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Optical conductivity of visons in Z2 spin liquids close to a valence bond solid
transition on the kagome lattice
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We consider Z2 spin liquids on the kagome lattice on the verge of a valence bond solid (VBS) transition,
where vortex excitations carrying Z2 magnetic flux—so-called visons—condense. We show that these vison
excitations can couple directly to the external electromagnetic field, even though they carry neither spin nor
charge. This is possible via a magnetoelastic coupling mechanism recently identified. [Potter, Senthil, and Lee,
arXiv:1301.3495; Hao, Phys. Rev. B 85, 174432 (2012)] For the case of transitions to a 36-site unit cell VBS
state, the corresponding finite ac conductivity has a specific power-law frequency dependence, which is related
to the crossover exponent of the quantum critical point. The visons’ contribution to the optical conductivity at
transitions to VBS states with a 12-site unit cell vanishes, however.
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I. INTRODUCTION

Spin liquids,1,2 albeit Mott insulators, exhibit a finite ac
conductivity below the Mott gap provided they have gapless
excitations which couple to the external electromagnetic
field.3–7 Recent measurements on the kagome material
ZnCu3(OH)6Cl2 (herbertsmithite), which is a strong
contender for exhibiting a spin-liquid ground state, indeed
showed a specific power-law frequency dependence of the ac
conductivity below the Mott gap.8 The nature of the ground
state in this material remains an open issue, however. While
experiments are in favor of an almost gapless spin liquid,9,10

numerical results of the antiferromagnetic Heisenberg model
on the kagome lattice are still controversial. Projected fermion
wave-function studies suggest a U(1) Dirac spin liquid as
ground state,11 whereas density matrix renormalization group
(DMRG) approaches provide substantial evidence for a gapped
Z2 spin liquid.12–14 Reference 12 in particular indicate that the
ground state is close to a phase transition to a 12-site unit-cell
valence bond solid (VBS). Projected boson wave-function
studies also support a Z2 spin liquid,15 while large-scale exact
diagonalization studies remain inconclusive.16,17 Numerical
studies of the quantum dimer model imply a 36-site unit-cell
VBS ground state, which is close to a Z2 spin liquid, separated
by a quantum critical point.18

In a recent paper, Potter et al.19 identified three mechanisms
which give rise to a finite optical conductivity σ (ω) of gapless
spin liquids on the kagome lattice below the Mott gap, all
leading to a characteristic σ (ω) ∼ ω2 frequency dependence.
They argued that a magnetoelastic coupling, where an applied
electric field distorts the lattice and thereby modulates the
magnetic exchange couplings, directly couples the external
to the emergent gauge field of a U(1) Dirac spin liquid and
gives the largest contribution to the optical conductivity out of
the three mechanisms they found. Following their approach,
we show that an external field can also couple to vison
excitations of a Z2 spin liquid by the same magnetoelastic
coupling mechanism. Indeed, since the visons are Z2 vortices
living on the dual lattice, their hopping amplitudes are
modulated in accordance with the field-induced distortion
of the direct lattice. This mechanism provides a direct
coupling between the external electromagnetic field and vison

excitations of a Z2 spin liquid, which carry neither spin nor
charge.

In the following, motivated by the above-mentioned DMRG
studies, we focus on the situation of a Z2 spin liquid20 close to
a VBS transition, where the vison gap vanishes. In a previous
work,21 we derived low-energy field theories for different Z2

spin liquid to VBS transitions on the kagome lattice. Based
on these results, we show that the magnetoelastic coupling of
visons to the external field leads to a power-law frequency
dependence of the conductivity for transitions to a VBS
state with a 36-site unit cell. This power law comes with a
considerably smaller exponent than the ∼ω2 behavior found
in Ref. 19. By contrast, we show that the contribution of visons
to the ac conductivity at transitions to a VBS state with a 12-site
unit cell vanishes on symmetry grounds.

Quite generally, a uniform external electric field can
only couple to a time-reversal even spin singlet operator
which transforms as a vector under the lattice symmetry
group. Physically, this vector operator represents the lattice
polarization P, which couples linearly to the external electric
field E,

δH ∼ P · E. (1.1)

Since visons transform projectively under lattice symmetry
operations, we have to find an operator in terms of the vison
fields which transforms as a vector under the corresponding
projective symmetry group (PSG).22 In our previous paper,21

we showed explicitly how the visons transform under the
PSG and we are going to utilize these results in order
to construct such a vector operator on symmetry grounds.
Moreover, we show that this operator is indeed the unique
polarization operator which couples to the external field by
the above-mentioned magnetoelastic mechanism.

II. MAGNETOELASTIC COUPLING BETWEEN VISONS
AND THE EXTERNAL ELECTROMAGNETIC FIELD

The basic idea behind the magnetoelastic coupling mecha-
nism of Ref. 19 is the fact that positively charged copper ions
can be displaced within the unit cell by an applied uniform
external electric field, which in turn leads to a modulation of
the superexchange amplitudes between neighboring spins. The
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FIG. 1. (Color online) Kagome lattice (black solid lines) and its
dual dice lattice (blue dashed lines). Shown is one extended 12-site
unit cell of the dice lattice, together with a gauge choice of frustrated
bonds (Jij = −J shown as solid red lines; other dice lattice bonds
have Jij = J ) for the effective frustrated Ising model describing the
vison excitations (see text).

corresponding perturbation to the Heisenberg model takes the
form

δH =
∑
〈i,j〉

δJ̃ij Si · Sj , (2.1)

where Si describes a spin-1/2 operator on lattice site i. The
pattern of modulated superexchange amplitudes δJ̃ij which
couples to the external field can be inferred on symmetry
grounds, as shown explicitly in Ref. 19.

For our purpose, the important low-energy excitations of a
Z2 spin liquid close to a VBS transition are vortices carrying
Z2 magnetic flux: the so-called visons. These are described
by an effective fully frustrated transverse field Ising model
on the dual dice lattice (see Fig. 1). Its low-energy properties
are captured by a field theory of soft-spin modes21 with a
Lagrangian of the form (τ denotes the imaginary time)

Lv =
∑
i�j

φi(τ )
[( − ∂2

τ + m2)δi,j − Jij

]
φj (τ ) + · · · , (2.2)

together with the full frustration condition∏
plaq

sign(Jij ) = −1, (2.3)

where the product is over an elementary plaquette of the dice
lattice. A specific gauge choice for the Jij ’s, which satisfies this
frustration condition, is shown in Fig. 1. Note that any gauge
choice requires an extended unit cell. In Eq. (2.2), we did not
explicitly include higher-order terms in the fields φ that are
allowed by symmetry and describe interactions between the
visons. Furthermore, note that the hopping amplitudes Jij are
not equal to superexchange amplitudes J̃ij in the Heisenberg
model above, but they are expected to be of the same order,
since the magnetic superexchange coupling is the only energy
scale in the problem.

Important for our considerations is the fact that a distortion
of the kagome lattice inevitably leads to a distortion of the
dual dice lattice. This implies that the hopping amplitudes
Jij of the visons on the dice lattice are modulated by the
magnetoelastic coupling in a way similar to the modulation of
the exchange amplitudes in the Heisenberg model, giving rise

to a perturbation of the form

Lm−e = −
∑
i<j

δij Jijφi(τ )φj (τ ) =
∑

�

P(�) · E, (2.4)

where P(�) is the polarization of an elementary unit cell
of the dice lattice and the sum on � runs over unit cells.
We have δij > 0 (δij < 0) for a squeezed (stretched) bond,
where the hopping amplitude increases (decreases). The
absolute value of δij , which parametrizes the change of the
vison hopping amplitude with respect to the applied electric
field E, can be simply estimated as

|δij | ∼ eE

KCua
, (2.5)

with KCu, e, and a as effective spring constant of the copper
ions, elementary charge, and lattice constant, respectively, and
E = |E| is the external electric field. The pattern of modulated
hopping amplitudes can be inferred on symmetry grounds.
Following Ref. 19, we construct an irreducible representation
of the modulated bonds δij Jijφiφj , which transforms as a
vector under the symmetry group of the dice lattice.23 This
operator is proportional to the lattice polarization operator
P(�) = (Px,Py), which takes the form

Px = ea

J

[
+ + 2

]
, (2.6)

Py = ea

J

√
3

[
−

]
, (2.7)

where black (white) ellipses correspond to squeezed bonds
+δJijφiφj (stretched bonds −δJijφiφj ) within one elementary
unit cell of the dice lattice, and we have defined

δ = J

KCua2
, (2.8)

with J denoting the absolute value of the nearest-neighbor
vison hopping amplitude. The dimensionless parameter δ rep-
resents the magnetoelastic coupling strength and is typically
much smaller than one. While the elastic energy KCua

2 is on
the order of 1 eV, J takes values on the order of 10 meV. On the
extended 12-site unit cell shown in Fig. 1, the basis elements
take the explicit form

= (2.9)

= δJ [φ2(R)φ5(R) − φ1(R)φ3(R)

+φ3(R)φ4(R + 2v − 2u) − φ8(R)φ10(R)

−φ6(R)φ9(R) + φ7(R)φ8(R + 2v − 2u)

+φ9(R)φ11(R) − φ12(R)φ2(R + 2v)],

and similar expressions for the two other basis elements. Note
that the sign of the gauge choice from Fig. 1 has been taken
into account in the equation above. R = 2mu + 2nv denotes
the lattice vector of the extended 12-site unit cell, with m,n ∈
Z and u = (3/2,

√
3/2), v = (3/2, − √

3/2) as the two basis
vectors of the dice lattice.
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Also note that the specific hopping amplitudes beyond
nearest neighbors, which had to be introduced in Ref. 21 in
order to give a dispersion to the otherwise flat vison bands, are
not modulated here because the distance between these sites
does not change.

III. OPTICAL CONDUCTIVITY

A. Transition to a 12-site VBS state

We start by briefly reviewing the necessary results of
Ref. 21. The field theory for visons at the transition from a
Z2 spin liquid to a VBS state with a 12-site unit cell is an
O(4) theory with additional fourth-order terms, which break
the symmetry down to GL(2,Z3). Its Lagrangian takes the
form

L =
∑

n=1,...,4

[
(∇ψn)2 + (∂τψn)2 + rψ2

n + uψ4
n

]

+ a
∑
n<m

ψ2
nψ2

m + b
[
ψ2

1 (ψ2ψ3 − ψ2ψ4 + ψ3ψ4)

+ψ2
2 (ψ1ψ3 + ψ1ψ4 − ψ3ψ4)

+ψ2
3 (ψ1ψ2 − ψ1ψ4 + ψ2ψ4)

−ψ2
4 (ψ1ψ2 + ψ1ψ3 + ψ2ψ3)

]
. (3.1)

The fields ψi are linear combinations of the soft-spin fields
φi and correspond to the modes which become critical at the
VBS transition, i.e.,

φj (R) =
∑

n=1,...,4

ψnv
(n)
j , (3.2)

where v
(n)
j denotes the four eigenvectors corresponding to

the highest, fourfold degenerate eigenvalue of the Fourier
transform of the hopping matrix J

(ij )
q=0 at momentum q = 0,

and j = 1, . . . ,12 is a sublattice index in the extended 12-site
unit cell (see Fig. 1 and Ref. 21 for details). Note that in this
case, φj (R) does not depend on the lattice vector R of the
extended 12-site unit cell.

The four fields (ψ1,ψ2,ψ3,ψ4) transform under lattice
symmetries via a four-dimensional representation of the PSG
generated by lattice translations Tu, sixfold rotations R6, and
reflections about the x axis Ix , which take the form

Tu =

⎡
⎢⎢⎢⎣

0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦, Ix =

⎡
⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 −1

⎤
⎥⎥⎥⎦,

(3.3)

R6 =

⎡
⎢⎢⎢⎣

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦.

We are looking for an operator which transforms as a vector
under (3.3). Such an operator, which couples to lattice
distortions (i.e., terms in the vison Hamiltonian of the form
δJijφiφj ), can only be bilinear in the fields ψ . Moreover,
such an operator has to change its sign under rotations by
180 degrees if it is supposed to transform like a vector. Now
one can readily show from (3.3) that (R6)3 = 1, i.e., the

fields transform back to themselves after 180 degree rotations,
thus it is not possible to construct a vector operator out of
the fields ψi without invoking spatial gradients. Since the
external electric field is homogeneous and only couples to
the zero-momentum component of such a vector operator, any
PSG invariant bilinear term in the ψi’s involving gradients
is ruled out. In principle, it would be possible to construct a
fourth-order term involving gradients which transforms as a
vector and gives a nonzero contribution to the conductivity
when coupled to a homogeneous external field, but such an
operator cannot correspond to the lattice polarization operator,
as it is not a bilinear. Since we are not aware of a mechanism
which couples the electric field to a quadrilinear operator in
the fields ψ , we do not pursue this route further at the moment.

We can also directly show that the lattice polarization
operator vanishes for the case of a transition to a 12-site VBS
state by using Eqs. (2.6), (2.7), (2.9), and (3.2). Since φj (R)
does not depend on the lattice vector R, we get

= δJ

4∑
n,m=1

ψmψn

[
v

(n)
2 v

(m)
5 − v

(n)
1 v

(m)
3

− v
(n)
8 v

(m)
10 − v

(n)
6 v

(m)
9 + v

(n)
9 v

(m)
11

+ v
(n)
7 v

(m)
8 + v

(n)
3 v

(m)
4 − v

(n)
12 v

(m)
2

] = 0, (3.4)

where the last equation follows after using the explicit form of
the eigenvectors v

(n)
j from Ref. 21. Similarly also the other two

basis elements that are used to construct the polarization opera-
tor shown in Eqs. (2.6) and (2.7) vanish. Consequently, it is not
possible to construct a lattice polarization operator which cou-
ples to the external electric field via the magnetoelastic mech-
anism. In fact, we see that the bonds related by a 180 degree
rotation cancel each other, confirming our earlier argument.

B. Transition to a 36-site VBS state

For a transition to a VBS state with a 36-site unit cell, the
visons are described by an O(8) theory with additional fourth-
and sixth-order terms which break the symmetry down to
GL(2,Z3) × D3. The explicit form of the Lagrangian and the
corresponding eight-dimensional matrix representation of the
PSG can be found in Ref. 21. In contrast to the previous case,
we can straightforwardly construct a homogeneous bilinear
operator which transforms like a vector under the PSG by
making the ansatz [P = (Px,Py)]

Px =
∑

i,j=1,...,8

aijψiψj , Py =
∑

i,j=1,...,8

bijψiψj , (3.5)

and determining the coefficients of the matrices (a)ij ≡ aij and
(b)ij ≡ bij via

RT
6 a R6 = (a +

√
3 b)/2, (3.6)

RT
6 b R6 = (b −

√
3 a)/2, (3.7)

T T
u a Tu = a, (3.8)

T T
u b Tu = b, (3.9)

IT
x a Ix = a, (3.10)

235108-3



YEJIN HUH, MATTHIAS PUNK, AND SUBIR SACHDEV PHYSICAL REVIEW B 87, 235108 (2013)

IT
x b Ix = −b. (3.11)

This vector operator is uniquely determined up to a constant
prefactor and takes the form

Px ∼ [ei5π/6(2ψ1ψ
∗
2 + ψ1ψ

∗
3 + ψ∗

1 ψ4 + 2ψ3ψ
∗
4 − ψ2ψ

∗
4 )

+ iψ2ψ
∗
3 ] + c.c., (3.12)

Py ∼
√

3[ei5π/6(ψ∗
1 ψ4 − ψ1ψ

∗
3 + ψ2ψ

∗
4 ) + iψ2ψ

∗
3 ] + c.c.

(3.13)

As we will show now, this operator corresponds to the unique
lattice polarization operator P = eaδ P in Eqs. (2.6) and (2.7).
For transitions to a VBS state with a 36-site unit cell, the
soft-spin modes φ are related to the critical modes ψ via21

φj (R) = eiQ1·R
∑

n=1,...,4

ψnv
(n)
Q1,j

+ c.c., (3.14)

where q = ±Q1 = (
0, ± 2π

3
√

3

)
are the momenta where the

vison dispersion has its minima. When inserting Eq. (3.14)
into Eqs. (2.6) and (2.7), it is important to keep only the
zero-momentum components (i.e., the terms independent
of the lattice vector R) since the external electric field is
homogeneous and will only couple to such terms. Using the
shorthand notation

μj =
∑

n=1,...,4

ψnv
(n)
Q1,j

, (3.15)

we obtain

= δJ
(
μ2μ

∗
5 − μ1μ

∗
3 − μ8μ

∗
10 − μ6μ

∗
9 + μ9μ

∗
11

+μ7μ
∗
8e

−i2Q1·(v−u) + μ3μ
∗
4e

−i2Q1·(v−u)

−μ12μ
∗
2e

−i2Q1·v) + c.c.

= δJ√
2

( − e−iπ/6ψ1ψ
∗
2 + eiπ/6ψ1ψ

∗
4

− e−iπ/6ψ3ψ
∗
4 − iψ2ψ

∗
3

) + c.c. (3.16)

The exponential factors arise from bonds connecting sites in
adjacent unit cells. Using this and similar expressions for the
two other basis elements, we reproduce Eqs. (3.12) and (3.13)
exactly up to a multiplicative constant.

The frequency dependence of the conductivity can now be
obtained using Kubo’s formula,

σ (ω) ∼ ω〈PωP−ω〉, (3.17)

where the frequency dependence of the polarization correlation
function is determined by the scaling dimension of the
polarization operator Pω. In Ref. 21, we could not find a stable
fixed point at one-loop order for our O(8) theory including the
additional fourth-order terms. Since the O(8) theory has a small
anomalous dimension, we do not expect the scaling dimensions
of the true critical theory to be significantly different from that
of the O(8) model. Thus making the simplifying assumption
that the critical point between the Z2 spin liquid and the VBS
phase is described by the standard O(8) Wilson-Fisher fixed
point, the polarization operator in Eqs. (3.12) and (3.13) can be
expanded in terms of components of the traceless symmetric

bilinear tensor operator of the O(8) model,

Tmn(x) = ψn(x)ψm(x) − δm,n

8

∑
k

ψk(x)2, (3.18)

where ψn (n ∈ {1, . . . ,8}) now represents the real and imagi-
nary parts of the four complex fields in Eqs. (3.12) and (3.13).
We denote the scaling dimensions of this tensor operator, and
thus the polarization operator, by �T . Then, the frequency
scaling of the ac conductivity in d = 2 dimensions is given by

σ (ω) ∼ ω2�T −2. (3.19)

The scaling dimension can be expressed in terms of the
crossover exponent φT by �T = 3 − φT /ν, and has been
evaluated to six loops24 as φT = 1.55. Using ν = 0.830,25

we obtain

2�T − 2 = 0.27. (3.20)

This exponent is considerably smaller than two, giving rise
to a large optical response compared to the mechanisms
discussed in Ref. 19 at frequencies below the magnetic
superexchange coupling. The resulting expression for the
frequency-dependent conductivity finally takes the form

σ (ω) ≈ e2

h

(
J

KCua2

)2 (ω

J

)0.27
, (3.21)

where we have reintroduced Planck’s constant h. Note again
that J denotes the nearest-neighbor vison hopping amplitude
here, which is expected to be on the order of the magnetic
superexchange coupling of the underlying Heisenberg model,
since this is the only energy scale in the problem.

IV. DISCUSSION

We calculated the optical conductivity of Z2 spin liquids
at a quantum critical point to a VBS state with a 36-site
unit cell, and found a power-law frequency dependence of
the conductivity σ (ω) ∼ ω0.27, which is a particularly small
exponent. This indicates a large optical conductivity at low
frequencies at the critical point, and the enhancement should
also persist away from the critical point.

This calculation is based on the simplifying assumption that
the transition is described by the Wilson-Fisher fixed point
of the O(8) model. It is still an open question as to whether
the full theory including the O(8) symmetry-breaking terms
presented in Ref. 21 exhibits a stable fixed point, and it would
be interesting to study its critical behavior in the future. Going
beyond a one-loop calculation is a daunting task, however,
given the complicated form of the Lagrangian [see Eq. (3.24)
in Ref. 21]. A viable approach would be to study the frustrated
Ising model directly using Monte Carlo simulations. In any
case, the smallness of the optical conductivity exponent relies
mainly on the fact that the polarization operator is a bilinear in
the field of the O(8) model, with no additional spatial gradients,
and so we can reasonably expect a small exponent at any
possible fixed point which breaks the O(8) symmetry down to
GL(2,Z3) × D3.
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