reason is
that the abundance of low-lying (primary) fields in the high-p
orbifold theories requires large system sizes to identify these
CFTs with sufficient accuracy.

Further insight into the critical phases can be gained by
considering the topological sectors of the various operators
in the spectra for the integer values of p (see Table II).
All orbifold CFTs (i.e., all p) include a marginal operator
with conformal dimension h = 2. This marginal operator has
momentum K = 0 and topological quantum number y0; i.e.,
it has the same quantum numbers as the ground state. It is
this marginal operator which causes the continuously varying
critical behavior within the gapless phase. With increasing p,
the number of fields whose scaling dimensions are smaller
than two increases. However, these fields are not relevant
because their topological and/or momentum quantum numbers
differ from those of the ground state. The lowest-p orbifold
CFT for which there exists an additional marginal operator
with the same quantum numbers as the ground state is
p = 9. For general p, this operator has scaling dimension
h + h̄ = 36/(2p) (see Table II). The existence of an additional
relevant operator for p > 9 (as 36/2p surpasses two for p > 9)
suggests that the range of p values which are realized in our
model is p = 1,2, . . . ,9. Moreover, if the marginal operator
which first appears for p = 9 is indeed the operator which is
driving the phase transition, it is not surprising that the location
of the continuous phase transition is hard to determine.

In conclusion, we provide evidence that the orbifold CFTs
with p = 2,3, . . . ,9 are realized in both IS and HIS of the
su(2)4 spin-1 anyon chain, while the p = 1 orbifold CFT
appears only in the IS. We note that the su(2)4 anyonic spin-1
chain has some similarities with the one-dimensional quan-
tum Ashkin-Teller model.43 The one-dimensional quantum
Ashkin-Teller model, which is an anisotropic version of the
two-dimensional Ashkin-Teller model,44 also has a line of

critical points on its self-dual line, realizing the orbifold CFTs
with p = 1,2,3,4, in addition to two gapped phases, one of
which has a Z2 sublattice structure.

VI. ANYONIC SU(2)k SPIN- 1
2 CHAINS

In this section, we discuss the results of our study of the
su(2)k spin- 1

2 anyonic spin chains for k = 2,4,5. The case
k = 3 is the original “golden chain” model, which marked the
beginning of the study of anyonic quantum spin chains.15 In
the latter publication, it was established numerically that for
both antiferromagnetic as well as ferromagnetic interactions,
the system is critical and that the system can be described
by the tricritical Ising model and the Z3 parafermion CFT
(three-state Potts model criticality), respectively.15

In addition, it was shown that the model can be mapped
onto an exactly solvable model, namely, a particular “restricted
solid-on-solid” (RSOS) model.15 This mapping is applicable
to arbitrary k, and thus the critical behavior of the spin- 1

2
anyonic chains is described by the k-critical Ising model for
AFM interactions and Zk parafermions for FM interactions.15

Finally, it was conjectured in Ref. 15 that the criticality of
these spin- 1

2 anyonic chains is not merely due to a fine tuning of
parameters, but is, in fact, protected by a nonlocal, topological
symmetry of the model. This implies that the model remains
gapless if a perturbation which preserves both the spatial and
the topological symmetry is added to the model. This property
is essential for the nucleation of a new topological liquid as a
result of interactions between anyons.16

In this section, we consider the topological symmetry
properties of the su(2)k spin- 1

2 chains and explain why the
criticality is topologically protected for all finite k. Explicit
Hamiltonians are given in Appendix C 2.

The numerically obtained spectra for both AFM and FM
interactions are given in Figs. 19, 20, and 21 for k = 2,
k = 4, and k = 5, respectively. The spectra were obtained by
exact diagonalization of the Hamiltonian, followed by shifting
and rescaling of the spectrum in order to match the CFT
predictions.

The numerical results confirm that the spin- 1
2 su(2)k

chains are described by the k-critical Ising model for AFM
interactions and the Zk-parafermion CFT for FM interactions.
Details of these CFTs are given in Appendixes E 1 and E 4.

In the remainder of this section, we discuss the assignment
of topological symmetry sectors to the states in the energy
spectra, as indicated in Figs. 19, 20, and 21. The topological
symmetry sectors were obtained by acting with the operator
Y on the eigenstates. Because Y commutes with both the
Hamiltonian and the momentum operator, and because most
states are nondegenerate, it follows that the eigenstates of
the Hamiltonian (in the momentum representation) are also
eigenstates of the topological operator Y .

We begin the analysis with a general observation. A
topological symmetry sector is assigned to each state in the
spectrum. Moreover, each state is associated with a field in
the CFT describing the critical behavior of the chain. These
conformal fields satisfy certain fusion rules, which, generally,
are different from the fusion rules of the anyons themselves
(typically, the number of conformal fields differs from the
number of types of anyons). As a result, the topological
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FIG. 19. (Color online) The su(2)2 spin- 1
2 chain. Energy spectra have been rescaled to match the CFT prediction given in Eq. (15). Green

squares indicate the location of the primary fields; red circles specify the descendant fields. The topological symmetry sector is indicated by
the violet index. Data shown are for system size L = 40.

symmetry sectors must be associated with the conformal fields
in a manner that both the su(2)k fusion rules of the anyons
and the fusion rules of the conformal fields are satisfied. For
the case of the su(2)k spin- 1

2 anyonic chain, this constraint is
obeyed for the following reason: The relevant critical theories
are so-called coset theories, which contain a su(2)k theory
and other theories such as u(1). This implies that the fields in
the critical theory inherit su(2)k topological symmetry labels;
thus, the topological symmetry sectors can be assigned in a
consistent manner.

A. The ferromagnetic case

The ferromagnetic su(2)k spin- 1
2 anyon chain is described

by the coset theory su(2)k/u(1)2k (details can be found in
Appendix E 4 ). The fields in this CFT carry two labels, a
su(2)k label l and an u(1) label m, where l = 0,1, . . . ,k, m =
0,1, . . . ,2k − 1, and l + m = 0 mod 2. Under fusion of two

fields with labels (l1,m1) and (l2,m2), the labels m1 and m2

are added modulo 2k, while the labels l1 and l2 satisfy the
fusion rules of su(2)k . Thus, the fields (l,m) can be assigned
a topological label l, and this assignment automatically obeys
the correct fusion rules.

The momentum quantum numbers of the fields cannot
be predicted from the CFT itself. Different realizations of
a particular CFT may vary in the assignment of momenta
to conformal fields. For example, the su(2)2 spin- 1

2 chain is
described by the Ising CFT for both AFM and FM interactions,
but the states corresponding to the σ or j = 1/2 field occur at
different momenta, as illustrated in Fig. 19.

We first consider the case of k even. The Hilbert space
is given by labelings of the the fusion chain as displayed
in Fig. 1, where, in the case of the spin- 1

2 anyon chain, the
“incoming” labels are spin- 1

2 anyons. As a consequence, the
labels xi alternate between integer and half-integer values.
Thus, there are two decoupled “sectors”: In one sector, the
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labels of the odd sites correspond to integer-spin anyons, while
in the other sector, the odd sites correspond to half-integer-spin
anyons. Because of this, each field in the CFT will appear
twice in the spectrum, once at momentum K and once at
momentum K + π .

As discussed above, for the case of even k, the topological
sector y of a field labeled by (l,m) is determined by l, namely,
y = l/2. Our numerical results show that the momenta of the
fields are either given by K(m) = mπ

k
, or by K(m) = π + mπ

k
,

as can be seen in the right hand side panel of Fig. 20. The
scaling dimensions of the Z4 parafermion CFT describing that
spectrum are given in Table V. To establish that the FM spin-
1
2 chain is stable under perturbations preserve both spatial
and topological symmetry, we need to show that there are no
relevant operators with the same momentum and topological
quantum numbers as the ground state.

In the case of odd k, anyon spins j are automorph to anyon
spins k/2 − j (see Appendix A), and therefore the labels of
the conformal fields are given by (l,m) where both l and m

are even. The topological sectors are given by l/2, and the
momenta of the fields are given by K(m) = mπ

k
.

From the above-discussed relations between field labels
(l,m) and the quantum numbers (topological sectors and
momenta), it becomes apparent that each momentum and each
topological sector appears at most once. This implies that

TABLE V. Scaling dimensions in the Z4 parafermion model. The
labels corresponding to the positions marked by ‘x’ do not correspond
to primary fields.

m :
0 1 2 3 4 5 6 7

l: 0 0 x 3
2 x 2 x 3

2 x
1 x 1

8 x 9
8 x 9

8 x 1
8

2 2
3 x 1

6 x 2
3 x 1

6 x
3 x 9

8 x 1
8 x 1

8 x 9
8

4 2 x 3
2 x 0 x 3

2 x

the critical behavior is indeed stable to perturbations which
preserve both spatial and topological symmetry.

B. The antiferromagnetic case

In this section, we show that the criticality of the antiferro-
magnetic su(2)k spin- 1

2 chain is stable under perturbations that
do not break the symmetries of the model. The model is de-
scribed by the k-critical Ising model, which can be formulated
in terms of a coset-model su(2)1 × su(2)k−1/su(2)k (some
details of this coset model can be found in Appendix E 1).
The conformal fields in this CFT are labeled by (r,s), where
the r label (1 � r � k) is associated with su(2)k−1, while s

(1 � s � k + 1) is associated with su(2)k . There is also a
label associated with su(2)1; however, this label is fixed by
the constraint t = r + s mod 2.

The topological sectors are given by (s − 1)/2. Since s is
the conformal label associated with the denominator su(2)k of
the coset, the fusion rules of the coset CFT are consistent with
the fusion rules associated with the topological sectors.

In the case of even k, all fields appear twice in the spectrum,
(once at momentum K and once at K + π ) as a result of the
“doubling” of the Hilbert space. Our numerical calculations
yield the following. The topological sector of each field is
determined by s, namely, y = (s − 1)/2. The momentum of a
field labeled by (r,s) is given by either K = (r + s mod 2)π
or by K = (r + s + 1 mod 2)π ; the system size determines
which one of the two possibilities occurs (we verified this
behavior for k = 2,4). The scaling dimensions of the tetra-
critical Ising model, describing the critical behavior in the
case k = 4, can be found in Table VI.

For odd k, the association of field labels (r,s) with
topological and momentum sectors coincides with that for
even k. However, only odd values of s appear, due to the
above-mentioned automorphism of anyon spins. These results
were verified for k = 3 in Ref. 15, and for k = 5 in this study
(see Fig. 21).

To confirm that the criticality of the AFM spin- 1
2 chains

is stable under perturbations which preserve the spatial and
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TABLE VI. Scaling dimensions for the tetracritical Ising model.

s :
1 2 3 4 5

r: 1 0 1
4

4
3

13
4 6

2 4
5

1
20

2
15

21
20

14
5

3 14
5

21
20

2
15

1
20

4
5

4 6 13
4

4
3

1
4 0

topological symmetries of the model, we have to analyze
the scaling dimensions of the fields which have the same
topological quantum number as the ground state. The ground
state has label s = 1 (i.e., topological sector y = 0). The
scaling dimensions of the fields with label s = 1 are given
by 2h = [r2(k + 2) − 2(k + 1)r + k]/[2(k + 1)], which for
r � 1 increases monotonically. The most relevant field in the
same momentum sector as the ground state thus carries the
labels (r,s) = (3,1), and has scaling dimension 2h = 2 + 4

k+1 ,
which is irrelevant for k finite, and becomes marginal in the
limit k → ∞. Again, we conclude that the AFM spin- 1

2 chains
are stable with respect to perturbations which preserve both
topological and translational symmetry.

When breaking the spatial symmetry of the model by
dimerizing the system, the most relevant field has labels (r,s) =
(2,1) and thus a scaling dimension 2h = (k + 4)/[2(k + 1)]
that is relevant for all k. Therefore, a perturbation which breaks
translational symmetry may open up a gap.

VII. DISCUSSION

The anyonic analogs of the SU(2) Heisenberg spin-1 model
have a rich structure, as can be seen from the phase diagrams
of the ordinary bilinear-biquadratic spin-1 model, the generic
even k � 6 anyonic model, the generic odd k � 5 anyonic
model, and the special case k = 4 (displayed side by side in
Fig. 22).

The distinct nature of the phase diagram for k = 4 origi-
nates in the symmetry of the fusion rules of the su(2)k theory
under the exchange j ↔ k

2 − j , which, for k = 4, maps j = 1
onto itself. It is also the lowest value of k for which a generic
fusion rule 1 × 1 = 0 + 1 + 2 applies (compare with k = 3,
where 1 × 1 = 0 + 1), thus making it possible to define an
anyonic spin-1 model. Moreover, the central charge of the
defining su(2)4 algebra is an integer (c = 2), and the quantum

dimensions of the su(2)4 anyons are all integers or square
roots of integers (we discuss the various anyon models in
more detail in Appendix A ). We note that fusion models with
such quantum dimensions typically do not permit “universal
quantum computation,” a property which requires a “fine
tuning” of the braid properties.45,46 Models analogous to the
case k = 4 have been studied from the integrability point of
view.47,48

Upon increasing the level k, the su(2)k anyon model
increasingly resembles the ordinary SU(2) spin algebra. In
terms of the quantum group language, the limit k → ∞
corresponds to q → 1, where q = eπi/(k+2). For q = 1, the
quantum group reduces to the ordinary SU(2) algebra. One
would therefore intuitively expect that the phase diagram of
the generic k case has the same structure as the phase diagram
of the SU(2) bilinear-biquadratic spin-1 chain. The numerics
presented in the paper shows that this is indeed the case for
both even and odd k, with one notable exception: For even
k, we find a gapped dimerized phase that is separated from
the Haldane gapped phase by an extended critical region; in
contrast, for odd k, we observe only an extended critical region
but no dimerized phase. The fact that the anyonic spin-1 models
behave differently for even and odd k is very interesting in its
own right.

In the following, we discuss some of the differences
between the cases of odd k versus even k. It is instructive
to consider the model for the lowest (generic) value of even
k, i.e., k = 6. From the symmetry of the fusion rules under
the exchange j ↔ k

2 − j it follows that j = 1 and j = 2
are exchanged. This implies a “symmetry” in the phase
diagram of the k = 6 model under exchange of the projectors
P (1) and P (2). The parametrization chosen in this paper,
H = ∑

i cos θ2,1P
(2)
i − sin θ2,1P

(1), renders the phase diagram
symmetric in the line through the points θ2,1 = 3π/4 and
θ2,1 = 7π/4. It is important to realize that this “symmetry”
only applies to the values of the energies which appear in the
spectra, but not to the momenta and the degeneracies of the
energy levels. In particular, the gapped dimerized phase is the
“mirror phase” of the gapped Haldane phase. We also note that
the same mechanism resulted in a symmetric phase diagram
for k = 4, if plotted in terms of the projectors P (0) and P (2).

For even k = 6, there is an extended critical region between
these two gapped phases; however, we were not able to
determine its precise critical behavior. For k = 8, the extent
of this critical region is smaller, and it is therefore not
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FIG. 22. (Color online) Phase diagrams of the various spin-1 models considered in the paper: (a) the bilinear-biquadratic spin-1 Heisenberg
chain, (b) the generic even k � 6 anyonic spin-1 chain, (c) the generic odd k � 5 anyonic spin-1 chain, (d) the special case k = 4.

235120-23



C. GILS et al. PHYSICAL REVIEW B 87, 235120 (2013)

inconceivable that for very large even k, this critical region
will shrink to a single critical point separating the two gapped
phases, as is the case for the SU(2) spin-1 bilinear-biquadratic
model.

As indicated by the above terminology, the gapped phase
around the angle θ2,1 = 0 is the anyonic analog of the Haldane
gapped phase.2 The ground states at θ2,1 = 0 can be obtained
exactly, and they are the anyonic analogues of the AKLT
state.21 In Sec. III E4, we studied this “AKLT” point of our
anyonic models with open boundary conditions. We obtained
edge states similar to the ones observed in the SU(2) case. In
the case of periodic boundary conditions, we find a k + 1-fold
degenerate ground state (one for each topological sector),
occurring at momentum K = 0. Although the Haldane phases
of the SU(2) and anyonic models share many properties, they
differ in their degeneracy for periodic boundary conditions.
Therefore, it is interesting to investigate in which way the un-
derlying quantum group symmetry changes the classification
of gapped phases in one-dimensional spin systems.4

The dimerized gapped phase of the anyon model exhibits
exactly the same values of the energy levels as the gapped
Haldane phase, as pointed out above. Nevertheless, this
gapped phase is of a different nature. At θ2,1 = 3π/2, there
is a (unique) zero-energy state at momentum K = π ; i.e.,
the phase is dimerized, like the corresponding phase in the
SU(2) spin-1 model. In addition, there is a set of degenerate
zero-energy ground states at momentum K = 0, where the
number of states depends on k.

Almost two decades ago, Koo and Saleur40 considered
a spin-1 type loop model that was based on the “fused
Potts model.” The underlying algebra of their model is the
Birman-Murakami-Wenzl (BMW) algebra, which replaces the
Temperley-Lieb49 algebra that appears in the study of the Potts
model in its loop representation. For details on the BMW
algebra, we refer to Ref. 50. The Koo-Saleur model contains
a continuous parameter Q, which is closely related to the
discrete level k in the anyon models we consider (see below).
More specifically, the model Koo and Saleur considered is

HKS =
∑

i

(Q − 1)(sin ω − cos ω)P (0)
i − (Q − 2) cos ωP (1).

(26)

The projectors P (0) and P (1) project two neighboring spin-1
loops onto the spin-0 and spin-1 channels, respectively (see
Ref. 50 for explicit expressions of these projectors in terms
of the BMW algebra). The number of Potts states Q is
related to the quantum dimension of the spin- 1

2 anyons d1/2

(or the parameter d appearing in the Temperley-Lieb alge-
bra) via Q = d2

1/2 = 4 cos[π/(k + 2)]2, and thus Q = 1,2,3,4
corresponds to k = 1,2,4,∞. In particular, the case Q = 4
corresponds to the ordinary SU(2) spin-1 chain. We note that
the anyonic chains can only be defined for integer k � 4,
and recall that we parametrized the anyonic spin-1 model
as H = ∑

i cos(θ2,1)P (2)
i − sin(θ2,1)P (1). By making use of

the relation 1 = P (0) + P (1) + P (2), one finds the following
relation between the parameters of the models:

cos θ2,1 = −(Q − 1)(sin ω − cos ω),
(27)

sin θ2,1 = − cos ω + (Q − 1) sin ω.

Despite the similarities between the model of Koo and
Saleur and our anyonic model, they behave rather differently.
The phase boundaries between the various phases observed
in the Koo-Saleur model depend smoothly on the continuous
parameter Q, while the phase diagrams of the anyonic spin-1
models depend on whether k is even or odd. In addition,
the Koo-Saleur model displays nonunitary critical behavior,
while the critical behavior of the anyon models is described by
unitary CFTs. The explanation for this difference in behavior
should be sought in the representations used in the two models.
In the Koo-Saleur model, a representation which essentially
behaves like a SU(2) representation is used (which makes it
possible to define the model as a function of the continuous
parameter). In the anyonic version, the truncated su(2)k
representations play a central role. For a related discussion
in the general context of loop models, we refer to Refs. 51
and 52.

These observations suggest that a deeper investigation into
the differences and similarities of the two models is warranted,
especially because the Koo-Saleur model exhibits various
integrable points.40 One of the integrable points identified
in Ref. 40 corresponds to the supersymmetric critical point
forming the boundary of the Haldane phase. The location of
this integrable point, in terms of the parameters used in this pa-
per, is tan θ2,1 = − 1

2
d1+1
d1

, where d1 = 1 + 2 cos [2π/(k + 2)]
(see Ref. 53). For k � 4, this location depends only weakly
on k; namely, for k = 4, one obtains θ2,1 = − arctan(3/4) ≈
−0.2048π , while in the limit k → ∞, one obtains θ2,1 =
− arctan(2/3) ≈ −0.1872π . The location of the critical end
point of the Haldane phase we obtained in this paper are
consistent with the location of this integrable point.

To solve the anyonic spin-1 chain at this integrable point,
one approach is to map the model to a fused RSOS model, as
studied in Refs. 23 and 54 (see also Refs. 55 and 56). This
subject will be described in a separate publication.53
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APPENDIX A: SU(2)k ANYONS

In this Appendix, we briefly review of the properties of
su(2)k anyons—the building blocks of the anyonic chains con-
sidered in this paper—for arbitrary level k � 2. We explicitly
discuss the levels k = 2, . . . ,7. For a general discussion of
anyon models, see, e.g., Refs. 14, 19, and 20.

The anyons of the su(2)k theories are closely related to
ordinary SU(2) spin degrees of freedom; thus, we label the
anyons by their “generalized angular momenta,” or simply
“spin” value j = 0, 1

2 ,1, . . . , k
2 . We note that in the su(2)k

theory, there is a maximum allowed value of the “spin,”
namely, k/2, a feature not present for ordinary SU(2) spins.
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Ordinary spins can be combined using tensor products. In
general, combining two spins gives rise to several different
spins. An analogous phenomenon occurs if we combine two
anyons of the su(2)k theory. In the following, we assume that
k is fixed, but arbitrary; i.e., the anyons combined belong to
the same theory. The rules for combining two anyons—also
denoted as “fusion rules”—are closely related to the SU(2)
tensor products, namely,

j × j ′ =
min(j+j ′,k−j−j ′)∑

j ′′=|j−j ′ |
j ′′ . (A1)

The only difference to the case of ordinary SU(2) spins is the
cutoff in the upper limit of the sum in Eq. (A1). The cutoff is
the result of the finite number of types of anyons in the su(2)k
theories. The fusion rules in Eq. (A1) are associative.

The fusion rules can be represented in terms of the fusion
matrices Nj which, in the case of su(2)k anyons, have entries

(the so-called fusion coefficients) N
j ′′
j,j ′ = 1 if and only if the

fusion of labels j and j ′ gives rise to the label j ′′ and zero
otherwise. In general, fusion coefficients bigger than one are
possible, but they do not appear in the context of this paper.

Fusion is commutative and associative; i.e., fusing several
anyons in different order gives rise to the same result. This
implies that the fusion matrices Nj commute and that they
can be diagonalized simultaneously. Diagonalizing the fusion
matrices yields the quantum dimensions dj ,

Nj d = dj d, (A2)

where d is a vector whose components are the quan-
tum dimensions dj . The total quantum dimension D is
defined as

D =
√∑

j

d2
j . (A3)

For su(2)k anyons, the quantum dimensions are given by

d0 = 1, d1/2 = 2 cos

(
π

k + 2

)
,

(A4)
dj = d1/2dj−1/2 − dj−1, j � 1.

Explicitly, one obtains

dj = sin

(
(2j + 1)π

k + 2

)/
sin

(
π

k + 2

)
, (A5)

where we note that the dimensions dj depend on the level k,
which we have suppressed in the notation.

The matrix which diagonalizes the fusion rules is called
the modular S matrix. Its entries for the su(2)k theories are
given by

Sj,j ′ (k) =
√

2

k + 2
sin

(
(2j + 1)(2j ′ + 1)π

k + 2

)
. (A6)

For odd k, there exists an automorphism relating anyons
with spin j to anyons with spin k

2 − j . The automorphism
thus relates integer and half-integer spins, reducing the study
of odd-k anyon systems to only integer (or only half-integer)
anyon spins (it also means that there are only k/2 distinct

x1 x2 x3x0 . . .

j j j j j

FIG. 23. Basis (fusion diagram) of a chain of spin-j anyons [j =
1/2 in the case of the su(2)k spin- 1

2 chain, discussed in Sec. VI, and
j = 1 in the case of the su(2)k spin-1 chain, discussed in Sec. III].

anyon types for odd k). In this paper, we consider anyons with
integer spin when studying odd-k systems.

The Hilbert space of a multianyon system is nonlocal, and it
can be represented by a a trivalent graph with each line segment
representing an anyonic degree of freedom. Such a graph is
called a fusion diagram. The labeling of the segments has to
be such that the fusion rules are obeyed at all the vertices. In
Fig. 23, we display the fusion diagram that defines the Hilbert
space of the models studied in this paper.

Each distinct labeling of the fusion diagram defines a basis
state |ψ〉 = |x0,x2, . . . ,xL−1〉. We define the basis states |ψ〉 to
be orthogonal; i.e., the inner product of two basis states is one
if the labels of the two states are identical, and zero otherwise.
The number of basis states in a chain of spin-j anyons of
length L grows asymptotically as dL

j , where dj is the quantum
dimension of the anyon of type j . It is important to note that
dj generally is not an integer, as would be the case for ordinary
SU(2) spins. This means that it is not possible to associate a
local Hilbert space with each anyon, and that the total Hilbert
space is not a simple tensor product of local Hilbert spaces. It
also implies that there are no “internal sz quantum numbers”
in anyonic Hilbert spaces. The reason behind all these features
is that the fusion rules enforce nonlocal constraints on the
possible labelings of the fusion diagrams.

In order to define Hamiltonians acting on anyonic Hilbert
spaces, the anyonic analog to the 6j symbols for ordinary spin
degrees of freedom has to be considered. The anyonic version
of the 6j symbols is the so-called F transformation, which
relates the two different ways three anyon spins, j1, j2, j3, can
fuse into a fourth anyon spin j4. The F matrix can be defined
as a result of the associativity of the fusion rules, depicted
in Fig. 24. In the case of su(2)k , the F matrices are uniquely
determined by a consistency relation, namely, the pentagon
equation, and by imposing unitarity. A useful expression (for
general k) can be found in Ref. 57, and is given in Appendix B.

A further basis transformation of interest is the so-called S

transformation which relates the “flux” of anyon spin i through
a loop of anyon spin l to the case without an anyon loop, as
depicted in Fig. 25. The matrix elements of this transformation
are the elements of the modular S matrix.14,19

In the following, we give matrix representations of some of
the above-discussed properties of a model of su(2)k anyons.
The upper indices in round brackets denote the level k.

j
j

j1

j2 j3

j4

j3

j4j1

j2
=

j

F j1,j2,j3
j4

j

j

FIG. 24. The associativity of the fusion rules.
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i i

l =
Si,l

Si,0

FIG. 25. (Color online) The relation between the flux of anyon
spin i through a loop of anyon spin l to the case without the anyon
loop l.

Level k = 2: Ising anyons. This class of anyons comprises
the spin-0 anyon, the Ising anyon (spin- 1

2 ) with non-Abelian
braiding properties, and the fermion (spin-1). The nontrivial
fusion rules are given by

1
2 × 1

2 = 0 + 1, 1
2 × 1 = 1

2 , 1 × 1 = 0. (A7)

The corresponding quantum dimensions are given by

d
(2)
0 = d

(2)
1 = 1, d

(2)
1
2

=
√

2, (A8)

and the S matrix takes the explicit form (the entries are ordered
according to ascending value of the anyon spins)

S(2) = 1

2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠. (A9)

Level k = 3: Fibonacci anyons. This class of non-Abelian
anyons exhibits only two distinct particles, with spins 0 and
1 (the Fibonacci anyon), respectively (the spins 1

2 and 3
2 are

automorph to spins 1 and 0, respectively). Thus, there is only
one nontrivial fusion rule,

1 × 1 = 0 + 1, (A10)

and the quantum dimensions are given by

d
(3)
0 = 1, d

(3)
1 = (1 +

√
5)/2. (A11)

Using the notation φ = (1 + √
5)/2, the S matrix reads

S(3) = 1√
2 + φ

(
1 φ

φ −1

)
. (A12)

Level k = 4. The k = 4 anyon model contains five anyon
spins, namely, j = 0, 1

2 ,1, 3
2 ,2. The fusion rules are given by

× 1
2 1 3

2 2

1
2 0 + 1 1

2 + 3
2 1 + 2 3

2

1 0 + 1 + 2 1
2 + 3

2 1
3
2 0 + 1 1

2

2 0

. (A13)

The (nontrivial) quantum dimensions can be obtained from
Eq. (A4):

d
(4)
0 = d

(4)
2 = 1, d

(4)
1
2

= d
(4)
3
2

=
√

3, d
(4)
1 = 2. (A14)

Finally, the S matrix takes the form

S(4) = 1

2
√

3

⎛
⎜⎜⎜⎜⎝

1
√

3 2
√

3 1√
3

√
3 0 −√

3 −√
3

2 0 −2 0 2√
3 −√

3 0
√

3 −√
3

1 −√
3 2 −√

3 1

⎞
⎟⎟⎟⎟⎠. (A15)

Level k = 5. This class of non-Abelian anyons gives rise
to three distinct anyon particles with spins 0, 1, and 2 (which
are automorph to the spins 5

2 , 3
2 , and 1

2 , respectively). The
nontrivial fusion rules are given by

1 × 1 = 0 + 1 + 2, 1 × 2 = 1 + 2, 2 × 2 = 0 + 1.

The quantum dimensions take the following values:

d
(5)
0 = 1, d

(5)
1 = (

d
(5)
2

)2 − 1 = 1 + 2 cos(2π/7),

d
(5)
2 = 2 cos(π/7). (A17)

The S matrix of the su(2)5 theory is given by

S = 1

D(5)

⎛
⎜⎝

1 d
(5)
1 d

(5)
2

d
(5)
1 −d

(5)
2 1

d
(5)
2 1 −d

(5)
1

⎞
⎟⎠, (A18)

where D(5) denotes the total quantum dimension D(5) =√
1 + (d (5)

1 )2 + (d (5)
2 )2 of the su(2)5 theory (restricted to the

integer “spins”).
Level k = 6. The anyon model with k = 6 has seven anyons

labeled by j = 0, 1
2 ,1, 3

2 ,2, 5
2 ,3. The fusion rules read

× 1
2 1 3

2 2 5
2 3

1
2 0 + 1 1

2 + 3
2 1 + 2 3

2 + 5
2 2 + 3 5

2

1 0 + 1 + 2 1
2 + 3

2 + 5
2 1 + 2 + 3 3

2 + 5
2 2

3
2 0 + 1 + 2 + 3 1

2 + 3
2 + 5

2 1 + 2 3
2

2 0 + 1 + 2 1
2 + 3

2 1
5
2 0 + 1 1

2

3 0.

(A19)

The quantum dimensions can be obtained from Eq. (A4),

d
(6)
0 = d

(6)
3 = 1, d

(6)
1
2

= d
(4)
5
2

=
√

2 +
√

2,

(A20)

d
(6)
1 = d

(6)
2 = 1 +

√
2, d

(6)
3
2

=
√

2

√
2 +

√
2.

The entries of the S matrix are given by Si,j =√
2

k+2 sin( (2i+1)(2j+1)π
(k+2) ), for i,j = 0,1/2,1, . . . ,k/2,

with k = 6.
Level k = 7. Finally, we provide some details of the k = 7

model, which contains four distinct anyons with spins 0, 1, 2,
and 3. The fusion rules are

× 1 2 3
1 0 + 1 + 2 1 + 2 + 3 2 + 3
2 0 + 1 + 2 + 3 1 + 2
3 0 + 1

(A21)

and the quantum dimensions are given by

d
(7)
0 = 1, d

(7)
1 = 1 + 2 cos(2π/9),

(A22)
d

(7)
2 = 1 + 2 cos(π/9), d

(7)
3 = 2 cos(π/9).
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The entries of the S matrix are given by Si,j =√
4

k+2 sin( (2i+1)(2j+1)π
(k+2) ), for i,j = 0,1, . . . ,(k − 1)/2,

with k = 7.

APPENDIX B: F MATRICES OF THE SU(2)k THEORIES

In this section, we give an explicit expression for
the F symbols, following Ref. 57. We begin with
some preliminary notation. The q numbers are defined

as �n� = ∑n
i=1 q

n+1
2 −i = q

n
2 −q

− n
2

q
1
2 −q

− 1
2

. The q factorials are de-

fined as �n�! = �n��n − 1� · · · �1�, for integer n > 0, and

�0�! = 1. The labels of the anyons a,b, . . . take the
values 0,1/2,1, . . .. The quantum dimensions are dj =
�2j + 1� = sin( (2j+1)π

k+2 )/ sin( π
k+2 ) = dk/2−j . Moreover, we

define

�(a,b,c) =
√

�a + b − c�!�a − b + c�!�−a + b + c�!

�a + b + c + 1�!
,

(B1)

where a � b + c, b � a + c, c � a + b, and a + b + c =
0 mod 1. Using the above introduced notation, the F symbols
can be written as57

(
Fabc

d

)e

f
= (−1)a+b+c+d�(a,b,e)�(c,d,e)�(b,c,f )�(a,d,f )

√
�2e + 1�

√
�2f + 1�

×
∑

n

′ (−1)n�n + 1�!

�a + b + c + d − n�!�a + c + e + f − n�!�b + d + e + f − n�!

× 1

�n − a − b − e�!�n − c − d − e�!�n − b − c − f �!�n − a − d − f �!
, (B2)

where the sum over n runs over (non-negative) integers such
that

max(a + b + e,c + d + e,b + c + f,a + d + f )

� n � min(a + b + c + d,a + c + e + f,b + d + e + f ),

which guarantees that the arguments of the q factorials are
non-negative integers.

APPENDIX C: MICROSCOPIC MODELS

1. Basis and Hamiltonian

We consider a chain of spin-j anyons, using the basis
displayed in Fig. 23. We fix the spin-j anyon to be either a spin-
1
2 anyon or a spin-1 anyon; however, the Hamiltonian defined
below can be generalized to any value j ∈ {0,1/2, . . . ,k/2}.
Throughout most of this paper, we apply periodic boundary
conditions, i.e., xL = x0, where L denotes the number of
anyonic quasiparticles in the chain.

We consider interactions between nearest-neighboring
spin-j anyons. In the case of j = 1/2 [the “su(2)k spin- 1

2
chain”], two neighboring spin- 1

2 anyons may fuse into a spin-0
or a spin-1 anyon. In contrast, for the case of j = 1 [the “su(2)k
spin-1 chain”], two neighboring spin-1 anyons may fuse into
a spin-0, a spin-1, or a spin-2 anyon (for k � 4). In order
to obtain the fusion product of two nearest-neighbor spin-j
anyons in the basis shown in Fig. 23, an F transformation has
to be performed, as illustrated in Fig. 26. Consequently, the

xi−1 xi+1xi

jj

=
∑
x′

i

(
F xi−1,j,j

xi+1

)x′
i

xi

x′
i

xi+1xi−1

jj

FIG. 26. Basis transformation used to obtain the fusion product
of two neighboring spin-j anyons.

projector onto a particular fusion channel l is composed of two
F transformations. This projector, denoted by P

(l)
i , penalizes

the fusion of anyons at positions i and i + 1 into an l-anyon,
and it is defined as follows:

P
(l)
i |x0, . . . ,xi−1,xi,xi+1, . . . ,xL−1〉
=

∑
x ′

i

(
Fxi−1,j,j

xi+1

)l

xi

(
Fxi−1,j,j

xi+1

)l

x ′
i

× |x0, . . . ,xi−1,x
′
i ,xi+1, . . . ,xL−1〉. (C1)

We note that this definition utilizes that F = F−1 for su(2)k .
The explicit form of the local projectors for the systems
studied in this paper is given in Appendix B. The Hamiltonians
discussed in the following section are composed of the sum of
the local projection operators P

(l)
i onto the fusion product l of

two nearest-neighbor spin-j anyons

2. Hamiltonian of the su(2)k spin- 1
2 chain

The Hamiltonian of the su(2)k spin- 1
2 chain is given by

H = J
∑

i

P
(0)
i , (C2)

where the projector P
(0)
i is defined in Eq. (C1) (note that

l = 0 and j = 1
2 ), and the coupling constant takes the values

J = ±1. In analogy to the “ordinary” Heisenberg spin- 1
2 chain,

we denote the case J = −1 in Hamiltonian (C2) as antiferro-
magnetic (AFM) coupling while J = 1 is ferromagnetic (FM)
coupling.

In the following, we present matrix representations of the
Hamiltonians of the spin- 1

2 anyon chains for k = 2,3,4,5.
The matrix formulation for the su(2)3 spin- 1

2 chain was first
introduced in Ref. 15 (see also Ref. 58). Local basis elements
are labeled by xi , where xi ∈ {0,1/2,1, . . . ,k/2}. The order
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of anyon spins in the matrix representation is ascending. We
also introduce the operators n

j

i acting on local state |xi〉:
n

j

i |xi〉 = e|xi〉 where the eigenvalue e = 1 if the local basis
element xi = j and e = 0 otherwise.

From the definition of the summands of the Hamiltonian
[Eq. (C1)], it is apparent that the matrix representation of
the projector P 0

i depends on the basis elements xi−1, xi , and
xi+1. In particular, nontrivial contributions to P 0

i exist only for
certain values of xi−1 and xi+1, and thus each contribution to
the projector will be proportional to n

j

i−1n
j ′
i+1, for some values

of j and j ′. By specifying both j and j ′, the possible values
of xi are fixed by the fusion rules. If there is only one value
xi can take (for given j and j ′), we omit the identity operator
that is applied to basis element |xi〉. If there is more than one
possible value of xi , we specify the matrix assigning the correct
energies.

In the case of even-k spin- 1
2 chains, the fusion rules Eq. (A7)

impose that the values of the local basis elements xi alternate
between integer and half-integer values. For the odd-k spin
chains (both spin- 1

2 and spin-1 chains), we only consider the
integer anyon spin subspace (recall the automorphism that
applies to odd k anyons, see Appendix A ). For the even-k
spin-1 chains, the Hilbert space splits into two disjoint sectors,
the IS (all xi take integer values) and the HIS (all xi assume
half-integer values).

a. su(2)2 spin- 1
2 chain

The Hamiltonian Eq. (C2) takes a rather simple form in the
case of su(2)2, namely,

H (k=2) = J
∑

i

n0
i−1n

0
i+1 + n1

i−1n
1
i+1 +

+ 1

2
n

1/2
i−1n

1/2
i+1

(
1 −1

−1 1

)
i

. (C3)

b. su(2)3 spin- 1
2 chain

The Hamiltonian for the k = 3 spin- 1
2 chain is given by

H (k=3) = J
∑

i

n0
i−1n

0
i+1 + 1

d2
n1

i−1n
1
i+1

(
1 −√

d

−√
d d

)
i

,

(C4)

where d = d1 = (1 + √
5)/2.

c. su(2)4 spin- 1
2 chain

In the case k = 4, the local basis elements alternate
between integer spin, xi ∈ {0,1,2} and half integer spin,
xi+1 ∈ {1/2,3/2}. The Hamiltonian takes the following form:

H (k=4) = J
∑

i

n0
i−1n

0
i+1 + n2

i−1n
2
i+1 + 1

2
n1

i−1n
1
i+1

(
1 −1

−1 1

)
i

+ 1

3
n

1/2
i−1n

1/2
i+1

(
1 −√

2
−√

2 2

)
i

+ 1

3
n

3/2
i−1n

3/2
i+1

(
2 −√

2
−√

2 1

)
i

. (C5)

d. su(2)5 spin- 1
2 chain

Using the notation d1 = 1 + 2 cos(2π/7) and d2 =
2 cos(π/7), the Hamiltonian reads

H (k=5)

= J
∑

i

n0
i−1n

0
i+1 + 1

d1d2
n1

i−1n
1
i+1

(
d1 −√

d1d2

−√
d1d2 d2

)
i

+ 1

d2
2

n2
i−1n

2
i+1

(
1 −√

d1

−√
d1 d1

)
i

. (C6)

3. Hamiltonian of the su(2)k spin-1 chain

We define the Hamiltonian of the su(2)k spin-1 chain as
follows:

H = J1

∑
i

P
(1)
i + J2

∑
i

P
(2)
i . (C7)

The projectors P
(1)
i and P

(2)
i are defined in Eq. (C1), where

l = 1 and l = 2, respectively. This Hamiltonian is the su(2)k
anyonic equivalent of the bilinear-biquadratic spin-1 chain.
Throughout the paper, we parametrize the Hamiltonian by the
angle θ as follows: J1 = − sin(θ2,1), J2 = cos(θ2,1).

The Hamiltonian Eq. (C7) is defined for levels k � 4, in
which case the fusion of two spin-1 anyons may result in a
spin-0, a spin-1, or a spin-2 anyon (for level k = 3, spins 1

2 and
1 are automorph, i.e., the spin-1 chain is equivalent to the spin-
1
2 chain; moreover, the fusion rules imply 1 × 1 = 0 + 1. For
k = 2, the fusion of two spin-1 particles is trivial, 1 × 1 = 0).

a. The su(2)4 spin-1 chain

We now present a matrix representation of the Hamiltonian
of the su(2)4 spin-1 chain, using the same notation as in the
previous section. In the IS, the projectors onto the different
channels can be written as follows:

P
(0)
i,IS = n0

i−1n
0
i+1 + n2

i−1n
2
i+1 + 1

4
n1

i−1n
1
i+1

×
⎛
⎝ 1 −√

2 1
−√

2 2 −√
2

1 −√
2 1

⎞
⎠

i

, (C8)

P
(1)
i,IS = n0

i−1n
1
i+1 + n1

i−1n
0
i+1 + n1

i−1n
2
i+1 + n2

i−1n
1
i+1

+ 1

2
n1

i−1n
1
i+1

⎛
⎝ 1 0 −1

0 0 0
−1 0 1

⎞
⎠

i

, (C9)

P
(2)
i,IS = n0

i−1n
2
i+1 + n2

i−1n
0
i+1

+ 1

4
n1

i−1n
1
i+1

⎛
⎝ 1

√
2 1√

2 2
√

2
1

√
2 1

⎞
⎠

i

. (C10)
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In the HIS, we can write the projectors as follows:

P
(0)
i,HIS = 1

2

(
n

1/2
i−1n

1/2
i+1 + n

3/2
i−1n

3/2
i+1

)( 1 −1
−1 1

)
i

, (C11)

P
(1)
i,HIS = 1

2

(
n

1/2
i−1n

1/2
i+1 + n

3/2
i−1n

3/2
i+1

)(1 1
1 1

)
i

+ 1

2

(
n

1/2
i−1n

3/2
i+1 + n

3/2
i−1n

1/2
i+1

)( 1 −1
−1 1

)
i

, (C12)

P
(2)
i,HIS = 1

2

(
n

1/2
i−1n

3/2
i+1 + n

3/2
i−1n

1/2
i+1

)(1 1
1 1

)
i

. (C13)

b. The su(2)5 spin-1 chain

Using notation d1 = 1 + 2 cos(2π/7) and d2 = 2 cos(π/7), the projectors are given by

P
(1)
i = n0

i−1n
1
i+1 + n1

i−1n
0
i+1 + 1

d4
1

n1
i−1n

1
i+1

⎛
⎜⎜⎝

d3
1 −d

3/2
1 −d2

1d
3/2
2

−d
3/2
1 1

√
d1d

3/2
2

−d2
1d

3/2
2

√
d1d

3/2
2 d1d

3
2

⎞
⎟⎟⎠

i

+ d2

d2
1

(
n1

i−1n
2
i+1 + n2

i−1n
1
i+1

)( d2 −√
d2

−√
d2 1

)
i

+ 1

d1d2
n2

i−1n
2
i+1

(
d2

√
d1d2√

d1d2 d1

)
i

, (C14)

P
(2)
i = n0

i−1n
2
i+1 + n2

i−1n
0
i+1 + 1

d4
1

n1
i−1n

1
i+1

⎛
⎜⎜⎝

d2
1d2 d

3/2
1 d2

2 d1d
3/2
2

d
3/2
1 d2

2 d1d
3
2

√
d1d

5/2
2

d1d
3/2
2

√
d1d

5/2
2 d2

2

⎞
⎟⎟⎠

i
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c. The su(2)6 spin-1 chain

In the following, we use the notation d1/2 = 2 cos(π/8), d1 = 1 + 2 cos(π/4) = 1 + √
2 and d3/2 = 2

√
2 cos(π/8). In the IS,

the projectors onto the different channels can be written as follows:

P
(1)
i,IS = n0

i−1n
1
i+1 + n1

i−1n
0
i+1 + n2

i−1n
3
i+1 + n3

i−1n
2
i+1 + 1

2

(
n1

i−1n
2
i+1 + n2

i−1n
1
i+1

)( 1 −1
−1 1

)
i

+ 1

d1/2d1d3/2
n1

i−1n
1
i+1

⎛
⎜⎜⎝

d1/2d3/2 −√
d1/2d3/2 −d1

√
d1/2d3/2

−√
d1/2d3/2 1 d1

−d1
√

d1/2d3/2 d1 d2
1

⎞
⎟⎟⎠

i

+ 1

d1/2d1d3/2
n2

i−1n
2
i+1

⎛
⎜⎜⎝

d2
1 d1 −d1

√
d1/2d3/2

d1 1 −√
d1/2d3/2

−d1
√

d1/2d3/2 −√
d1/2d3/2 d1/2d3/2

⎞
⎟⎟⎠

i
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P
(2)
i,IS = n0

i−1n
2
i+1 + n2

i−1n
0
i+1 + n1

i−1n
3
i+1 + n3

i−1n
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(
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1 1
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√
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⎟⎟⎠
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. (C17)
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In the HIS, the projectors onto the different channels can be written as follows:

P
(1)
i,HIS = 1

d2
1

n
1/2
i−1n

1/2
i+1

(
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1/2 d1/2
√
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d1

−√
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⎠
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−√
d1 1

)
i

+ 1

d2
1

n
5/2
i−1n

5/2
i+1

(
d1 d1/2
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√
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, (C18)

P
(2)
i,HIS = 1√

d1/2d1d3/2

(
n

1/2
i−1n

3/2
i+1 + n

3/2
i−1n

1/2
i+1

)( d1
√

d1√
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d. The su(2)7 spin-1 chain

In the following, we use the notation d1 = 1 + 2 cos(2π/9), d2 = 1 + 2 cos(π/9), and d3 = 2 cos(π/9). The projector P
(1)
i

takes the form
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The projector P
(2)
i is given by
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APPENDIX D: EXACT FORM OF THE AKLT STATES

In this section, we present the explicit form of the zero-
energy ground states of the periodic anyonic spin-1 chains for
k odd at the anyonic equivalent of the AKLT point. In the main
text, we discussed the case k = 5.

At the AKLT point, the Hamiltonian contains only the
projector onto the anyon spin-2 channel; i.e., the fusion of
neighboring spin-1 anyons into a spin-2 anyon is penalized.
First, we note that the fusion of anyons of types 1 and
(k − 1)/2 [the latter being the largest integer “spin” for an
anyon in the su(2)k theory] results in 1 × (k − 1)/2 = (k −
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3)/2 + (k − 1)/2. In addition, we have that 1 × (k − 3)/2 =
(k − 5)/2 + (k − 3)/2 + (k − 1)/2. Thus, a local basis for
which xi−1 = xi+1 = (k − 1)/2 implies that xi = (k − 3)/2
or xi = (k − 1)/2. It follows that after the local basis trans-
formation, x̃i can only take two possible values, namely, x̃i =
0,1 [consider 2 × (k − 1)/2 = (k − 5)/2 + (k − 3)/2, and let
x̃i = 2, xi−1 = (k − 1)/2, then xi+1 could only take values
(k − 5)/2 and (k − 3)/2 but not (k − 1)/2]. This, in turn,
means that a choice of local variables xi−1 and xi+1 does
not give rise to nonzero contributions at the AKLT point as
fusion of neighboring spin-1 anyons in the chain cannot result
in x̃i = 2. We thus obtain a zero-energy ground state of the
form |v0〉 = |(k − 1)/2,(k − 1)/2, . . . ,(k − 1)/2〉.

To construct the other ground states, we make use of the
topological symmetry operators Yl . These operators mutually
commute, and they commute with the Hamiltonian. The state
v0 is not an eigenstate of the operators Yl (with l > 0), and
hence alternative zero-energy ground states of the Hamiltonian
are given by |vl〉 = Yl |v0〉. These ground states |vl〉 (l > 0) can
be obtained explicitly. The local basis states take values xi =
p − l or xi = p − l + 1, where p = (k − 1)/2. The states |vl〉
are a sum over all possible labelings of the fusion tree with
these two values of xi . We introduce the following notation: #l

denotes the number of local basis states for which xi = l, and
#(l,m) denotes the number of local basis states for which xi = l

and xi+1 = m, where we use periodic boundary conditions,
xL = x0. For l > 0, we obtain

|vl〉 =
∑

xi∈{p−l,p−l+1}
fl({xi}) |x0,x1, . . . ,xL−1〉 . (D1)

The coefficients fl({xi}) (0 < l < p) are given by

fl({xi}) =
(

dl+1

dld1

)L/2

(−1)#p−l+1

(√
dl−1

dl+1

)#(p−l+1,p−l+1)

×
(√

dp−ldp−l+1
dp

dl+1

)#(p−l+1,p−l)

.

For l = p, this results in

fp({xi}) =
(

dp

dp−1

)L/2 (
− dp−1

dp

√
d1

)#1

.

We denoted the ground states by |vl〉 for the following
reason. In Sec. II, we explained that the operators Yl can
be thought of as fusing an anyon with “spin” l into the
chain, effectively changing the “overall fusion channel,” or
flux thought the chain. If we take a state |vj2〉 and act on it
with the operator Yj1 , we find that Yj1 |vj2〉 = ∑

j3∈j1×j2
|vj3〉,

where the sum is over those j3 which appear in the fusion
j1 × j2. Thus, the ground states of the AKLT anyonic spin
chain form a “representation” of the fusion algebra of su(2)k .
This implies that eigenstates of the topological operators Yl

can be constructed because the modular S matrix diagonalizes
the fusion rules. In particular, orthogonal (not normalized)
ground states at the AKLT point are written as |ψAKLT,i〉 =∑(k−1)/2

j=0 Si,j |vj 〉, where Si,j is the modular S matrix for su(2)k ,
and the sum is over integer values.

TABLE VII. Modular invariants of the Virasoro minimal models.
For a given pair of indices, (p,p′) = (m + 1,m) and n integer, only the
fields with indices (r,s) as specified in the third column appear (1 �
r < p′, 1 � s < p). Some fields have multiplicity two, as indicated
in column four.

p, p′ (A,D) (r,s) Multiplicity 2

p′ = 2(2n + 1) (Dp′/2+1,Ap−1) r odd r = p′ − r

p = 2(2n + 1) (Ap′−1,Dp/2+1) s odd s = p − s

APPENDIX E: CONFORMAL FIELD THEORIES OF
INTEREST

In this appendix we summarize the most important aspects
of the CFTs relevant to this paper. In the following, “primary
fields” refers to Virasoro primary fields. Detailed discussions
of CFTs can be found in Refs. 59 and 60.

1. Virasoro minimal models

The unitary minimal models,60 which can also be described
in terms of the coset su(2)1×su(2)k−1

su(2)k
, have a central charge

c = 1 − 6
(k+1)(k+2) (k � 2). The primary fields are labeled by

integers r and s, where 1 � r � k and 1 � s � k + 1. Their
conformal dimensions are given by

hr,s = [r(k + 2) − (k + 1)s]2 − 1

4(k + 1)(k + 2)
. (E1)

Typically, the minimal models are labeled by a parameter
m = k + 1.

Apart from the so-called diagonal models, there exist
modular invariants that give rise to CFTs with a different field
content.34,35 More information on these modular invariants can
be found in Table VII.

2. N = 1 superconformal minimal models

The N = 1 superconformal minimal models38 are de-
scribed by the coset

su(2)2 × su(2)k−2

su(2)k

and have central charge c = 3
2 − 12

k(k+2) . The primary fields
have conformal dimension

h(r,s) = [r(k + 2) − sk]2 − 4

8k(k + 2)
+ 1

32
[1 − (−1)r−s], (E2)

where 1 � r � k − 1 and 1 � s � k + 1. The fields with r +
s even, i.e., the fields in the Neveu-Schwarz sector, have a
super partner, whose conformal dimensions are given by

h′
(r,s) = h(r,s) + 1/2 + δr+s,2 for r + s even. (E3)

3. S3 minimal models

The class of S3 symmetric minimal models36,37 are de-
scribed by the coset theory

su(2)4 × su(2)k−4

su(2)k
,
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and have central charge

c = 2 − 24

(k − 2)(k + 2)
. (E4)

There are two main sets of primary fields. The first set has
conformal weights,

h(r,s) = [r(k + 2) − s(k − 2)]2 − 16

16(k − 2)(k + 2)
+ 1 − cos4[π (r − s)/4]

12
.

(E5)

The second set has scaling dimensions

h′
(r,s) = h(r,s) + 1 + sin2[π (r − s)/4]

3
+ δr,1δs,1 + δr,1δs,2 + 2δr,2δs,1, (E6)

where for both sets 1 � r � k − 3 and 1 � s � k + 1. There
are additional (Virasoro) primary fields, with scaling dimen-
sions differing by integers from the scaling dimensions listed
above. These additional primary fields are not relevant to this
work.

4. The Zk parafermion CFT

The Zk parafermions32 can be described in terms of the
coset

su(2)k
u(1)2k

,

where u(1)2k denotes the c = 1 boson, compactified on a circle
of radius R = √

2k. The central charge is given by c = 2(k−1)
k+2 ,

and the conformal dimensions of the primary fields are
given by

h(l,m) = l(l + 2)

4(k + 2)
− m2

4k
. (E7)

Here, the indices run over values l = 0,1, . . . ,k and m = −l +
2, − l + 4, . . . ,l.

5. The Z2 orbifold theories

We briefly discuss theZ2 orbifold of the compactified boson
at squared radius R2 = 2p. For a detailed account, we refer
to Ref. 42. The number of primary fields is given p + 7,
where p = 1,2, . . .. For p = 1, the CFT is Abelian, and it

is equivalent to a the compactified boson theory with eight
primary fields. In general, the following fields are present:

(i) the identity field 1, with scaling dimension h1 = 0 and
quantum dimension d1 = 1;

(ii) the field �, with dimension h� = 1 and quantum
dimension d� = 1;

(iii) two “degenerate” fields 1 and 2, with scaling
dimension h = p

4 and quantum dimension d = 1;
(iv) the twist fields σ 1, σ 2 and τ 1, τ 2, with scaling

dimensions hσ = 1
16 and hτ = 9

16 and quantum dimensions
dσ = dτ = √

p;
(v) the fields φλ, with λ = 1,2, . . . ,p − 1, with scaling

dimensions hλ = λ2

4p
and quantum dimensions dλ = 2.

a. The S matrix

To verify that the assignment of the topological symmetry
sectors of states of the critical su(2)4 spin-1 anyonic chains
are compatible with the fusion rules of the orbifold CFTs
describing the critical behavior, we need the fusion rules of the
orbifold CFTs. We do not give these fusions rules explicitly
here, but specify the modular S matrix. The fusion rules can be
obtained from the modular S matrix by means of the Verlinde
formula.61

The modular S matrix can be written in a compact way
as follows. In the basis (1,�,i,σ i,τ i,φλ) for the rows and
(1,�,j ,σ j ,τ j ,φμ) for the columns, where i,j = 1,2 and
λ,μ = 1,2, . . . ,p − 1, the modular S matrix is given by

S = 1√
8p

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
√

p
√

p 2
1 1 1 −√

p −√
p 2

1 1 (−1)p bi,j bi,j (−1)μ2√
p −√

p bi,j ai,j −ai,j 0√
p −√

p bi,j −ai,j ai,j 0
2 2 (−1)λ2 0 0 cλ,μ

⎞
⎟⎟⎟⎟⎟⎠.

(E8)

Here, the matrices a,b,c have the elements

ai,j =
√

p/2[1 + (2δi,j − 1)]e−πip/2,

bi,j = (−1)p+δi,j
√

peπip/2,

cλ,μ = 4 cos(πλμ/p).

We note that we used a simplified notation in the above
definition: For the matrix elements that do not depend i or
j , the particular element does not depend on i and j .
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