
PHYSICAL REVIEW B 87, 235102 (2013)

Role of localized electrons in electron-hole interaction: The case of SrTiO3
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Strontium titanate SrTiO3 is an extensively studied material. Of particular interest are its electronic properties.
Here we present a theoretical study of its optical spectrum on the basis of state-of-the-art calculations including
many-body effects. The latter are evaluated by solving the Bethe-Salpeter equation within the GW approximation
for the self-energy. Excitonic effects are strong at the onset and at higher energies up to 10 eV. Agreement between
theory and experiment is excellent at the onset, but only qualitative at higher energies, where excitonic effects are
stronger in theory than in experiment. The origin of structures in the spectrum, as well as the remaining discrepancy
between theory and experiment, are discussed. We also present benchmark results for calculations using more
approximate ways to determine the spectra, including simplified time-dependent density-functional theory.
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I. INTRODUCTION

Strontium titanate SrTiO3 (STO) (pure, doped, or in junc-
tions) displays several peculiar properties which make this ma-
terial widely investigated for technological applications and for
a theoretical understanding of basic processes. It is prototypi-
cal among the transition-metal oxides and therefore has been
often taken as a benchmark material to test the performances
of different theories.1–3 Of interest are its conducting,4–6

structural,7–9 and magnetic10 properties. All these features are
closely related to its electronic structure. Optical spectroscopy
techniques (electron energy loss, reflectivity, ellipsometry,
and absorption) are powerful tools to probe valence and
conduction states, being in many cases the experiments of
choice to get insight into the electronic properties. Optical
spectra of STO measured in a different range of energy and
with different techniques (reflectivity,11–14 ellipsometry,14,15

x-ray absorption spectroscopy,16 and others) were compared
early on with theoretical works, mostly calculations based
on the independent-particle (IP) picture.17,18 More recent
ab initio calculations include all-electron19–23 and plane-wave-
pseudopotential approaches,24 but to our knowledge, optical
properties have always been calculated using Fermi’s golden
rule in the IP framework, where the spectrum is given by a
simple sum over all possible transitions.

However, a real absorption experiment is more complex.
Electrons excited from valence to empty conduction states
induce a response in the whole electronic system polarizing the
medium (screening) while the interaction between the excited
electron and the hole modifies the spectral shape and can
give rise to bound or continuum correlated electron-hole states
(excitons). Moreover, the dynamically polarized medium can
react in many ways, e.g., creating additional electron-hole pairs
(multiple exciton generation25) or exciting vibrational degrees
of freedom (electron-phonon coupling26–28). The simple IP
picture is not sufficient to describe these processes, which are
instead included in principle in a many-body approach.

The aim of the present work is to give a more realistic
description and analysis of the optical properties of STO. We
have concentrated in particular on features that are peculiar for
this material; most importantly, we are interested in analyzing
the interplay between empty d states and the occupied O 2p

states. Localized d electrons must be treated carefully: at the
optical level they can give rise to sharp peaks and strongly
bound electron-hole pairs. We have computed the dielectric
function of STO in the framework of many-body perturbation
theory29 (MBPT) on the level of the GW approximation,30

solving the Bethe-Salpeter equation (BSE) in a fully ab initio
framework.31 The approach includes nonlocal self-energy
effects and the electron-hole interaction (excitons), whereas
lattice polarizability (electron-phonon coupling) as well as dy-
namical effects in the electron-hole interaction are neglected.
Moreover, we have tested different approximations that allow
one in principle to perform more efficient calculations, includ-
ing simple kernels used in the framework of time-dependent
density-functional theory (TDDFT).32 Results are compared
with experiments.14,33 The remaining discrepancies between
theory and experiments are discussed.

The paper is organized as follows: Sec. II contains back-
ground information concerning the material as well as the
theoretical approaches that have been used. In Sec. III, results
are presented and discussed; these include band structure,
projected density of states, and spectra. Finally, Sec. IV
presents the conclusion.

Atomic units are used (e = h̄ = me = 1/4πε0 = 1), unless
stated otherwise.

II. BACKGROUND

A. Geometry and crystal-field splitting

Strontium titanate (STO) is a transition-metal oxide, which
crystallizes at room temperature in the cubic perovskite
structure of the kind ABO3, with a lattice parameter a =
3.905 Å.34 Its fundamental absorption edge is around 3.2 eV
at room temperature,11,14 and the direct gap is 3.75 eV.14

In such materials, the A atoms (Sr) occupy the corners of a
cubic lattice, the B atom (Ti) occupies the center of the cube,
and O atoms lay at the center of the faces of the cubic cell, as
shown in Fig. 1.

The presence of the oxygens around the A and B ions
breaks the atomic spherical symmetry, removing the fivefold
degeneracy of the d levels of A and B atoms (crystal-field
effect). The atomic fivefold-degenerate d levels split into two
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FIG. 1. Atomic position in the cubic STO cell. Ti (empty circle)
lay on the center of the cell, O atoms (gray circles) form an octahedron
centered on the Ti atom, and Sr atoms (black circles) sit at the corners
of the cell.

subgroups according to their symmetry properties. The three
orbitals labeled dxy , dyz, and dzx form the t2g group. The
remaining two orbitals labeled dz2 and dx2−y2 form the eg

group. The respective energy position of eg and t2g depends
on the symmetry of the environment of the cations.35

Since A ions are surrounded by 12 O, they are in a
dodecahedral symmetry, so the three A t2g orbitals are at
higher energy than the two A eg orbitals. The B ions are
surrounded by six O ions, corresponding to an octahedral
symmetry, with the consequence that the three t2g orbitals are
at lower energy than the two eg orbitals (see Fig. 2). The energy
of the different levels is in agreement with recent ab initio DFT
calculation on electronic properties of SrTiO3.36 There is a
slight difference to the experimental assignment from Ref. 14,
where eg and t2g states of Sr are reversed, but since the states
are significantly hybridized and our assignment refers to the �

point, this is no fundamental contradiction. Since O 2p states
extend along the Cartesian axis, one should expect a strong
spatial overlap between the O 2pz and the Ti dz2 and between
the O 2px,y and the Ti dx2−y2 , giving rise to hybridizations.

B. Theory

The state-of-the art theoretical framework to describe
absorption spectra from first principles is many-body pertur-
bation theory (MBPT). In particular, in a solid one usually

FIG. 2. (Color online) Calculated energy of electronic states in
STO compared to Sr 4d and Ti 3d atomic levels. The ordering of the
energy levels refers to the � point; the corresponding energies are
average values taken from the l-DOS (see text).

works in a quasiparticle picture: the repulsive long-range
Coulomb interaction between electrons leads to screening, i.e.,
electrons are surrounded by a positively charged cloud. These
screened particles are called quasiparticles. Their Coulomb
interaction is reduced, which justifies treating it as a perturba-
tion. The quasiparticles are solutions of a Schrödinger-like
equation, where the many-body exchange and correlation
effects (corresponding to the difference between the bare
particles and the quasiparticles) are described by a nonlocal,
non-Hermitian, and energy-dependent operator called self-
energy �.

The key ingredient is the one-particle (or two-point) Green’s
function Gσ,σ ′ (r,t,r′,t ′), which describes the probability am-
plitude for the propagation of an electron (hole) from space
and spin coordinates (r′,σ ′) at time t ′ to (r,σ ) at time t (vice
versa for the hole). In general, a good approximation for the
self-energy is � = iGW (for this reason, it is called the GW

approximation),30 where G stands for the one-particle Green’s
function and W denotes the screened Coulomb interaction.
The GW approximation has shown its validity in many
applications to metals, semiconductors, and insulators, in
particular concerning the calculation of band gaps for the latter
two.37,38

Often, the result of a GW correction with respect to the
Kohn-Sham band structure, for example calculated in the
LDA, is an essentially rigid shift of conduction bands with
respect to valence bands. One can then simulate this result by
a single number, the gap opening. In this case, the self-energy
is mimicked by the so-called “scissor operator” (SO).

In the case of electron-hole excitations, as measured, for
example, in optical absorption, one has to deal with two
particles (the electron and the hole) evolving in the material,
and eventually interacting, giving rise to an exciton. The
equation taking into account these two-particle (or four-point)
quantities is the so-called Bethe-Salpeter equation (BSE).29,31

This equation links the four-point correlation function L0,
which describes the two particles evolving without interacting
with each other, to the (interacting) two-particle correlation
function L:

L(1234) = L0(1234) + L0(1256)�(5678)L(7834), (1)

where n stands for (rn,σn,tn) and repeated variables are
integrated over. The kernel of the BSE is � = δ�

δG
. The standard

approach to approximate � is to assume the GW approxima-
tion for the self-energy and to neglect the derivative of W with
respect to G. One gets hence �(5678) ≈ iδ(58)δ(67)W (56).
Moreover, most often the static limit of W is used.

In reciprocal space, the central quantity is then
WGG′(q,ω)|ω=0, where WGG′(q,ω) = ε−1

GG′(q,ω)vG′(q), with ε

the dielectric function and v the bare Coulomb interaction.
Contrary to v, the screened interaction W is not diagonal in the
reciprocal-lattice vectors GG′ because the screening takes the
response of the inhomogeneities of the material into account.
In solids, this effect can often be neglected in BSE calculations;
therefore, W is usually taken to be diagonal in the GG’ space.39

We will come back to this point later. Another point to recall
is the fact that L contains the density-density response to an
external potential as measured, e.g., in electron-energy-loss
spectroscopy, whereas here we are interested in absorption,
where the response to the total classical potential is needed.
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One has therefore to work with a slightly modified version of
the BSE that consists in omitting the long-range part of the
bare Coulomb kernel vG=0; we call the remaining Coulomb
kernel v̄.31

The two-particle nature of the BSE allows one to solve the
problem on a basis set represented by pairs of single-particle
states. For electron-hole excitations, one can restrict the
basis to pairs of occupied and empty orbitals (transitions).
In this basis and with the static approximation to W , the
BSE transforms to a standard two-particle Schrödinger equa-
tion with the excitonic Hamiltonian H exc composed of the
unperturbed transition energies on the diagonal, and matrix
elements of �. The coupling between transitions of positive
and negative energies is most often neglected (Tamm-Dancoff
approximation). The eigenvalues Eλ and eigenvectors Aλ of
H exc are then used to compute the macroscopic dielectric
tensor εM in a form that is similar to the single-particle
spectrum, but with modified transition energies Eλ and mixing
of transitions due to the coefficients Aλ:

εM (ω) = 1 − lim
q→0

v(q)
∑

λ

∣∣∑
T ρ̃T (q)AT

λ

∣∣2

Eλ − ω − iη
, (2)

where T is the index of the independent-quasiparticle (IP)
transition, ρ̃T is the corresponding dipole moment, and iη is
an imaginary infinitesimal quantity.

For a single excitonic peak at energy Eλ, the spectral weight
is determined by the sum over IP transitions,

∑
T ρ̃T (q)AT

λ .
This mixing effect is important, because both the matrix
elements and the coefficients carry a phase, which leads to
interference. Considerable redistribution of oscillator strength
can therefore be observed, although the transition energies
are most often essentially unchanged, except for the case of
bound excitons. Indeed, to first order in W the transition energy
change in a solid is zero, so that interference effects dominate
the observed excitonic effects. It is therefore most important
to analyze this mixing when one wants to understand, and not
merely describe, an absorption spectrum. This justifies the use
of a scheme as the one which we have adopted here for the
purpose of analysis, which gives direct access to the Aλ, instead
of computationally more advantageous alternatives such as
iterative inversions of the BSE, which we use to calculate
spectra over a wide energy range.

Another in principle computationally more efficient alter-
native to the diagonalization of the BSE is to change the
framework and work with time-dependent density-functional
theory32 (TDDFT). In that case, the many-body problem
is transformed into a fictitious single-particle problem of
independent Kohn-Sham particles in an effective density-
dependent local potential. When the system undergoes an
excitation, the resulting polarization corresponds to a density
change, which leads to an induced potential. The response
function can be expressed either as the response to the external
perturbation Vext or to the sum of external and induced
potentials, the total potential Vtot. In the first case, the response
function is the susceptibility. It contains the induced potential
resulting from the induced density. In the second case, the
induced potential is included in the total potential and the
response function is the independent-particle polarizability χ0,

which is simply the sum of independent-particle transitions:

χ0
GG′(q,ω) =

∑

ijk

ρ̃ijG(q)ρ̃∗
ijG′ (q)

ω − [εi(q) − εj (k + q)] + iη
, (3)

where εi is the energy of the ith level and ρ̃ijG(q) =
〈φik|e−i(q+G)|φjk+q〉. The single-particle energies εi and
single-particle wave functions φi(r) are Kohn-Sham eigenval-
ues and eigenfunctions. In solids they are most often computed
using simple functionals like the local density approximation
(LDA)40,41 for the exchange-correlation potential Vxc.

The susceptibility is then obtained by solving the Dyson
equation:

χ = χ0 + χ0(v + fxc)χ, (4)

where the Coulomb interaction v is the derivative of the
Hartree potential with respect to the density, and the exchange
and correlation kernel fxc is the derivative of Vxc. The total
kernel expresses the presence of the induced potentials. fxc

is unknown and must be approximated. In this work, we use
three approximations for fxc:

(i) The random-phase approximation (RPA), for which
fxc = 0.

(ii) The long-range contribution kernel (LRC), for which
fxc(q,ω) = −α/q2, with α determined by the RPA dielectric
constant.42,43

(iii) The bootstrap kernel,44 where α is determined through
a self-consistent procedure.

To be precise, the latter two kernels are meant to simulate
only a part of fxc, namely the one corresponding to excitonic
effects. Therefore, the GW correction must be added explic-
itly; this is done by using GW energies instead of Kohn-Sham
ones in χ0 (3). The same correction applied to the RPA is called
RPA + GW .

From the susceptibility, the inverse microscopic dielectric
matrix ε−1 = 1 + vχ is obtained, and hence the macroscopic
frequency-dependent dielectric function εM (ω),

εM (ω) = lim
q→0

1

ε−1
G=0 G′=0(q,ω)

. (5)

In the inversion of the matrix ε, the off-diagonal elements
mix the independent-particle transitions. This is exactly the
same mixing as the one induced by the bare Coulomb kernel
v̄ in the BSE. It accounts for the microscopic response of
the system and corresponds to the crystal local field effects
(LFEs). When neglecting the microscopic components of
the response, one obtains the spectra without the local field
effect (NLF). The result is merely Fermi’s golden rule in
the IP picture, corresponding to all AT

λ being δ functions in
Eq. (2). All theoretical spectra of STO that we found in the
literature11,14,15,18–24 are computed within the RPA + NLF
approximation.

C. Computational details

Ground-state properties and GW corrections to Kohn-Sham
eigenvalues have been computed with ABINIT,45 a plane-wave-
based software. Semicore pseudopotentials have been used in
all calculations, including 40 electrons per cell. The Ti atom
participates with 12 electrons [3s2 + 3p6 + 4s2 + 3d2], the Sr

235102-3
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atom with 10 [4s2 + 4p6 + 5s2], and each O atom participates
with six electrons [2s2 + 2p4]. Working with semicore pseu-
dopotentials is crucial because dividing an atomic shell into a
core and a valence can lead to severe errors in the evaluation of
the exchange term.46 The pseudopotentials have been created
partially in a doubly ionized configuration (for Sr and Ti).
Core radii, within which the atomic pseudo-wave-functions are
exact, were rc = 1.7 Bohr for all components of Sr, 1.25 Bohr
for Ti s and Ti p while rc = 1.65 Bohr for the Ti d channel,
and finally rc = 1.5 Bohr for oxygen.

For the ground state, we performed LDA-DFT calculations
(band structure and density of states) applying a cutoff of
70 Ha to the plane-wave basis set. The density of states has
been calculated using a grid of 512 k points centered in � (35 k

points in the irreducible wedge).
GW corrections have been evaluated with the G0W0

method,47 with a cutoff energy of 32 Ha for the basis
set and 25 Ha for the exchange and correlation compo-
nents of the self-energy. A total of 80 bands have been
included in the calculation of the self-energy, and 200 bands
for the screening. For both screening and self-energy cal-
culations, the same k-points grid as for the ground state
has been used. The dimension of the screening matrix is
of 2373 × 2373 G vectors (∼ 25 Ha). To speed up the
calculations, the Godby-Needs48 plasmon pole approximation
has been used. We have tested its validity by performing also
calculations using contour deformation not reported in this
paper. When applied, the SO shift is based on the results of
these calculations, not on experimental results.

TDDFT spectra (RPA, LRC, and bootstrap) have been
computed up to 15 eV using the DP code.49 In the calculation of
χ0

GG′ we have summed over 31 bands to converge the spectrum
in this energy range. The dimension of the matrix was 33 × 33,
1237 plane waves have been included in the basis set, and
the irreducible Brillouin zone has been sampled with a grid
of 512 shifted k points. In all TDDFT calculations, G0W0

energies have been used instead of LDA energies, except where
explicitly specified.

The BSE has been solved using the EXC code.50 Except
for the spectra of Fig. 10, where the full diagonalization of
the excitonic Hamiltonian has been performed, we used the
Haydock diagonalization algorithm, with 150 iterations to
achieve converged spectra. The number of plane waves, the
range of energy, the dimension of the matrix, and the k-points
grid used are the same as for the TDDFT calculations, except
where explicitly specified.

III. RESULTS

This section is divided into two subsections. Section III A
is devoted to the discussion of the band structure of the
material. The analysis of on-site and angular momentum
projected density of states (l-DOS) will allow us to discuss
the character of the first 11 conduction bands. Section III B
concerns the optical spectra. We solved the BSE up to 15 eV
and we have compared our results with experimental data14,33

as well as with our TDDFT calculations performed with three
different kernels. The different role played by Ti 3d electrons
and Sr 4d electrons is analyzed with reference to the l-DOS
and the band structure discussed in the preceding section.

We will support our discussion with arguments based on the
crystal-field splitting and geometry considerations.

A. l-DOS and band structure

1. Distribution of quasiparticle corrections

The results of our LDA band-structure calculations
(not reported in this paper) are in good agreement with
experiments11,12,14 and previous calculations.11,14,18–22,24 LDA
predicts a direct gap at � of 2.21 eV, much smaller than
the experimental value of 3.75 eV.14 This underestimation
is the well-known Kohn-Sham band-gap problem. To correct
the LDA band gap, we computed quasiparticle corrections
within the perturbative G0W0 approximation. The resulting
band structure is reported in Fig. 3.

As is the case in many materials, near the Fermi energy, GW

corrections open the photoemission gap, giving a GW gap at
� of 3.76 eV in very good agreement with the experimental
value of 3.75 eV. To access the effect of GW corrections
beyond the gap, quasiparticle corrections versus band index
are reported in Fig. 4. For each band index i, the corrections
are evaluated for the different k points in the Brillouin zone:
the resulting line of dots accounts for the deformation of the
corresponding band. G0W0 corrections mainly shift the bands,
with a relative shift of 1.6 eV. One can notice that for the
highest occupied molecular orbital (HOMO) (band 20) and
the first three conduction bands (band indexes 21, 22, and 23),
a rigid shift constitutes an excellent approximation.

Modifications of the band shape become more important
for the three deepest bands (12, 13, and 14) as well as
for conduction bands starting from index 24. These bands
give rise to transitions around 7 eV, which correspond to
energies where the electron-energy-loss spectrum displays its
first structures.14 In such a case, the validity of the plasmon
pole model (PPM) has to be checked.51 Using a contour
deformation integration, we have verified that the dispersion of

FIG. 3. (Color online) GW band structure along high-symmetry
directions. We report the index of the band (right y axis) and its
attribution (inside the plot) to specific atomic levels at the � point.
Dotted lines are drawn according to notable structures in the l-DOS
(Fig. 5). Peculiar bands have been highlighted with green dashed and
red dashed-dotted lines.
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FIG. 4. Dispersion of G0W0 corrections along the bands.

our GW corrections was not due to the PPM. In any case, the
deformation does not exceed 1 eV, and the separation in energy
between the bands is large enough to be able to distinguish the
projected states, thus the character of bands deduced from the
LDA calculation will still be valid.

2. State assignment

The quite small deformation of the bands due to G0W0

corrections justifies using alternatively LDA eigenvalues cor-
rected with G0W0 calculation or with a scissor operator (SO)
of 1.6 eV. On the l-DOS reported in Fig. 5, we applied the
scissor operator, while for the band plot of Fig. 3 we corrected
LDA energies with a G0W0 calculation. In both cases the Fermi
energy corresponds to 0 eV.

To calculate the on-site and angular momenta-projected
l-DOS, we adjusted the radii of the spheres where wave
functions were projected so that the sum of partial DOS

FIG. 5. (Color online) Total quasiparticle DOS and atom-
centered L-projected DOS for the O 2p, Ti 3d , and Sr 4d states.
Well-defined structures are separated by dotted vertical lines with
a label for corresponding energy. Quasiparticle energies have been
obtained shifting LDA eigenvalues by 1.6 eV (see Sec. III A1).

matches the total DOS. The resulting radii are equal to
3.7 Bohr for Sr, 2.3 Bohr for Ti, and 2.2 Bohr for O. Figure
5 shows the total quasiparticle density of states and dominant
on site-projected l-DOS for selected elements and angular
momenta for energies ranging from −6 to 16 eV.

Three main structures can be identified: a part of the valence
band extending from −4.7 eV to the Fermi energy, a first
peaked structure in the conduction band extending from 3.4 to
6 eV, and a second broader group of structures between 6 and
12.9 eV. The high electronegativity of oxygen atoms drains
almost all the 4s2 and 3d2 electrons from the Ti atom and
the 5s2 electrons from the Sr atom, filling almost completely
the O 2p levels: the valence band is essentially composed by
O 2p states, which weakly hybridize with the Ti 3eg levels, as
expected from the strong spatial overlap between these states.
The Fermi energy lays between the O 2p levels and the Ti 3d

bands.
The first group of empty states has a predominant Ti 3d

character: due to crystal-field symmetry, one can conclude
that they are Ti 3t2g levels that form an almost separate band
(3.4–6 eV). The second group of structures (6–12.9 eV) has
a predominant d-momentum character shared between the
remaining Ti 3eg levels and the whole Sr 4d subshell, expected
to be also split in eg and t2g levels.

These assignments allow us to describe more precisely the
band structure (Fig. 3) where GW energies for valence and
conduction bands in the same energy range as Fig. 5 are plotted.
We also draw horizontal dotted lines in correspondence with
the vertical lines in the l-DOS plot. In the band plot, we recover
the three main groups identified in the l-DOS: the valence band
extending from around −4.7 eV to the Fermi level and formed
by nine bands labeled from 12 to 20 corresponding to O 2p. At
higher energies we find a first group of three conduction bands
(labeled 21, 22, and 23) extending between 3.4 and 6 eV due
to Ti 3t2g and finally a wider group of bands from 6 to 12.9 eV
composed of eight bands (24 to 31).

The bands 24 and 25 can be assigned to eg states of Ti
with the support of the l-DOS. To identify the character of
Sr states, we can use the crystal-field symmetry argument as
well as the degeneracy of the bands at �: the bands 26 and 27
are assigned to the Sr 4eg and the bands 29, 30, and 31 are
assigned to Sr 4t2g .

A careful analysis of the l-DOS in this energy range shows
the presence of Sr 5s hybridized with O 2s states (not shown
for clarity). For this reason, we assigned the band 28 to Sr 5s

states and O 2s in agreement with Ref. 36.
Concerning the dispersion of the bands, one can note the

presence of regions where some bands are flat, especially along
the �X direction, indicating localized states. Of particular
interest for our following analysis are the two topmost valence
bands (labeled 19 and 20) and the lower-energy Ti 3eg level
(band 24). One can notice that band 24 is flat along �X

but strongly disperses in other parts of the BZ: the degree
of localization changes along the same band.

B. Optical spectra

Let us now move to optical spectra. In Fig. 6, we report two
BSE absorption spectra, computed, respectively, using GW

corrections (black solid line) and the SO of 1.6 eV (red dashed
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FIG. 6. (Color online) Absorption spectrum of STO: BSE + GW

(black solid) and BSE + SO (red dashed), RPA + GW (green dashed-
dotted), and experimental data from Palik33 (blue dotted) and from
Benthem14 (violet crosses).

line) and compared with an RPA + GW (green dashed dotted
line) and experimental data14,33 (blue and violet dotted lines).
Both calculations have been performed in the Tamm-Dancoff
approximation. We checked that this approximation is indeed
valid within the energy range of interest.

In the experimental spectrum we can identify three notable
structures: a principal wide structure between 3.5 and 5.6 eV,
a steplike bump between 5.6 and 7 eV, and finally a third
wider group of peaks between 8 and 11 eV. The RPA
spectrum without local fields is in good agreement with
previous calculations.21 Its agreement with experiment has
the quality one can expect from an RPA calculation: the
three structures identified in the experimental spectrum are
present, with satisfying amplitudes. However, the position of
the different structures is shifted to higher energy due to the
lack of electron-hole interaction.

To include electron-hole interactions in the optical spec-
trum, we solved the BSE [Eqs. (1) and (2)]. Indeed, when
the electron-hole interaction is taken into account through the
resolution of the BSE, all the structures are moved to lower
energies indicating a strong excitonic effect. Comparing the
two BSE spectra, one notices that they are very similar. In
both spectra, one can identify four structures of interest: a first
group extending from the onset until about 6 eV, a strong and
narrow peak around 6.3 eV, a group extending between 7 and
9.5 eV, and finally an isolated peak centered at 10.8 eV. The
slight differences between the two BSE spectra arise from the
distortion of the bands shown in Fig. 4 as compared to a simple
rigid shift. The lowest energy feature comes from transitions
between bands close to Fermi energy, where SO is a very good
approximation: the two BSE spectra almost coincide. Farther
from the absorption edge, GW corrections slightly modify the
band dispersion with the consequence of a blueshift of 0.1 eV
of the strong narrow peak at 6.3 eV, and minor modifications in
the other structures. In the following, we will use GW , but our
results indicate that SO may be used safely in more complex
structures.

The comparison between RPA + GW and BSE + GW

shows that the excitonic interaction reduces the optical gap
leading to a shift of ∼ 0.8 eV of the peak at the onset. This is
mainly an effect of the change in line shape; the corresponding
exciton binding energy is only 0.22 eV.

The first BSE structure is on top of the experimental curve
up to almost 4 eV, giving a very good description of the
absorption onset. From 4 to 6 eV, the BSE spectrum loses
some accuracy in the height of the peaks, but the position of the
structure is well reproduced. This proves that excitonic effects
are very important and should not be neglected to understand
the optical spectrum of SrTiO3.

The second structure predicted by the BSE calculation is a
sharp peak centered at 6.4 eV. It is in the range of the steplike
structure in experiment extending from 5.5 and 7 eV, but the
calculated intensity is strongly overestimated. Concerning the
third structure, the amplitude is too strong and the energy
position is centered at 8 eV for the BSE calculation while it
is 9 eV for the measured spectrum. These two facts indicate a
too strong excitonic effect.

1. Independent-particle O 2p → Ti 3d and
O 2p → Sr 4d transitions

In all calculations, the valence bands from 12 to 20
(O 2p) have been included. We have checked that inclusion
of conduction bands up to 31 was sufficient to converge
the spectrum up to 15 eV. To identify the role of different
bands in the spectra, we reduced progressively the number of
conduction bands included in the calculation.

We first analyze the RPA + GW spectra. We have checked
(not presented in the paper) that the local field effects are
negligible in the energy range considered here.52 Thus the
spectra reported in Fig. 7 are calculated without local field
effects, i.e., without mixing the IP transitions, so that peaks
can be directly related to the band structure.

FIG. 7. (Color online) RPA + GW spectrum without local fields.
Conduction bands included in the calculation are progressively
reduced: up to band 31 (converged spectrum) (black solid), up to
28 (red dashed), up to 25 (green dashed-dotted), up to 24 (blue
dashed-double dotted), and up to 23 (magenta plain circles).
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Structure Aa is due to transitions from the valence to bands
21, 22, and 23, which have been assigned to Ti 3t2g states.
Since inclusion of higher conduction bands does not affect
the Aa structure, we will infer that it is created by transitions
involving only the Ti 3t2g states.

Structure Ba is peaked at 7.1 eV. It is created by transitions
to band 24 which alone account for more than 80% of the spec-
tral weight, and it attains full convergence including band 25.
It is completely ascribed to transitions to the two Ti 3eg states.

We note that the two Ti 3eg states contribute also to the
formation of all the other spectral features, as expected from
their density of states ranging to 11 eV; in particular, Ca is
for around 50% due to these states, the remaining part coming
from transitions to bands 26, 27 (Sr 4eg), and band 28 that we
have assigned to a hybridized Sr 5s–O 2s state. The inclusion
of bands 29, 30, and 31 (Sr 4t2g) allows the full convergence
of the spectrum.

Since peak Ba is of particular interest for the sharp
excitonic peak, we investigated in greater detail the origin
of the transitions in the Brillouin zone. In Fig. 8, we show
RPA + GW spectra calculated including all Ti 3d states—
conduction bands 21 to 25 (red solid line) and calculated
excluding Ti 3d, but including Sr 3d states—conduction bands
26 to 31 (blue dashed-double dotted line). The full spectrum
(black plain circles) is the sum of these two contributions.
These three spectra are computed by summing transitions
over all the 512 k points sampling the Brillouin zone. The
green dashed-dotted line corresponds to a spectrum calculated
including all Ti 3d states—conduction bands 21 to 25—but
we suppressed in the summation the transitions from valence
bands 19 and 20 to conduction band 24 and arising from k

points that fall into three cylinders enclosing the �X axes of
the BZ: the Ba peak disappears. This demonstrates that this
peak is mainly due to transitions from bands 19 and 20 (top

FIG. 8. (Color online) RPA + GW spectra without local fields:
full spectrum (black plain circles); spectrum up to band 25 (thus
including all Ti 3d states) (red continuous line); the same spectrum
calculated excluding transitions from bands 19 and 20 to band
24 around the �X path of the Brillouin zone (green dashed-
dotted); spectrum including only conduction bands from 26 to 31,
corresponding to Sr 4d states and the band 28 (blue double-dot
dashed).

valence O 2p) to conduction bands 24 (Ti 3eg), and at k points
along �X. As already mentioned in Sec. II A, these bands are
flat, corresponding to well-localized states.

Peak Ca is due for about 50% to transitions to bands 24
and 25. We checked that the valence bands involved are the
bands 12 to 17. The remaining part involves transitions from
all valence states to bands 26, 27, and 28.

2. Electron-hole interaction in O 2p → Ti 3d and O 2p → Sr 4d

The same analysis as in the previous subsection has been
adopted for the BSE + GW calculation of the spectrum (see
Fig. 9). Parent structures have been labeled with the same
letters (A, B, C, and D).

As in the RPA case, one can see that the group Ab is com-
pletely described by the inclusion of the bands 21, 22, and 23,
corresponding to O 2p → Ti 3t2g transitions. The inclusion of
bands 24 and 25 is once again responsible for the creation of the
structure labeled Bb at 6.4 eV (with a shift in energy of ∼0.8 eV
with respect to Ba). In the RPA case, band 24 was responsible
for around 80% of the peak, and band 25 for the remaining. In
the excitonic case, each band accounts for more or less half of
the amplitude. This peak is very sharp and narrow.

As for the RPA calculation, bands 24 and 25 create half
of the Cb peak centered at around 8 eV, the remaining part
coming from the Sr 4eg states (bands 26 to 28). The energy
difference between Cb and Ca is ∼2 eV, corresponding to a
very large excitonic effect.

The structure Db, located at 10.8 eV, is formed essentially
by Sr 4t2g states as it is determined only by bands 29, 30, and
31. The excitonic effect on Db is much smaller.

This analysis shows that the bands 24 and 25 play a major
and intriguing role in the formation of the two excitonic
structures Bb and Cb. Transitions arising from these bands
on the one hand give the strong and narrow exciton Bb, and
on the other hand contribute to the much broader exciton Cb.
We have seen that band 24 has a character that depends on
its momentum k. Along the �X direction it is flat, and in the
other parts of the BZ it is dispersing. Since we expect the strong

FIG. 9. (Color online) BSE + GW spectrum. Conduction bands
included in the calculation are progressively reduced. The color and
line code is the same as in Fig. 7
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and narrow exciton Bb to arise from localized (nondispersing)
states, we suggest that Bb is essentially created by transitions
from valence bands 19 and 20 to the conduction band 24 along
the �X direction. Transitions to 24 and 25 giving rise to the Cb

broad excitonic peak (and the background that contributes to
the total amplitude of Bb) come from the much more dispersing
12 to 18 valence bands, as well as from 19 and 20 to 24
excluding the �X direction. The remaining part of the broad
Cb exciton is due to transitions to Sr 4eg .

3. Mixing of O → Ti transitions: Interference effects

Since the excitonic effects mix the single-particle
transitions, we analyze the spectral weights ρ̃T AT

λ entering in
Eq. (2) and leading to the optical spectrum. The coefficients AT

λ

give the weight and phase with which the various independent-
particle transitions T contribute. Let us first concentrate on
the weight. This is readily analyzed by plotting |AT

λ |2 as a
function of the GW transition energies ET for a given excitonic
energy Eλ. The space of transitions is in principle continuous;
therefore, the result is given as a histogram where each segment
contains transitions in a range of 100 meV. Figure 10 shows the
result for the peak Bb, where Eλ = 6.4 eV. Without mixing
transitions, one would find a δ peak. Because of the mixing,
there is instead a broad distribution with a pronounced
asymmetry, extending more toward higher than lower
energies. To situate the energy range, the figure also shows
the BSE and RPA spectra.

From the histogram alone, it is difficult to get a quantitative
idea of the role of higher-energy transitions: toward that end,
one has to consider also the phase of the various contributions.
One way to do this is to introduce the partial spectral weight53

SEλ
(E) =

∣∣∣∣∣
∑

T :ET �E

ρ̃T AT
λ

∣∣∣∣∣

2

, (6)

FIG. 10. (Color online) The weight of each transition T is
expressed by the excitonic wave-function coefficient |AT

6.4| here
reported in arbitrary units (green boxes). The value of the cumulant
function f6.4(E) is shown by a black dashed-double dotted line with
the scale on the right axis. BSE + GW (orange solid) and RPA + GW

(blue dashed) without local fields are also reported.

i.e., the sum of all independent-particle transitions with energy
ET smaller than a given value E. Since the excitonic mixing
is quite restricted in energy, SEλ

(E) converges toward a
plateau value Sλ for increasing E, and one can work with
the normalized cumulant function

fEλ
(E) = Sλ(E)

Sλ

. (7)

This function54 for the peak energy Eλ = 6.4 eV is given
by the black dashed double-dotted curve in Fig. 10.

One distinguishes two transition energy ranges: the first
region is composed of RPA transitions located between 5.5
and 6.8 eV. These are transitions involving the Ti 3t2g states.
The maximum of |AT

6.4|2 falls in this energy range. This,
however, does not mean that these transitions dominate the
final spectrum: because of the phase factors, f6.4(E) first
indeed builds up to a sharp peak with increasing E, but this
rise is followed by a steep decrease indicating a destructive
interference, until the final result is almost zero around 6.8 eV.
The important contribution to Bb is then given by the second
energy range, extending from 6.8 eV to higher energies. It is
composed of the independent GW transitions involving the
Ti 3eg levels. Here f6.4(E) exhibits a quite monotonic rise
that tends to the plateau value of 1. The function reaches 0.5
around 7.5 eV, corresponding to the peak Ba in the RPA + GW

spectrum. The remaining contribution essentially comes from
transitions associated with peak Ca . These findings confirm
our previous analysis based on Fig. 9.

4. Localized excitations and the screening
of the electron-hole pair

The previous results have been obtained using the standard
approximations to the Bethe-Salpeter equation. For bulk
systems, this includes the fact that the matrix WGG′ is taken
to be diagonal in the reciprocal-lattice vectors. This is exact
only for homogeneous systems: the off-diagonal elements
of W are due to the off-diagonal elements of the inverse
dielectric matrix. These elements contain the information that
the variation of an external potential Vext on a certain length
scale can induce variations of the total potential Vtot in the
material on another length scale, since

ε−1
GG′(q,ω) = ∂V tot

G (q,ω)

∂V ext
G′ (q,ω)

. (8)

The effect can often be neglected in optical spectra of bulk
materials, when the density is quite homogeneous or, on the
contrary, for strongly localized (e.g., core) electrons that are
not polarizable enough to give a sizable contribution to the
induced potential. Moreover, the exciton may extend over an
area that averages out the inhomogeneities of the material.
However, in other systems such as clusters, one has to go
beyond the diagonal approximation. In a material like STO,
one has to be careful, since, as we have seen above, excitations
of quite different character contribute to the spectrum. In
particular, peak Bb is a candidate for a more careful study,
since localized states play a role. Indeed, Fig. 11 compares the
result of a standard BSE calculation using a diagonal W (same
as previous figures) to the result obtained when the full matrix
WGG′ is taken into account.
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FIG. 11. (Color online) BSE + GW spectrum with diagonal and
full-matrix screening WGG′ . Red dashed line: diagonal W for bands
12–31; black solid line: full W for bands 12–31.

The inclusion of the off-diagonal elements leads to minor
changes concerning the Cb structure, Ab and Db are totally
unaffected. Instead, the excitonic peak Bb is reduced by
almost a factor of 2. There is hence significant improvement
concerning the agreement between theory and experiment,
when the local polarizability of the electrons is correctly taken
into account.

Nevertheless, the agreement is still not perfect, with the
calculated Bb peak noticeably sharper than in experiment. We
expect that this may be due to the neglect of other coupling
terms in the approach used here: first, we have used the
standard static screening approximation to the BSE, meaning
that the one-particle Green’s functions in L0 are used in the
quasiparticle approximation, and that the screening of the
electron-hole interaction in W is taken at ω = 0. Instead,
one should in principle use the full one-particle Green’s
function including the quasiparticle damping and its satellite
structure, as well as the frequency-dependent W . These two
kinds of dynamical effects, which contain the coupling of the
primary excitation to other neutral excitations of the system,
are known to cancel each other to a large extent in simple
semiconductors.55 However, this may no longer be true in
a more complex material with states of a different nature.
The dominant effect of the dynamical contribution would be
a damping of peaks. Second, we do not take into account
electron-phonon coupling. The latter may be a source of errors
in oxide perovskite, known to have a strong electron-phonon
coupling constant and thus is prone to host polaronic26–28

excitations that can modify strongly the absorption
spectrum.

5. Excitons via TDDFT

BSE calculations are computationally heavy, even when
the SO is used instead of state-dependent GW corrections. As
outlined above, in principle also TDDFT gives access to optical
spectra in a more efficient way. Especially for the description
of continuum excitons, relatively simple kernels have been

FIG. 12. (Color online) TDDFT calculations using LRC (black
solid) and bootstrap (green dashed) kernels. They are almost
superimposed. The experimental spectra are from Palik33 (pink
connected squares) and from Benthem14 (violet crosses). The
results of a BSE + GW calculation (red dash-dotted) and of an
RPA + GW calculation (blue dashed-double-dotted) are shown for
comparison.

designed that allow one to perform calculations with an effort
comparable to the RPA. It is therefore interesting to test various
TDDFT flavors in the case of STO, where our BSE results can
be considered as benchmarks, and where one would eventually
like to carry out calculations for more complex structures, such
as interfaces, for which BSE calculations might reach their
limit of feasibility.

We have performed a series of tests with two TDDFT
kernels designed to include excitonic effects: the LRC42 and
the more recent bootstrap kernel.44 One should not expect
very good agreement at the onset, where the BSE predicts a
bound exciton, but it is still interesting to investigate whether
deviations lie in a tolerable range. Moreover, one may think
to obtain a good description in the range of the continuum
excitons, where interference effects dominate. In the spirit of
searching for a simple approach, we use the SO to simulate
GW calculations, as we have shown above the quality of this
approximation. The result of these calculations is reported
in Fig. 12 where also BSE + GW , RPA + GW , and the
experimental spectra are shown for comparison.

As can be expected in view of the similar structure of
the LRC and the Bootstrap kernel, and in particular their
behavior as −c/q2 for q → 0, the two approximations act in a
similar way: the effect of both kernels is to transfer oscillator
strength to lower energies with respect to the RPA + SO
spectrum, such simulating the effect of the electron-hole
interaction. In the case of LRC, the constant c that determines
the q → 0 divergence of the kernel is a material-dependent
scalar parameter α which is determined by an established
linear relation42 between α and the macroscopic dielectric
constant ε−1

∞ . We have used the value ε∞ = 6.4 as calculated
in RPA + LDA and found α = 0.5. The results are not
very sensitive to the precise value of α. In the case of
the bootstrap kernel, the proportionality term is computed

235102-9
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self-consistently from ε−1
∞ . Five iteration cycles have been

enough to converge the parameter c. This leads to a similar
value of c = 0.478, and therefore it finally yields results that
are almost undistinguishable from those of the LRC kernel.
In both cases, as expected, the presence of a bound exciton
at the onset cannot be well reproduced, and the spectrum
therefore exhibits a blueshift of the order of 1 eV. Still, about
50% of the RPA + GW error is removed by the TDDFT
calculations. Excitonic effects are weaker than in the BSE
spectrum over the whole energy range. In particular, peak Bb

remains a shoulder, though it is enhanced by the electron-hole
interaction, and also the rest of the spectrum is less modified
by the electron-hole interaction than through the BSE. This
leads to a puzzling situation: apart from the onset region,
the agreement between the approximate TDDFT results and
experiment turns out to be better than when the BSE is
used.

However, this should not induce us to think that the TDDFT
is superior. These kernels have been derived from the BSE,
and deviations have to be considered as errors. Improved
results must therefore involve some error canceling. On the
one hand, we have of course the simplified LRC-like form
of the tested kernels. Moreover, in both cases one constant
value was chosen for the proportionality constant c. However,
it has been shown56 that the constant approximation is valid
only over a restricted energy range, whereas improved results
over a wider range are obtained with a frequency-dependent
prefactor. With the relation between parameters given by Botti
and co-workers,56 we find that c is increased by more than a
factor of 2 around Bb, which leads to a slight redshift of the
peaks (results not shown here). The discrepancy to the BSE
is reduced, but only very partially, and Bb remains a shoulder
instead of a sharp peak. In other words, the simple LRC form of
the kernel, even when augmented with a frequency-dependent
term, cannot capture the complexity of the BSE. It is, however,
still interesting to note that the rough approximation to TDDFT
leads to better agreement with experiment than the BSE
in the high-energy range: though based on error canceling
as stated above, this should not be considered as a pure
coincidence. Rather, a reduced kernel can visibly simulate
to some extent the reduction of the electron-hole interaction
due to coupling effects that are neglected, e.g., damping due to
dynamical effects. Further investigation in this direction might
be worthwhile for future work.

IV. CONCLUSION

In conclusion, the optical spectrum of SrTiO3 shows strong
excitonic effects. Hence, an independent-particle description
is not sufficient to obtain good agreement with experiment.
There is a bound exciton and significant shift of oscillator
strength at the onset that are well described by state-of-the-art
Bethe-Salpeter calculations in the framework of the GW

approximation. Transitions between localized electronic states
dominate the spectrum between 6 and 7 eV, leading to a sharp
excitonic peak. This peak is overestimated when the spatial
resolution of the screening of the localized electron-hole
pair is not taken into account. Going beyond this standard
approximation to Bethe-Salpeter calculations in solids, the
peak is reduced, but it still remains too sharp as compared to
experiment, and a further structure around 8 eV also shows
too strong excitonic effects.

We explain this discrepancy by the neglect of coupling to
other excitations, which could be phonons and/or neutral elec-
tronic excitations contained in principle in the screening of the
electron, hole, and electron-hole pair: with the QP approxima-
tion to the electron and hole, and the static approximation to the
electron-hole interaction, these possible excitations are lost.

TDDFT in simple long-range approximations to the
exchange-correlation kernel recovers about 50% of the RPA +
GW error at the onset, and it yields a better description of the
higher-energy part of the spectrum than the BSE, which should
be due to error canceling. Overall, it turns out that one has to
go beyond state-of-the-art Bethe-Salpeter calculations in order
to obtain quantitatively correct description of the absorption
spectrum of SrTiO3. However, we have also shown that one can
obtain agreement with experiment on a level that is sufficient
to analyze the various structures and explain their origin
by using computationally efficient approximate approaches,
including the scissor operator to replace GW corrections to the
band structure, and TDDFT using a simple long-range kernel.
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