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Accurate determination of band gaps within density functional formalism
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In this paper, we report an adaptation of the Harbola-Sahni (HS) exchange potential to the tight-binding linear
muffin-tin orbital (TB-LMTO) method to determine band gaps (BGs) of solids accurately. We show that the
electrostatic basis of derivation of the Harbola-Sahni potential allows this nonvariational approach to improve
substantially over local-density approximation derived BGs, bringing them very close to experimental values. That
the accuracy of the HS potential is directly responsible for the determination of correct BGs is demonstrated by
performing similar calculations with an accurate model potential that too leads to BGs close to their experimental
values. Moreover, ground-state properties like equilibrium lattice parameters and bulk moduli (BM) for various
semiconductors like C, Si, AlN, AlP, BP, and 3C-SiC calculated with the HS approach are in close agreement
with the experiments. The clear physical interpretation of HS potential leads us to suggest exploring its use for
calculating various properties of solids.
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I. INTRODUCTION

The description of a many-body interacting system of
valence electrons in a solid is one of the difficult problems in
physics. Perhaps the most successful first-principles approach
to the electronic structure of solids is density functional
theory (DFT).1,2 The ideas behind DFT are quite simple
and remarkably easy to implement for numerical studies.
However, the inaccuracy in predicting the band gaps (BGs) of
semiconductors and insulators has been one of the recurring
problems in this approach. The crux of the matter lies in
the setting up of the auxiliary, single-particle Kohn-Sham
equation.3,4 In the traditional DFT, the auxiliary Hamiltonian
is obtained variationally. As a result, DFT is applicable only
to the ground state. It is well understood that the spectrum
and orbitals of the Kohn-Sham equation have no specific
significance beyond the fact that they are used to obtain
the ground-state density and the kinetic-energy contribution.
The exception to this is the highest occupied orbital whose
eigenenergy is equal to the negative of the ionization potential
I of the system. Thus the eigenenergy corresponding to the top
of the valence band is −I. This gives hope that the band gap
Eg of a semiconductor will be equal to the Kohn-Sham gap
EKS

g . This is based on the fact that the addition of one electron
to a bulk system will not change its density by any significant
amount hence it is expected that all its eigenvalues will remain
essentially unchanged. Thus the eigenenergy corresponding to
the bottom of the conduction band should be equal to −A,
where A is the electron affinity, therefore EKS

g will be equal
to the fundamental gap I − A. However, as is well known, this
does not turn out to be the case.

The reason for the difference between the Kohn-Sham
gap and the fundamental gap is the discontinuous change5–7

by a constant �xc in the Kohn-Sham potential when the
electron number changes by a fractional amount across an
integer. For example, in the helium ion He+, as the electron
number is increased fractionally by δ from 1 to 1 + δ, the
exchange-correlation potential jumps by 1.1 atomic units.8

Thus

Eg = EKS
g + �xc. (1)

The discontinuity could be as large as 50% or even more
of the true gap. For example, in silicon the EKS

g calculated
with the local-density approximation (LDA) is 0.49 eV
whereas the experimental gap is 1.17 eV. This would mean that
�xc is 0.68 eV if the LDA gap is close to the true Kohn-Sham
gap. The latter, however, is not known. Indeed, at present, no
straightforward method exists to estimate the exact value of
the discontinuity �xc.

There have been considerable efforts to improve the BGs
within the framework of Kohn-Sham DFT. Extending the
idea of optimized potential method (OPM), first proposed by
Talman and Shadwick for atoms9 to solids, Kotani combined
exact exchange (EXX) with LDA correlation to obtain BGs
in good agreement with the experiments.10 Presently, within
first-principle approaches for extended systems, the GW
approximation11 explains electronic band properties most
accurately. However, the computational efforts required for
the GW method are much heavier, thus limiting its application
to relatively smaller systems. In this paper, we propose
an alternative approach to obtain the exchange potential,
which is calculated as the work done in moving an electron
in the electric field produced by its Fermi-Coulomb hole.
This physical interpretation of the Kohn-Sham potential was
provided by Harbola and Sahni (HS).12 Using the HS approach
within the exchange-only approximation, where the potential
is evaluated from the Fermi hole, produces ground-state as
well as excited-state properties comparable to EXX and GW
but with considerably reduced numerical efforts. The above
physical picture and the vastly reduced computational effort
make this approach worth following. With this in mind, we
use the HS approach to calculate various properties of ma-
terials within TB-LMTO in the atomic sphere approximation
(ASA).13 We find that the present method gives all properties
including the BGs in good agreement with experiments. To
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understand why methods like EXX or the HS give BGs close
to experiments, we also perform calculations by employing
an accurate model potential given by the van Leeuwen and
Baerends (LB)14 correction to the LDA exchange-correlation
potential, and show that the accuracy of potential in the outer
region of AS leads to correct BGs.

II. METHODOLOGY

A. Harbola-Sahni potential

In the post-Born-Oppenheimer many-body Hamiltonian of
the interacting valence electron system, the contribution to the
total energy by the electron-electron interaction terms is

Eee[ρ] = 1

2

∫∫
�(r,r′)
|r − r′|drdr′.

The joint probability density can be written �(r,r′) =
ρ(r)ρ(r′)[1 − C(r,r′)] where C(r,r′) is the correlation func-
tion. The electron-electron part of the total energy becomes

Eee = 1

2

∫∫
ρ(r)ρ(r′)
|r − r′| drdr′

+ 1

2

∫∫
ρ(r)ρxc(r,r′)

|r − r′| drdr′, (2)

where ρxc(r,r′) = −ρ(r′)C(r,r′) is the Fermi-Coulomb hole
charge distribution. The physical interpretation of the Fermi-
Coulomb hole is the deficit in the density of electrons at r′
caused by the presence of an electron at r.

We can approach the problem of defining the exchange
part of the Kohn-Sham potential by its electrostatic definition
as the work done to move an electron in the electric field
E(r) produced by its Fermi hole ρx(r,r′). Thus the exchange
potential is given as

WHS(r) = −
∫ r

∞
E(r′) · d�, (3)

where

E(r) =
∫

ρx(r,r′)
|r − r′|3 (r − r′)dr′. (4)

For a set of single-particle orbitals {φiσ } with occupation fiσ

for the ith orbital with spin σ , the Fermi hole is given15 as

ρx(r,r′) = 1

ρ(r)

∑
σ

∑
i,j

fiσ fjσ φ∗
iσ (r)φ∗

jσ (r′)φiσ (r′)φjσ (r).

(5)

A question16,17 may be asked whether the expression for the
Harbola-Sahni potential is path independent and the field E(r)
is curl free. In the literature,2,18,19 it had been shown that for
spherically symmetric densities, such as those used in the ASA,
the field is indeed curl free. Thus in the present work, the curl
of the field given by Eq. (4) vanishes. On the other hand, for
nonspherical charge densities, the solenoidal part of the electric
field is related to the difference in kinetic energies between
the Hartree-Fock and Harbola-Sahni approaches20 and the
contribution is numerically insignificant.21 In Ref. 20 the HS
potential has been derived from the Schrödinger equation,
providing our approach a more formal foundation.

The virial theorem22 gives the exchange energy from the
HS potential WHS(r) through the relationship

Ex = −
∫

ρ(r)r · ∇WHS(r)dr. (6)

There have been several applications of these ideas to estimate
accurately the ground-state energies as well as the energies of
excited states of several atomic systems.23–27 It is well known
that the latter are notoriously difficult to estimate theoretically.
But the excellent results reported for both the ground and
excited states encouraged us to apply this technique to solids.
We mention that the HS approach for the exchange-only
calculation is intimately related to the EXX method based on
OPM as discussed briefly later in this section. For the details
of their connection, we refer the reader to Refs. 2,7,8, and 12.

Using the approach outlined above, the Kohn-Sham equa-
tion is{

−1

2
∇2 + Veff(r)

}
φλσ (r) = ελφλσ (r)

(7)

Veff = V (r) +
∫

ρ(r)

|r − r′|dr′ + WHS(r).

The aim of this work is to implement Eq. (7) in TB-
LMTO-ASA13 to calculate various properties of solids. Within
TB-LMTO-ASA, the lattice space is divided into ion-core
centric atomic spheres (ASs) with overlap <10%, where ASA
demands that the sum of AS volumes equals the cell volume.
For open lattices this is not possible so the remaining volume is
filled with empty spheres (ESs) which do not have associated
ion cores but have charge associated with them. Inside the
AS, the Kohn-Sham potential is obtained by using only the
exchange potential given by Eq. (3). On the other hand, in
the ES it is calculated with the standard LDA including both
the exchange and correlation potentials. As pointed out above,
within the ASA Eq. (3) gives a well defined exchange potential
since the underlying field is curl free. The potential is fixed to
be −1/r a.u. at the AS boundary. Correlation is included in the
ES because the density in this region is very small and therefore
the effect of correlation is expected to be as significant as that
of the exchange. Application of the LDA in the ES is justified
as the absence of a core here makes the electron gas reasonably
homogeneous. Using these potentials, Eq. (7) is then solved
self-consistently. The results thus obtained are given in Table I
under the column HS-EX and are discussed in Sec. III.

As pointed out in the beginning, the KS gap differs
from the true fundamental gap by the integer derivative
discontinuity in the exchange-correlation potential. However,
it has been shown that for finite systems, the accurate treatment
of exchange-correlation potential, particularly in the outer
regions, leads28 to eigenvalue differences between the highest
occupied orbital and unoccupied orbitals energies close to true
excitation energies. This indicates that the same may hold true
for solids too.

B. Comparison of the HS approach with the OPM

As mentioned in the previous section, the HS potential
can also be derived directly from the Schrödinger equation.
However, it is rendered approximate because of the neglect of
difference in the true kinetic energy and the Kohn-Sham kinetic
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TABLE I. The BGs from the LMTO-HS-EX compared with the LMTO-LDA, GW (Ref. 32), LMTO-HSP [the HS potential (HSP) is used
both inside and outside the AS], LMTO-EXX [results for diamond and silicon taken from Kotani (Ref. 10) and results for AlN and 3C-SiC
are taken from Görling et al. (Ref. 29)], LMTO-LB and experiments (Refs. 35–41). The HS-EX, the HSP, the LDA, and the LB are evaluated
within TB-LMTO-ASA by us. C and Si are in diamond structure while AlN, AlP, BP, and SiC are in zinc-blende (ZB) structure.

BG (eV)

Element HS-EX LDA GW HSP EXX LB Expt.

C 5.47 2.70 6.03 5.51 5.12 5.18 5.48
Si 1.24 0.49 1.37 1.86 1.93 1.21 1.17
AlN 5.05 2.44 4.90 4.91 5.03 5.13 5.11
AlP 2.53 1.16 2.86 2.12 2.75 2.51
BP 2.22 1.51 1.90 2.54 2.09 2.00
3C-SiC 2.88 1.38 2.76 3.01 2.52 2.58 2.42

energy of an interacting system. Generally, this difference is
numerically insignificant. As such the HS exchange potential
is close to the EXX potential obtained using the OPM. In the
following we compare the two methodologies.

In the OPM, one solves for a local potential υs(r) so that
the corresponding orbitals φi’s minimize the Hartree-Fock
expression for the energy. Since in general the expression for
the EXX energy Ex is not known in terms of the density, the
exchange potential υx(r) in the OPM is written as

υx([ρ]; r) = δEx

δρ(r)
=

occ∑
i

∫
dr′

∫
dr′′

×
[

δEx

δφi(r′′)
δφi(r′′)
δvs(r′)

+ c.c.

]
δvs(r′)
δρ(r)

. (8)

In the above equation, δEx/δφi is the nonlocal potentials of
Hartree-Fock theory, δφi/δvs(r) is calculated using the first-
order perturbation theory and δυs(r)/δρ(r) is the inverse of the
noninteracting linear-response function χ (r,r′) defined via

δρ(r) =
∫

dr′χ (r,r′)δυs(r′), (9)

and is given as

χ (r,r′) =
occ∑
i

unocc∑
j

φ∗
i (r)φj (r)φ∗

j (r′)φi(r′)

εi − εj

+ c.c., (10)

where εi and εj are orbital eigenenergies.
It is evident by a comparison of Eqs. (3)–(5) and Eqs. (8)–

(10) that the HS approach is much easier to employ numerically
than the OPM, leading, however, to similar results. The
difficulty in the implementation of the OPM arises primarily
because of the calculation of χ (r,r′) and its inverse. We
note that this problem is somewhat simplified in the KLI
approximation15 to the OPM.

The exact-exchange calculation gives the KS BGs in
reasonable agreement with experiments.10,29 It is believed
that the agreement is due to a fortuitous cancellation of
errors in these systems and does not hold in general.30

However, if we think of the BG as the transition energy, the
agreement can be understood as arising from the accurate
treatment of the exchange potential. In the next section we
substantiate this, after presenting the results of HS potential, by
another calculation employing the van Leeuwen and Baerends
potential.

III. RESULTS AND DISCUSSION

A. Calculations with Harbola-Sahni potential

In Fig. 1, we have plotted the potential for Si in the AS
and the ES. There is a small discontinuity in the potential
at the AS boundary. This is an artifact of ASA. Within the
AS, the LDA is relatively less negative in comparison to the
HS-EX to exchange due to noncancellation of self-interaction.
In TB-LMTO the AS and ES orbitals have fractional charges
which have been taken care of while calculating the radial and
Fermi hole charge densities.15 Total valence electrons in the
Si-AS using the HS-EX is 3.35, while the LDA has only 3.21
electrons.

For band-structure calculations, we started with Si in the
diamond structure, which consists of two interpenetrating fcc
lattices with Si atoms at (0,0,0) and (1/4,1/4,1/4) respectively
in the unit cell. We have added two other fcc lattices of empty
spheres to obtain a close-packed structure within TB-LMTO-
ASA. The average Wigner-Seitz radius is set to 2.53 Å for

FIG. 1. (Color online) Anticlockwise, radial density (RD) of the
HS-EX potential (top left), the HS-EX (blue line), and the LDA (green
line) potentials for the Si-AS (at bottom left) and the ES (at right).
Wigner-Seitz radius is kept fixed for both Si-AS and ES at 2.53 Å.
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FIG. 2. (Color online) Electronic band structure and density of
states of Si calculated within the HS-EX (blue line) and the LDA
(green line).

both Si-AS and ES. The basis set used for Si-AS is (3s3p3d)
and (1s2p3d) for ES, which are complete under all symmetry
operations and no additional basis atom has been introduced.
The tetrahedron integration is performed over the full Brillouin
zone with 29 irreducible k points derived from 512 (8 × 8 × 8)
k points. The band structure of Si thus obtained is shown in
Fig. 2. A comparison of the dispersion curves obtained with the
HS-EX and the LDA shows that the curvature of valence bands
are hardly affected in the HS-EX. However, a definite shift
has occurred in valence bands while conduction bands shifted
with some distortion which is not a rigid shift like the scissor
operator method. The energy-dependent distortion invalidates
the use of the scissors operator which empirically inserts a
rigid shift31 (in Fig. 2 for the LDA and the HS-EX Fermi
level has been set at zero). The conduction-band minimum in
silicon occurs at about 0.85% of the way to the zone boundary
from � to X. The difference between the conduction-band
minimum and the valence-band maximum results into a correct
indirect �-X gap. The BG of Si produced by the HS-EX is
1.24 eV whereas LDA highly underestimates with a value of
0.49 eV. The values of 1.37 and 1.93 eV obtained within GW32

and EXX10 respectively are overestimated. For silicon, within
the HS-EX, the calculated effective electron mass (m∗

e/m0)

is 0.99 while Kittel et al. reported a value of 0.97 ± 0.02.33

Our calculated effective hole mass (m∗
h/m0) is 0.44 while the

experiments by Dexter et al.34 showed an average hole mass
to be 0.39, where m0 is the free-electron rest mass.

Table I shows that our predictions for BGs calculated using
the HS-EX are in excellent agreement with experiments. The
absence of self-interaction in the HS-EX, contrary to the
LDA, localizes the valence bands comparatively more than
the conduction bands due to a large exchange contribution
by the former. Consequently, instead of subsiding, the HS-
EX improves the BGs, demonstrating the applicability of
Harbola-Sahni construct to the description of excited states.
For completeness, we also show in Table I the results of BGs
using pure HS-EX potential (HSP) both in the AS and the ES.
The HSP potential is calculated by fixing its value to be −1/r

at the boundaries of the AS and the ES. The results obtained
by employing the HSP are similar to the HS-EX and the EXX
results. However, HE-EX results are closer to experiments
because of the inclusion of correlation in the ES.

Next, we have applied the HS-EX based TB-LMTO method
to calculate structural properties, e.g., equilibrium lattice
parameters (ELPs) and BM of semiconductors as well as
metals which have been summarized in Table II. A good
agreement is obtained between experimental and calculated
ELPs. However, the average deviation of ELPs from the
experiments is less than 1% for all systems except the metals
like Li and Na which differ by as much as 5%.

B. Calculations with van Leeuwen and Baerends (LB)
correction to the LDA potential

As we have seen above, the use of the HS potential in the AS
combined with the LDA potential in the ES leads to reasonably
accurate BGs for the systems reported in Table I. This is similar
to the results obtained with the OPM/EXX and self-interaction
corrected LDA (SIC-LDA).56 This we believe is related to the
proper treatment of the exchange-correlation potential in the
outer regions of the AS. We understand that the improvement
in the values of BGs corresponds to the integer discontinuity of
exchange-correlation potential; however, the correctness of the
uppermost eigenvalue, the appropriate asymptotic behavior,
and integer discontinuity of the exchange-correlation potential
are all inter-related. Thus, it is not a coincidence that for a large

TABLE II. The BM of semiconductors and metals are evaluated by fitting the data to the Murnaghan equation of state (Ref. 42). Our results
are compared with LDA (Refs. 43–49), HF (Refs. 50–52), and experiments (Refs. 53–55).

a (Å) BM (GPa)

Element HS-EX LDA Expt. HS-EX LDA HF Expt.

C 3.60 3.53 3.57 429 457 438 442
Si 5.51 5.38 5.43 85.4 97 97 99
AlN 4.38 4.31 4.36 208 206 254 202
AlP 5.50 5.41 5.46 88 89 95 86
BP 4.60 4.51 4.54 164.4 172 171 166
3C-SiC 4.41 4.30 4.36 211 227 218 224
Li 3.27 3.40 3.45 17 13 12 13.2
Na 4.03 4.04 4.21 10 9.64 8 8.5
Al 3.98 3.99 4.02 93 80.34 100 88
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number of systems, the EXX and SIC-LDA or HS potential
give significantly improved BGs in comparison to LDA; it is
well known that all three methods stated give accurate upper-
most eigenvalues and have the correct asymptotic behavior in
finite systems. Further, the EXX has been shown to possess
derivative discontinuity.57 We now demonstrate that improving
the LDA for its behavior in the outer regions of the AS indeed
leads to significant improvement of the values of BGs. We
do this by calculating the BGs of the systems studied in this
paper with a model potential that corrects the LDA in the
asymptotic regions of finite systems.14,58 The correction to the
LDA exchange has been made both in the AS and the ES.

The model potential with LB correction we employ is given
as14

Vmodel(r) = V LDA
xc (r) + V LB(r), (11)

where V LDA
xc (r) is the standard LDA exchange-correlation

potential and

V LB(r) = −βρ1/3 x2

1 + 3βxsinh−1(x)
, (12)

where V LB is van Leeuwen and Baerends correction to the
exchange part and the parameter β = 0.05 and x = |∇ρ|/ρ4/3.

The correction V LB is motivated by the Becke59 formula for
exchange energy and therefore leads to correct −1/r behavior
of the model potential in the outer regions of finite systems.
The potential has been employed in the past to study58 the
effect of the correct asymptotic behavior of the potential on
response properties of atoms. In this paper, we employ it to
obtain the exchange correlation potential in the AS and use
it in combination it with the LDA potential in the ES to per-
form self-consistent calculation within TB-LMTO-ASA. The
results of the BGs obtained from these calculations are given in
Table I. As is evident from these results, the model potential of

Eq. (11) gives BGs that are a vast improvement over the LDA
results and are in good agreement with experimental values.
This shows that an improved exchange-correlation potential,
which is particularly accurate in the outer regions of the AS,
gives significantly improved results over the LDA. In this
connection we further note that modifying the LDA potential
by the Becke-Johnson potential60 also leads to substantially
improved BGs for a variety of solids.61

IV. CONCLUSION

To conclude, we have developed a first-principles method
based on Harbola-Sahni exchange potential within TB-LMTO
basis to calculate accurately the band gaps of semiconductors.
Not only the calculated band gaps, but also properties like
equilibrium lattice parameters and bulk moduli of considered
semiconductors are in good agreement with experiments.
The method is easy to implement and computationally less
expensive and should allow one to treat complex systems with
this method. Also using a model potential, we have shown that
improving the potential in outer regions of AS leads to good
band gaps and as such we conclude that accurate band gaps
predicted by HS potential are due to the latter’s accuracy in
these regions. However, there are still issues to be settled. We
have estimated the local potential due to the Fermi hole caused
by the Pauli principle. However, the Coulomb hole, in which
even electrons with the different spins cannot come near each
other, needs to be incorporated. This will be addressed in the
future.
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1S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
2V. Sahni, Quantal Density Functional Theory (Springer, Berlin,
2004).

3P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
4W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
5J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys. Rev.
Lett. 49, 1691 (1982).

6J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
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