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A procedure to construct symmetry-adapted Wannier functions in the framework of the maximally localized
Wannier function approach [Marzari and Vanderbilt, Phys. Rev. B 56, 12847 (1997); Souza, Marzari, and
Vanderbilt, ibid. 65, 035109 (2001)] is presented. In this scheme, the minimization of the spread functional of
the Wannier functions is performed with constraints that are derived from symmetry properties of the specified
set of the Wannier functions and the Bloch functions used to construct them, therefore one can obtain a solution
that does not necessarily yield the global minimum of the spread functional. As a test of this approach, results of
atom-centered Wannier functions for GaAs and Cu are presented.
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I. INTRODUCTION

Since its proposal by Marzari and Vanderbilt,' the maxi-
mally localized Wannier function approach'= has been widely
used as a convenient tool to construct localized orthonormal
functions in crystals. These Wannier functions are obtained
from unitary transformation of the Bloch functions, whose
phase factors are chosen so that the spatial spreads of the
Wannier functions* are minimized. The maximally localized
Wannier functions have been employed for a number of
applications, such as analysis of chemical bonding and basis
functions for linear-scaling calculations or model Hamiltoni-
ans in strongly correlated systems.?

As found by Souza et al.” in the case of the s-like Wannier
function of Cu, the Wannier functions obtained in the maximal
localization procedure do not necessarily reflect the spatial
symmetry of the system; the center of the 4s-like Wannier
function of Cu is not at the Cu atom but at the tetrahedral
interstitial site. A similar result was reported by Thygesen
et al.’> This feature of the maximal localization approach
has some drawbacks; the center of the maximally localized
Wannier functions is not necessarily on atom positions or
other high-symmetry points, which sometimes makes the
interpretation of the obtained Wannier functions difficult.
Furthermore, due to the lack of definite symmetry in the
Wannier functions, one has to calculate the transformation
matrix from the Bloch functions to the Wannier functions for
all k points in the first Brillouin zone, not only inside the
irreducible part of it.

The connection between the symmetry of the crystal and
the properties of Wannier functions was first discussed by des
Cloizeaux® from the viewpoint of group theory. His basic idea
is that the Wannier functions can be chosen to be the basis of the
irreducible representations of a subgroup of the full symmetry
group of the system whose elements do not change the given
point in the unit cell, and he derived the relation between these
Wannier functions and the eigenfunctions of the one-particle
Hamiltonian of the crystal (i.e., Bloch states). This idea is
based on the site-symmetry group and the theory of the induced
representations,'” and there have been a number of works
considering these symmetry-adapted Wannier functions.”'
Based on this idea, in this work we propose a procedure to con-
struct symmetry-adapted Wannier functions in the framework
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of the maximally localized Wannier function approach.
Considering the symmetry properties of the specified set of
the Wannier functions and the Bloch functions used, we derive
a formula that the transformation matrix follows, and we
perform the minimization of the spread functional with this
symmetry constraint. Our procedure enables one to control
the symmetry and center of the Wannier functions, and it
also enables one to generate the transformation matrix for
a general k-point from its symmetry-equivalent point inside
the irreducible Brillouin zone (IBZ), which simplifies the
minimization of the spread functional. As a test of our
approach, we consider Wannier functions of GaAs and Cu.

II. METHOD

A. Symmetry-adapted Wannier functions
1. Site-symmetry group and symmetry-adapted Wannier functions

In this section, we summarize the main points of site-
symmetry group and symmetry-adapted Wannier functions
following Ref. 12. We refer to Refs. 6 and 12 for details of the
theory.

The starting point of this idea is to specify a set of positions
in real space (“sites”) in which one or more Wannier functions
will be centered. These sites can be either atomic positions, at
chemical bonds, or interstitial sites, depending on the case of
interest. The site-symmetry group of a given point q, denoted
by G, is a subgroup of the full symmetry group of the crystal
G whose elements leave q unchanged: namely, g, = (R,|v, +
T,) € G, satisfies

849 = (Rq|vq + Tq)q = qu + \Z +Tq =q, (1)

where R,,v, + T, are the rotation and the translation part of
the symmetry operation, with T, a lattice translation vector.
The full symmetry group G can be decomposed into left cosets
of the subgroup G, as

G =3 81G,, 2)
j.n

where

gjin = (Rjlv; +T; +T,). 3
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In the above equation, g ;o is one of the symmetry operations
that maps q to its symmetry-equivalent point q; as

qjEgjqu(Rj|Vj+Tj)q=qu+Vj+Tj. (4)

Here j =1 corresponds to the original point q [i.e., q; =
q and g1p = (E|0), where E denotes the identity operation].
These points {q;} constitute a crystallographic orbit whose
multiplicity is given by ng/ng,, where ng is the number of
symmetry operations in the full crystal group without pure
translations, and ng, is the number of elements in G,. The
vector T is chosen so that gy transforms q to the point q;
which lies in the unit cell.

From the site-symmetry group for a given point q, the
symmetry-adapted Wannier functions centered at q are defined
as the basis functions of the irreducible representations of
the site-symmetry group G,; these Wannier functions are
represented as Wi(f )(r) = Wi(ﬂ )(r —q1), where § labels the
irreducible representations and i = 1,2, ... ,ng runs over the
basis functions of the irreducible representation 3, and ng is
the dimension of the irreducible representation 8. For g, € G,
these Wannier functions transform as

gq Wl(:g)(r) — Wl(ﬁ) (gq—lr _ q)
= Wi(ﬁ)[Rz;l(r —v, =T, — R,Q)]
= W“"[R—l(r - q)]

From Wi(lﬁ )(r) we can generate Wannier functions centered at
q; as

WP = g,oW, @) = WP[R ' r—qp]. (6

Therefore, the symmetry-adapted Wannier functions can be
specified by one representative point of their centers (i.e.,
Wyckoff position) and the irreducible representations of the
corresponding site-symmetry group. If the irreducible repre-
sentation dl(’? ) is real, the corresponding Wannier functions can
be chosen to be real.® From these symmetry-adapted Wannier
functions Wi(f )(r), one can construct the Bloch functions

wk, A (r) as

Y@ =Y WP —T,), ™
1 .
B) _ Z —ik-T, ., (B)
VVU (I' — Tn) = Fk k e wkij(r)' (8)

Here Ny is the number of k points.

To understand how these Wannier functions transform with
respect to the operations in the full symmetry group of the
system, the theory of induced representations is used; it can
be shown that, for a given g;, and any element of the full
symmetry group, g = (R|v) € G, there exists one pair of g, €
G, and g that satisfies the following equation:'?

g = (EITjij + RT,)gj0 84 85, ©)
where

Ry R,R;' =R (10)
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T;;=zg4;—4q;. (11

Using Eq. (9), it can be shown that these symmetry-adapted
Wannier functions and the Bloch functions transform as'?

Zd(‘” (R;'RR))

i'=1

X W(/ﬂ?(l' — Tj’j — RT;«,), (12)

gwl((llsj)(r) — e—tRkT/ Zd(ﬂ)

In the above equations, the mdex j’ or the symmetry operation
g is determined by g and g; according to Eq. (9). By writing
I = {ij(B)}, Eq. (13) can be rewritten as

2V (™) =Y Dri(g. K Yk (r), (14)
Iz

Wl —T,) =

SRRV (). (13)

where D(g,k) is a block diagonal matrix
Dy ijp(8.K) = 8ppe  TTid)(RIRR)).  (15)

Due to its block-diagonal form, the matrix D(g,k) can con-
tain blocks corresponding to nonequivalent Wannier centers
(different Wyckoff positions), and the number of the blocks in
D(g,k) is given as the sum of the number of the irreducible
representations considered for a given set of Wannier centers;
when there is more than one set of Wannier functions belonging
to the same irreducible representation, D(g,Kk) contains the
same number of identical blocks as the number of these
multiple sets.

2. Construction of the Bloch functions from the eigenstates
of the Hamiltonian

Our objective is to construct the Bloch wave functions
defined in Eq. (7), which are related to the symmetry-
adapted Wannier functions through unitary transformation and
transform according to Eq. (14), from the linear combination
of the eigenfunctions of some one-particle Hamiltonian that
is invariant under the full symmetry operations of the system.
In this work, we use the Kohn-Sham Hamiltonian of density
functional theory.!” By using the Kohn-Sham wave functions
Vi, KS (1), we construct the orthonormal Bloch functions as

Y@ =Y Uy, (16)
n

Since the Kohn-Sham wave functions Vig KS(y) form the basis
of the irreducible representations of the full symmetry group
of the system G, they transform as

() = ZdMg,k)x/kau (r) (17)

for g = (R|v) € G. From Egs. (14), (16), and (17), one
can obtain the following relation between the transformation
matrices U (k) and U (RK):

U(RK)D(g,k) = d(g, kU (K). (18)

Therefore, U(RK) can be calculated from U(K) by providing
d(g,k) and D(g,k). In this work, we do not consider time-
reversal symmetry, but Eq. (18) can be generalized to include it.
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For the symmetry operations that transform k to itself, namely,
for the operations in the little group of k denoted by Gk,
Eq. (18) yields the condition that U (k) has to fulfill:

U(k) = d(gi. k) U®)D'(gk.K), g € G, 19)

where unitarity of D(g,k) is used.

Equations (12), (13), (18), and (19) are the central equations
of this work. We force the transformation matrix U (K) to follow
Eq. (18) for all g = (R|v) € G, which guarantees that the
resulting Wannier functions transform according to Eq. (12).
Since U(k) and U(RKk) are related by Eq. (18), we need to
calculate the transformation matrix only for k points inside the
IBZ, which reduces the computational cost. Note that since in
practice the Wannier functions are calculated using a limited
subspace spanned by a finite number of the Kohn-Sham states
inside a chosen “energy window,” it is not possible to construct
U (k) for any desired irreducible representations. If a given
irreducible representation is not compatible with the symmetry
of the Kohn-Sham states inside the energy window, Eq. (19)
cannot be fulfilled.

B. Maximally localized Wannier functions

In the maximally localized Wannier function approach,'-?
the Wannier functions are obtained by minimizing the spread
functional,

Q= Z [(0I|r%|07) — (01 |r|01)?], (20)
I

where |07) = |W,,) is the Wannier function / whose center
is in the cell T, = 0. The matrix elements (0/|r|0/) and
(01|r?|01) are calculated as'*

(01]r|07) = Z wpb[ (ks lucinr) — 11, 21)

(011x%(07) = Z wp[2 — 2Re(ug luwcinr)].  (22)
where ug(r) is the cell-per10d1c part of the Bloch function
[Eq. (16)],

b is the vector that connects a given Kk point with its
neighbors, and wy, is its weight. The spread functional given
by Eq. (20) can conveniently be decomposed as Q = Qp +
Qop + Qp, where!

lez (I%|07) = Y (T, I'[K|0N)* |, (23)
T, I’

Qop = Z Z| (T, 1'Ir|01)]? (24)

I£I T,

Qo =) > NTIIr0n)]. (25)

I T,#0

It can be shown that € is invariant under the unitary
transformation of the Bloch functions.! The algorithm to
minimize the spread functional is given in Refs. 1 and 2 for
both cases in which the bands of interest are isolated from other
bands and are entangled with other bands. The minimization
can be done as a postprocess to density-functional calculations,
and the necessary input data are (uks 75 +bu) the overlap
matrix elements between the states at k and k + b from which

PHYSICAL REVIEW B 87, 235109 (2013)

the spread functional is calculated via Egs. (21) and (22), and
the initial guess of the transformation matrix, which is obtained
by orthonormalizing the following matrix:'

Aur(R) = (Y |wr), (26)

where w; is an initial guess of the Wannier function /.

C. Minimization of the spread functional under
symmetry constraint

1. Input data

To perform minimization of the spread functional under
the symmetry constraint [Eqgs. (18) and (19)], in addition to
the overlap matrix elements (1 KS |uk by and the initial guess
of the transformation matrices [Eq (26)], one needs the matrix
representation of the symmetry operations in the basis of the
Bloch functions defined in Eq. (7) and the Kohn-Sham states,
Dy(g,k) [Eq. (15)] and Jurﬂ(g,k) [Eq. (17)]. The former is in
many cases obtained by specifying the center and the character
of the Wannier functions (e.g., s, p, and d), and calculating
the rotation matrix for the elements of the corresponding site-
symmetry group expressed in the basis of these functions. The
latter is calculated from the Kohn-Sham wave functions as

duu(8.k) = f Vi OV (87 '0)dr. (27)

Similar to the overlap matrices (uks |uk+bﬂ) ,m(g,k) in
Eq. (27) can be calculated with any ba51s set, and after all
data are calculated the procedure is basis-independent, as in
the original maximally localized Wannier function approach.
We also note that this procedure does not require any specific
phase factor relation between w and w & the Kohn-Sham
wave functions at Rk can be calculated mdependently from
those at k, or they can be generated from the wave functions
at k by performing symmetry operations. It is also important
to include all degenerate states in the calculation of ‘zu’ 1(8.K),
inside the specified energy window.

The initial transformation matrix U (k) (k € IBZ) has to
follow Eq. (19). We can construct U (k) that fulfills this require-
ment iteratively as follows: starting from U (k) = Uy(k), which
is calculated from the initial guess of the Wannier functions
[Eq. (26)], we first calculate

3 d(ek W Uo®D (gk),  (28)

8k

U'(k) =

8k

and in the next step this U’(k) is orthonormalized by, e.g.,
using singular value decomposition. This cycle is repeated
until we get converged U (k). For a limited energy window,
it is not always possible to construct U(k) for a given set
of the irreducible representations. A measure to check the
convergence of U (k) can be

3 - Ui 0d(g UMD (bl (29
gkEGK

which is zero if U (k) fulfills Eq. (19).

2. Isolated set of bands

In the case in which we construct N Wannier functions
from N bands that are separated from all other bands, since
any unitary transformation of the Bloch states does not change
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2;, we only have to consider the variation of Q= Qp + Qop
with respect to the change

Ut (&) = Y Uy (K81 + dWpi(K), (30)

I

where dW (k) is an infinitesimal antiunitary matrix.! Using
the relation Eq. (18), for k € IBZ the gradient of the spread
functional is calculated as

ae 1 Q2  9dW(RKk)
dw(k) @ Z IW(RK) aW(K)

(k) Z D(g. )G Di(g k), (31

where n(k) is the number of symmetry operations that leave
k unchanged, and G®¥ is the gradient of  with respect to
W (Rk), whose explicit form is given in Ref. 1. It can be shown
that the new set of U(K) optimized along this direction also
satisfies Eq. (19). The transformation matrices for k points not
inside the IBZ are obtained via Eq. (18).

3. Entangled bands

When we construct the Wannier functions from the states
that are entangled with other bands, generally the number of
Bloch states inside a given energy window is larger than the
number of Wannier functions N. Following Ref. 2, in this
case we minimize the spread functional using the two-step
procedure; first we determine the optimal subspace inside the
specified energy window spanned by N orthonormal states
that minimizes €2, and in the second step the remaining part
of the spread functional, Q2p + Q0p, is minimized within the
chosen subspace. In the first step, we search for the optimal N
wave functions,

Y () = ZU“"’”(k)w (r), (32)

which minimize 2 and also transform according to Eq. (13).
This set of wave functions is obtained by the variation of €2,

Su(om)*|: = > Arifu

(r” ;",‘3”)} =0. (33
k/ k1.l

where A (K) is a Lagrange multiplier and u( P is the periodic

part of w(om) In this work, we calculate w(np) by using the
steepest-descent method; in each iteration the wave functions
are minimized along the direction

S = ZMY = Y ar v (34)
-

where Z (k) is the Hermitian operator defined as

Zp0) = (S 200 S

—[ (k)deg,k)zmk)d(g,k)} . (39)

%

Here Z(RK) is the projection operator defined as’

KS (0pt> (om) KS
Zyw(k) = Zwbz o lncivn s i) (36)
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and Ap;(K) is calculated as A ;(kK) = (uyr | Z(K)|ur”). In
practice, for each state I, we diagonalize Z(k) in the subspace
spanned by ¥\ and w(om) and we construct a new ¥, "
from the eigenvector with the larger eigenvalue of this 2 x 2

matrix. In each iteration, after all w( P are updated, we

orthonormalize U /(L Ipt)(k) and impose the condition Eq. (19)
by using the method described above. This point is an
important difference between the current scheme and the usual
maximally localized Wannier function approach; in the latter,
U ff,pl) (k) is chosen to be the eigenvectors of the N largest
eigenvalues of Z(k) [Eq. (36)]. The optimal subspace chosen
in the conventional approach does not necessarily match the
subspace spanned by the desired symmetry-adapted Wannier
functions.

After the wave functions wli(}pt)(r) are obtained, we calculate
the transformation matrix U, ;(Kk) that yields the Bloch wave
functions [Eq. (7)] as a linear combination of 1//(°p[)(r),

Vi (1) = Z TR (), (37)

which yields the minimum of Qp + Qop in the chosen
subspace, in the same way as in the isolated band case. Since
Yy (r) and 1//(°pt)(r) both transform according to Eq. (13), the
relation of the transformation matrices U(Rk) and U(K) is
modified from Egs. (18) and (19) as follows:

U(RK)D(g,k) = D(g, kU (k), (38)

U(k) = D(gx,K)UK)D'(gx.k) (k € IBZ,gx € Gy). (39)

D. Computational details

In this work, we perform calculations using the plane-
wave DFT code TAPP'® with norm-conserving Troullier-
Martins-type pseudopotentials.'® We employ the generalized
gradient approximation (GGA)? for the exchange-correlation
functional. For the minimization of the spread functional, the
routines in the WANNIEROO library?! are used. All calculations
are done using experimental lattice constants, which are
a = 5.65 and 3.61 A for GaAs and Cu, respectively, and we
use 4 x 4 x 4and 8 x 8 x 8k-point sampling includingk = 0
(the I" point). Energy cutoffs of the plane-wave basis are 25
and 64 Ry for GaAs and Cu, respectively. Spin-orbit coupling
is not included in the calculations.

III. RESULTS
A. GaAs

First we consider constructing four Wannier functions from
the four valence bands in GaAs, whose band structure is shown
by the solid lines in Fig. 1. As shown in Ref. 1, in this system the
maximal localization procedure yields four localized functions
centered on four covalent bonds. From a group-theoretical
view, those correspond to the irreducible representation a,, of
the site-symmetry group of the Wyckoff position e, and one
can obtain the same results with our symmetry-constrained
minimization procedure. In this system, any point along the
bond yields the same set of the matrices D(g,k) [Eq. (15)],
therefore starting from the initial Wannier functions centered at
an arbitrary point along the bond and its symmetry-equivalent
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FIG. 1. (Color online) Interpolated band structure of GaAs
obtained from the Ga-centered s-like Wannier function (dashed lines)
and the Ga-centered p-like Wannier functions (dash-dotted lines). The
solid lines show the original band structure.

three points, after the minimization their centers are moved to
the points which yield the minimum of the spread functional,
which are around 0.155 x +/3a away from the Ga atom.
Another set of symmetry-adapted Wannier functions that
are compatible with the symmetry of these four valence states
are s-like and p-like functions centered at the anion (As)
atom, which correspond to the irreducible representations
a; and 1, respectively, of the site-symmetry group of the
Wyckoff position c(% % %). In the usual minimization without a
symmetry constraint, these atom-centered Wannier functions
are a stationary point of the spread functional but not the global
minimum of it, and therefore they are not a stable solution
as discussed by Marzari and Vanderbilt.! In our approach,
these atom-centered Wannier functions are easily obtained by
providing the corresponding matrix D(g,k). In Table I, we
compare the spreads of the bond-centered and atom-centered
Wannier functions. Following Ref. 1, in the table we also
show the results obtained by combining two independent

TABLE I. Spreads of the four bond-centered and atom-centered
Wannier functions of GaAs in A2 calculated with 4 x 4 x 4 and
8 x 8 x 8 k-point sampling. The asterisk shows the results obtained
by combining the solutions of separate one-band and three-band
calculations as done in Ref. 1, and €2, denotes the spread of one
Wannier function.

Ql S2D S_ZOD Q Qn
bond-centered
4x4x4 6.124 0.006 0.630 6.760 1.690
8x8x8 7.870 0.006 0.566  8.442 2.110
centered on As s p
4x4x4 6.124 0.012 3502 9.639 1450 2.730
8x8x8 7.870 0.012 3.826 11.708 1.510 3.399
*centered on As s p
4x4x4 6.124 0.064 4.388 10.576 1.828 2.916
8x8x8 7.870 0.069 4943 12.882 2.032 3.617
centered on Ga s p
4x4x4 6.124 0.151 7.648 13.924 2448 3.825
8x8x8 7.870 0.112 9.028 17.011 2.615 4.798
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calculations for s- and p-like Wannier functions; namely, in
this calculation we first perform two calculations to obtain
the s-like and p-like Wannier functions separately, from the
lowest band and the higher three bands, respectively. By using
these 1 x 1 and 3 x 3 transformation matrices, we construct
the 4 x 4 transformation matrix U,;(k) in block-diagonal
form without further optimization. As anticipated, compared
to this separate result, the atom-centered Wannier functions
constructed with four valence bands are more localized. This
is mainly due to the reduction in the off-diagonal contribution
of the spread functional [Eq. (24)].

In this system it is also possible to construct s- and p-
like functions centered at the cation (Ga) atom from the four
valence bands. These s- and p-like functions correspond to the
irreducible representations a; and f,, respectively, of the site-
symmetry group of Wyckoff position a(000). The spreads of
these cation-centered functions are also shown in Table I, and
as anticipated, these Wannier functions are more delocalized
compared to bond-centered or anion-centered ones. Unlike
the As-centered case, it is not possible to construct these s-
and p-like Ga-centered functions separately from the lowest
band and the other three bands; Eq. (19) cannot be fulfilled
separately for 1 x 1and 3 x 3 unitary transformation matrices
for the lowest band and the higher three bands, respectively,
but it can be fulfilled if we use the four valence bands together.
The reason for this becomes clear from Fig. 1, where we plot
the Wannier-interpolated band structure” calculated separately
from the s-like Wannier function and from the three p-like Ga-
centered Wannier functions. One can see that the Ga-centered
s-like Wannier function is connected to X5 and W; states, not
the lowest X; and W, states which are constructed from the
p-like functions. This shows a close connection between the
symmetry of the Wannier functions and the band structure;
the correspondence between irreducible representations of a
given site-symmetry group and the Bloch functions at high-
symmetry k points can be found in the tables in Ref. 12. At the
L point, there are two states belonging to the same irreducible
representation (L) that contribute to both the s-like and p-like
Wannier functions, therefore at this point the two interpolated
bands deviate from the original ones. We finally note that
the original band structure of the four valence bands can be
reproduced by using these s- and p-like Ga-centered Wannier
functions together in the interpolation.

B. Cu

Next we consider constructing six Wannier functions from
one s-like and five d-like states for bulk copper in a fcc
structure. Souza et al.”> showed that in this system one obtains
five d-like Wannier functions centered on a Cu atom that are
split into #,, and e, states and one s-like Wannier function
whose center is not on a Cu atom but at the tetrahedral
interstitial site (}1}7}1). In the six-band case, this tetrahedrally
centered Wannier function is not regarded as a symmetry-
adapted Wannier function, as due to the inversion symmetry
this site (Wyckoff position c) is equivalent to (_TI_TI_TI) and
thus one needs one additional s-like Wannier function centered
at the latter site to make them the basis functions of the full
symmetry group, resulting in a seven-band model as discussed

by Souza et al.”
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TABLE II. Spreads of the Wannier functions of Cu in A2
calculated with4 x 4 x 4and 8 x 8 x 8 k-point sampling. The labels
refer to the center of the s-like function, and the #,, and e, functions are
always on the atom. €2,, denotes the spread of one Wannier function.

QI QD QOD Q Qn

Energy window [—10 eV:10 eV]
atom-centered s th, e,
4x4x4 3.901 0.000 0.248 4.149 1.959 0.439 0.437
8x8x8 5.613 0.000 0.208 5.820 3.474 0.466 0.475
centered at (% % %) s by, e,
4x4x4 3.555 0.000 0.407 3.962 1.706 0.447 0.457
8x8x8 4.815 0.000 0.561 5.376 2.855 0.488 0.528
centered at (44) 5 he e
4x4x4 3.279 0.167 0.500 3.946 1.599 0.489 0.441
8x8x8 3.968 0.107 0.511 4.587 2.042 0.534 0.471
Energy window [—10 eV:20 eV]
atom-centered s by, e,
4x4x4 3.342 0.000 0.041 3.382 1.463 0.386 0.381
8x8x8 3.685 0.000 0.016 3.701 1.705 0.400 0.397
centered at (311) s by e
4x4x4 3.059 0.000 0.164 3.222 1.247 0.393 0.398
8x8x8 3.347 0.000 0.176 3.523 1.439 0.412 0.424
centered at (i % i) s by, e,
4x4x4 2.947 0.011 0.250 3.208 1.164 0.422 0.390
8x8x8 3.168 0.008 0.252 3.428 1.284 0.443 0.407

The possible s-like symmetry-adapted Wannier function in
this six-band case is (i) the a;, irreducible representation cen-
tered on the Cu atom (Wyckoff position @) and (ii) the a, irre-
ducible representation centered at (% % %) (Wyckoff position b).
In Table II, we compare the spreads of these sets of the six
Wannier functions obtained by using the energy window of
[-10eV:4+10eV]and [—10eV:420eV]. In these calculations,
the centers of the #,, and e, Wannier functions are on the
Cu atom. As expected, the two symmetry-adapted solutions
yield larger spreads than the tetrahedrally centered Wannier
functions obtained via the unconstrained minimization, while
the spreads of d-like Wannier functions do not vary very much
in these three cases. The s-like Wannier function centered at
(%%%) is found to be more localized than the atom-centered
Wannier function, which may be traced back to the fact that
the s-like band in Cu is very extended and it has a larger weight
in the interstitial region.

The gauge-invariant part of the spread functional [€2y,
Eq. (23)] is also different in the three cases, which indicates
that the optimal subspace [Eq. (32)] chosen in the first step of
the minimization procedure is different in these three cases as
a result of the symmetry constraint. As reported previously by
Souza et al.”> and Thygesen et al.’ in the case of the energy
window [—10 eV:+10 eV], we find that without a symmetry
constraint the atom-centered s-like Wannier function is not a
stable solution. In the case of the larger energy window of
[—10 eV:420 eV], we get the atom-centered s-like Wannier
function without a symmetry constraint by using atom-
centered Gaussian functions as initial trial functions, however
we find that without a symmetry constraint this solution is
unstable against a small perturbation of the initial states, and
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(a) atom-centered

(c) centered at (1/4 1/4 1/4)

[111] direction

FIG. 2. (Color online) The s-like Wannier functions of Cu for
three cases calculated with the energy window of [—10 eV:410 eV].
Left: Isosurfaces at +0.75/W and —0.125/W, where V is the
volume of the unit cell. The Cu atoms in the unit cell are also shown
by spheres. Right: Plots along the [111] direction. The unit of the
horizontal axes is v/3a.

this clearly shows the importance of the symmetry constraint
when constructing Wannier functions from extended bands. In
Fig. 2, we plot these three s-like Wannier functions. Since the
two symmetry-adapted functions [Figs. 2(a) and 2(b)] belong
to the ay, irreducible representation, they are invariant with
respect to transformations of their site-symmetry group. It can
be seen that the most localized tetrahedrally centered solution
[Fig. 2(c)], which is obtained without a symmetry constraint,
is also symmetric with respect to the rotation of 27” around
the [111] axis, which indicates that this function also reflects
some site-symmetry properties of the tetrahedral site.

In Fig. 3, we plot Wannier-interpolated band structures
calculated with different sets of the Wannier functions. For
completeness, in Fig. 3(d) we also show the interpolated band
structure calculated with seven Wannier functions, namely, five
d-like Wannier functions and two equivalent s-like Wannier
functions centered at (%%%). As in the case of GaAs and
as also discussed by Souza et al.,” for high-symmetry points
in the Brillouin zone one can predict which Bloch states can
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FIG. 3. (Color online) GGA band structure (solid lines) and
Wannier interpolated band structure (dashed lines) of Cu calculated
from different sets of Wannier functions: (a) atom-centered sd’
functions, (b) five atom-centered d functions and one s-like function

111

centered at (3 5 3), (c) five atom-centered d functions and one s-like
111

function centered at (7;;) (broken-symmetry solution), and (d)
five atom-centered d functions and two s-like functions centered at
(:i:i + i + %). In (d) the inner (frozen) window? of [—10 eV:7.2 eV]

is used.

be formed from a given set of the symmetry-adapted Wannier
functions; as seen in Fig. 3, the atom-centered s-like Wannier
function [Fig. 3(a)] is connected to L;, X;, and W, states,
while from the Wannier function centered at (% % %), Ly, X4,
and W, states are formed. The low-lying X4 and W3 states
are formed with the tetrahedrally centered Wannier functions
[Figs. 3(c) and 3(d)], as discussed by Souza et al?
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As can be seen in Fig. 3(a), the L, X1, and W, states which
are formed by the atom-centered s-like Wannier function are
located in a relatively high-energy region, and this is why
the atom-centered s-like Wannier function is unstable in the
conventional maximal localization approach when a small
energy window is chosen. Indeed, in our calculation, with
a smaller choice of the energy window, we cannot satisfy
the relation Eq. (19) for the atom-centered s-like Wannier
function. This shows the importance of selecting the energy
window properly, as the symmetry of the Wannier functions is
determined by the symmetry properties of the Bloch functions
inside the energy window through Egs. (18) and (27).

IV. CONCLUSIONS

In this paper, we have presented a systematic procedure
to generate symmetry-adapted Wannier functions based on
the theory of site symmetry and an induction group combined
with the maximally localized Wannier function approach. This
scheme can easily be implemented in the existing maximally
localized Wannier function calculation code, and it allows one
to calculate localized functions of a specified symmetry which
do not necessarily yield the global minimum of the spread
functional. It also provides the relation between the unitary
transformation matrices for symmetry-equivalent k points,
which simplifies the minimization process and also improves
the accuracy of the calculation.

The results for GaAs and Cu show that the calculated
Wannier functions are indeed localized and have the specified
symmetry properties, and they reflect the symmetry of the
Bloch functions inside the energy window used in the calcula-
tion. These symmetry-adapted Wannier functions are suitable
for symmetry analysis of the band structure of the system
and for accurate basis functions of the tight-binding model.
Generalizations of the present method, such as including spin-
orbit coupling, would be interesting subjects to be investigated.

ACKNOWLEDGMENTS

We thank K. Nakamura for providing us with his pseu-
dopotential data, and F. Aryasetiawan and F. Nilsson for
helpful discussions. This work was supported by the Swedish
Research Council and the Scandinavia-Japan Sasakawa
Foundation.

IN. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847
(1997).

21. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109
(2001).

3N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt,
Rev. Mod. Phys. 84, 1419 (2012).

“E. I. Blount, Solid State Phys. 13, 305 (1962).

K. S. Thygesen, L. B. Hansen, and K. W. Jacobsen, Phys. Rev. B
72, 125119 (2005).

6]. des Cloizeaux, Phys. Rev. 129, 554 (1963).

7W. Kohn, Phys. Rev. B 7, 4388 (1973).

8G. Strinati, Phys. Rev. B 18, 4104 (1978).

°J. von Boehm and J.-L. Calais, J. Phys. C 12, 3661 (1979).

10E. Kriiger, Phys. Rev. B 36, 2263 (1987).

UB. Sporkmann and H. Bross, Phys. Rev. B 49, 10869 (1994).

I2R. A. Evarestov and V. P. Smirnov, Site Symmetry in Crystals:
Theory and Applications, 2nd ed., Springer Series in Solid State
Sciences (Springer-Verlag, New York, 1997).

BV. P. Smirnov and D. E. Usvyat, Phys. Rev. B 64, 245108
(2001).

14V, P. Smirnov and R. A. Evarestov, Phys. Rev. B 72, 075138
(2005).

ISM. Posternak, A. Baldereschi, S. Massidda, and N. Marzari, Phys.
Rev. B 65, 184422 (2002).

235109-7


http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1016/S0081-1947(08)60459-2
http://dx.doi.org/10.1103/PhysRevB.72.125119
http://dx.doi.org/10.1103/PhysRevB.72.125119
http://dx.doi.org/10.1103/PhysRev.129.554
http://dx.doi.org/10.1103/PhysRevB.7.4388
http://dx.doi.org/10.1103/PhysRevB.18.4104
http://dx.doi.org/10.1088/0022-3719/12/18/010
http://dx.doi.org/10.1103/PhysRevB.36.2263
http://dx.doi.org/10.1103/PhysRevB.49.10869
http://dx.doi.org/10.1103/PhysRevB.64.245108
http://dx.doi.org/10.1103/PhysRevB.64.245108
http://dx.doi.org/10.1103/PhysRevB.72.075138
http://dx.doi.org/10.1103/PhysRevB.72.075138
http://dx.doi.org/10.1103/PhysRevB.65.184422
http://dx.doi.org/10.1103/PhysRevB.65.184422

R. SAKUMA PHYSICAL REVIEW B 87, 235109 (2013)

16§, Casassa, C. M. Zicovich-Wilson, and C. Pisani, Theor. Chem. N, Troullier and J. L. Martins, Phys. Rev. B 43, 1993

Acc. 116, 726 (2006). (1991).

7R. M. Dreizler and E. K. U. Gross, Density Functional Theory — *°J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(Springer-Verlag, Berlin, 1990). (1996).

13, Yamauchi, M. Tsukada, S. Watanabe, and O. Sugino, Phys. Rev. 21A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and
B 54, 5586 (1996). N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

235109-8


http://dx.doi.org/10.1007/s00214-006-0119-z
http://dx.doi.org/10.1007/s00214-006-0119-z
http://dx.doi.org/10.1103/PhysRevB.54.5586
http://dx.doi.org/10.1103/PhysRevB.54.5586
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1016/j.cpc.2007.11.016



