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Dynamics of Bloch oscillating transistor near the bifurcation threshold
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The tendency to bifurcate can often be utilized to improve performance characteristics of amplifiers or even
to build detectors. The Bloch oscillating transistor is such a device. Here, we show that bistable behavior can
be approached by tuning the base current and that the critical value depends on the Josephson coupling energy
EJ of the device. We demonstrate current-gain enhancement for the device operating near the bifurcation point
at small EJ . From our results for the current gains at various EJ , we determine the bifurcation threshold on the
EJ -base current plane. The bifurcation threshold curve can be understood using the interplay of interband and
intraband tunneling events.
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In small Josephson junctions, charge and phase reveal
their conjugate nature in several macroscopic phenomena. The
quantum nature of the phase variable (ϕ) was shown in macro-
scopic tunneling experiments,1 while its conjugate relationship
to the charge has been shown in many consequent studies.2 One
of the consequences of the charge-phase conjugate relationship
is the Coulomb blockade of Cooper pairs which arises in
ultrasmall Josephson junctions having a capacitance (C) in
the femtofarad range.3,4 Charging energy EC = e2/2C and
the Josephson coupling energy EJ (ϕ) = −EJ cos ϕ are the
competing energy scales associated with these two variables.
Accordingly, the Hamiltonian for the small Josephson junction
contains a periodic potential and, hence, Bloch states with band
structure appear. These bands are analogous to the conduction
electron energy states in solid state physics.5,6

The Bloch oscillating transistor (BOT) is a three-terminal
mesoscopic device which is based on the dynamics of the
Bloch bands in a voltage-biased Josephson junction (JJ) in a
resistive environment.7,8 The operation is due to an interplay
of coherent Josephson phenomena and Coulomb blockade
of charge transport which is controlled by single-electron
tunneling events. The device can be viewed as a charge
converter of single electrons, induced from the base electrode,
into a sequence of N sequential Cooper pair tunneling events,
i.e., Bloch oscillations on the emitter terminal with a Josephson
junction. The current gain is ideally given by β = 2N + 1.
The number of Bloch oscillations is limited by interband
transitions caused by Landau-Zener (LZ) tunneling which
depends exponentially on the band gap between the ground and
excited states of the Josephson junction. This simple picture
has been found to correspond quite well to the measured
current gain.9

Incoherent tunneling of Cooper pairs and electrons, how-
ever, complicates the basic BOT operation. The interaction of
tunneling electrons or Cooper pairs with the electromagnetic
environment has been demonstrated to be strong in small
tunnel junctions, both in the normal and superconducting
states.10,11 Bias-induced inelastic tunneling rates can strongly
modify the internal dynamics and characteristics of BOT,
e.g., leading to bifurcation in the BOT operation. Below the
bifurcation threshold the probability of the system residing
in the lowest Bloch band (the ground state, see Fig. 1)
versus higher bands can be smoothly tuned by changing

base current IB . Above the threshold, two possible dynamical
steady-state solutions emerge at fixed IB .9 The existence
of a bifurcation point is important as, with proper design,
the vicinity of such a point can be employed to improve
the characteristics of the BOT. In this paper, we investigate
experimentally the bifurcation threshold in the BOT, and
demonstrate current-gain enhancement for small-EJ -device
operation as the threshold is approached. From our results for
the current gains at various EJ , we determine the bifurcation
threshold curve on the IB-EJ plane. The measured transition
curve can be qualitatively explained using a simple analytic
approach, in which intraband transitions are taken into account
phenomenologically, together with the transition rates due to
inelastic tunneling.

This paper is organized as follows. In Sec. I, we first outline
the basic principles for understanding the electron tunneling
dynamics in a Bloch oscillating transistor. We will concentrate
on the dynamics near the bifurcation point at which the current
gain of the device diverges. Our analytic model is verified using
numerics with a similar approach as done in Refs. 8, 9, and 12.
Section II will describe sample fabrication and experimental
measurement techniques. Experimental results are presented
in Sec. III. We will present data on the current gain at
various values of Josephson energy, and construct a curve
for bifurcation threshold on EJ versus base current plane. The
relation of current gain with the distance from the bifurcation
point is also studied in detail. In Sec. IV, we discuss our results
in the light of analytical and numerical calculations.

I. THEORY

A. Band model of mesoscopic Josephson junctions

In mesoscopic tunnel junctions, the discreteness of charge
starts to play a role via the Coulomb energy EC = Q2

2C
, where

C is the capacitance of the junction and Q is the charge on
the capacitor plates. In quantum theory, charge is described
by the operator Q̂ = −i2e ∂

∂ϕ
, where ϕ denotes the phase

difference of the order parameter fields across the junction.
This operator is canonically conjugate to ϕ̂, i.e., [Q̂,ϕ̂] = i2e.
Hence, there is a Heisenberg uncertainty relation �Q�ϕ ∼
2e, which implies that the charge and the phase of the
superconducting junction can not be defined simultaneously.
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FIG. 1. (Color online) The band diagram of the JJ and the possible
transitions. Bloch oscillation follows along the lowest band (green)
with a Cooper pair tunneling through the Josephson junction at the
end of each period. Landau-Zener transitions to the higher bands,
making the Josephson junction Coulomb blockaded. Base current
relaxes the Josephson junction to its ground state from the excited
states.

This leads to delocalization of the phase and to Coulomb
blockade of the supercurrent, as experimentally shown by
Haviland et al.3 in the case when Josephson energy is on the
order of the single-electron Coulomb energy, i.e., EJ /EC ∼ 1.
The same conclusion of delocalization applies even for large
values of the ratio EJ /EC .13

Using the differential operator due to the commutation
relation, we can immediately write the quantum mechanical
Hamiltonian6 as

H = −EC

∂2

∂(ϕ/2)2
− EJ cos ϕ. (1)

When EC � EJ , charge is a good quantum number, which
leads to Coulomb blockade of Cooper pairs and a complete
delocalization of the phase. Equation (1) then takes the
form of the Mathieu equation with the well-known solutions
of the form �

q
n (ϕ) = eiϕq/2eun(ϕ), where un(ϕ) is a 2π -

periodic function and the wave functions are indexed according
to band number n and quasicharge q. Verification of the
existence of the energy bands has been carried out by different
methods.14–16 The schematic of a typical band diagram along
with different transitions is illustrated in Fig. 1.

Voltage across the junction is given by V = ∂E
∂q

which
changes along the energy band when quasicharge is varied.
Thus, to have current flowing in the junction, the bias voltage
VC (on the collector, cf. Fig. 2) has to be larger than the
maximum Coulomb blockade voltage of the lowest band
E0: VC > ∂E0

∂q
|max. If the current through the junction is low

enough, dq/dt � eδE1/h̄, where δE1 is the gap between
the first and second bands, the quasicharge q is increased
adiabatically, and the system stays in the ground band. The
junction is then in the regime of Bloch oscillations; the voltage
over the junctions oscillates and Cooper pairs are tunneling
at the borders of the Brillouin zone, i.e., here at q = ±e.
Consequently, the current through the junction is coherent
and the voltage and charge over the junction oscillate with the
Bloch oscillation frequency

fB = I/2e, (2)

where I is the current through the Josephson junction.
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FIG. 2. (Color online) Scanning electron micrograph of the
sample (left frame) and a schematic view of the device (right frame).
In both pictures, base, emitter, and collector are marked by B, E and
C, respectively. Positive directions for the currents are indicated by
the arrows. The sample parameters are given in Table I. QI (t) is the
island charge tracked in the numerical simulations.

If the current I is not adiabatically small, we can have Zener
tunneling between adjacent energy bands. The tunneling is
vertical, i.e., the quasicharge does not change. The probability
of Zener tunneling between bands n − 1 and n when EC � EJ

is given by

P Z
n,n−1 = exp

(
−π

8

δE2
n

nEC

e

h̄I

)
= exp

(
−IZ

I

)
, (3)

where δEn = En − En−1 and IZ is the Zener breakdown
current.17–20 Provided that VC < ∂E1

∂q
|max for the excited state

E1, the junction will become Coulomb blockaded on the
band E1 after a Zener tunneling event, and no current will
flow through it any more. The role of the base terminal
is to relax the Josephson junction back to the ground state
where a new sequence of Bloch oscillations can be started.
With EC � EJ we can further assume Pn,n−1 ≈ 1 for n > 1
neglecting Cooper pair tunneling whence we can consider
higher bands collectively as a single excited state rendering
the system into a two-level system where tunneling from the
second to the first band is interlevel and the third to the second
band is intralevel tunneling.

B. Incoherent tunneling processes

The external environment gives rise to current fluctuations
that couple linearly to the phase variable. These can cause
both upwards and downwards transitions. The amplitude of
the fluctuations is given by the size of the impedance: the
larger the impedance, the smaller are the current fluctuations
and the transition rates. As we will see later on, the successful
operation of the BOT requires one to control both the upwards
and downwards transition rates. When modeling the BOT
analytically, we will make use of the Zener transition rates and
transitions due to charge fluctuations, both derived in Ref. 13.

The electromagnetic environment around tunnel junctions
affects the tunneling process by allowing exchange of energy
between the two systems.10,21–23 The influence of the external
circuit can be taken into account perturbatively, for example,
using the so-called P (E) theory.23 A perturbative treatment
of the Josephson coupling term gives rise to a result for

224514-2



DYNAMICS OF BLOCH OSCILLATING TRANSISTOR NEAR . . . PHYSICAL REVIEW B 87, 224514 (2013)

incoherent Cooper pair tunneling21,23 where the tunneling
electron rate is directly proportional to the probability of
energy exchange with the external environment governed by
the P (E) function. Taking both positive and negative energy
exchange into account, tunneling both inward and outward
direction leads to the total current

I (V ) = πeE2
J

h̄
[P (2eV ) − P (−2eV )] . (4)

The function P (E) can be written as

P (E) = 1

2πh̄

∫ ∞

−∞
dt exp

[
J (t) + i

h̄
Et

]
, (5)

which is the Fourier transform of the exponential of the phase-
phase correlation function

J (t) = 〈[ϕ(t) − ϕ(0)] ϕ(0)〉. (6)

The phase-phase correlation function is determined by the
fluctuations caused by the environment and it can be related
to the environmental impedance via the fluctuation-dissipation
theorem.

For a high-resistance environment, the P (E) function
is strongly peaked at energies around EC , and it may be
approximated by a Gaussian function

P (E) = 1√
4πECkBT

exp

[
− (E − EC)2

4ECkBT

]
, (7)

where the width is governed by thermal fluctuations in the
resistance RC . Consequently, the subgap IV curve displays a
rather well-defined peak centered around V = 2EC/e due to
the 2e charge of Cooper pairs. This characteristic feature of
the IV curve provides a straightforward way to determine EJ

of the investigated devices of small EJ .
The actual downward and upward transition rates 	in↓(VC)

and 	↑(VC) as a function of the collector voltage were
calculated by Zaikin and Golubev.24 The Zener tunneling rate
in a resistive environment, and with the assumption EC � EJ ,
is given by

	↑ = v

2τ
exp

{
− vZ

v − 1

[
1 + 〈δq2/e2〉

(v − 1)2

]}
, (8)

and the down relaxation rate due to charge fluctuations is given
by

	in↓ = vZ

τ
√

2π〈δq2/e2〉
exp

{
− (v − 1)2

2〈δq2/e2〉
}

, (9)

where v = CVC/e, τ = RCC, 〈δq2〉 = kBCT , and

vZ = π2RC

8RQ

(
EJ

EC

)2

. (10)

The voltage vZ is related to the so-called Zener break down
current by IZ = evZ/(4τ ).

C. BOT modeling near the onset of the bistability

Our present model generalizes the previous analytic BOT
theories8,25 by including the effect of intraband transitions.
The circuit schematics for the basic BOT modeling is depicted
in Fig. 2. The basic circuit elements are either a Josephson

junction or SQUID structure at the emitter with a total
normal-state tunnel resistance of RJJ, the single tunnel junction
at the base with the normal-state resistance RN , and the
collector resistance RC . The BOT base is current biased via
a large resistor RB at room temperature. In this configuration
at constant IB , there are two solutions of VB when the system
is in the bistable region. On the contrary, for a voltage-biased
base, VB is fixed and no bistability in this situation.26

As required by the P (E) theory, our basic modeling is
valid provided EJ P (2eV ) � 1. The intrinsic relaxation is
detrimental for BOT operation and, thus, the fluctuations
should be kept low by requiring that RC � RQ = h/4e2. In
practice, we need RC � 100RQ to be close to the presumed
idealized operation. Experimentally, this is quite hard to realize
though (see Sec. III).

Numerical analysis is needed to calculate properly the
characteristics of the BOT devices near the onset of bista-
bility. However, by introducing a phenomenological variable
that describes the average number of the tunneling events
〈Ne〉 before a downward transition is triggered by the base
electrons,12 we may derive a rather simple description for the
operation of the BOT. A value of 〈Ne〉 � 1 is facilitated by
intraband transitions that basically maintain the bias current
of the operating point. Changes in the ratio of the bias current
and the triggering current can lead to significant changes in
the characteristics of the BOT.

As in the earlier analytic descriptions, the BOT emitter
current can be thought of as the result of being in either of
the following two states: the Bloch oscillation state with a
time-averaged constant current and the blockaded state with
zero current,

IE =
{

VC/RC, τ↑ = 1/	↑
0, τ↓ = 1/(	in↓ + 	B/ 〈Ne〉).

(11)

The amount of time the system spends in each state is given
by the Zener tunneling rate 	↑, the intrinsic relaxation 	in↓,
and the quasiparticle tunneling rate 	B ; only every 〈Ne〉th
of the injected base electrons is able to make a downward
transition. The base current, however, flows during the opposite
times:

IB =
{

0, τ↑ = 1/	↑
e	B, τ↓ = 1/(	in↓ + 	B/ 〈Ne〉).

(12)

From these equations we can simply derive the average emitter
and base currents

〈IE〉 = VC

RC

τ↑
τ↑ + τ↓

, (13)

〈IB〉 = e
〈N ′

e〉
τ↑ + τ↓

, (14)

where we have defined

〈N ′
e〉 = 〈Ne〉

1 + 	in

	B
〈Ne〉

. (15)

By combining these two equations, we may write

〈IE〉 = VC

RC

τ↑
e〈N ′

e〉
〈IB〉. (16)

224514-3



SARKAR, PUSKA, HASSEL, AND HAKONEN PHYSICAL REVIEW B 87, 224514 (2013)

Now, when calculating the current gain βE = ∂〈IE〉
∂〈IB 〉 , 〈N ′

e〉 has
to be considered as a function of 〈IB〉. Thus, we obtain

βE = VC

RC

τ↑
e〈N ′

e〉
− VC

RC

τ↑
e〈N ′

e〉2

∂〈N ′
e〉

∂〈IB〉 〈IB〉, (17)

which can equivalently be written as

βE = VC

RC

〈IB〉τ↑(τ↑ + τ↓)

e2〈N ′
e〉2

1

1 − βH

, (18)

with

βH = τ↑ + τ↓
〈N ′

e〉
∂〈N ′

e〉
∂τ↓

= e

〈IB〉
∂〈N ′

e〉
∂τ↓

. (19)

With βH � 1, increasing IB merely changes τ↓ thus de-
creasing the time spent in the excited state and consequently
enhancing the emitter current. When βH approaches unity,
the gain is further enhanced through the additional effect
of IB in the intralevel tunneling and intrinsic relaxation,
the information of which is contained in 〈N ′

e〉. At βH = 1,
the gain diverges, marking a point where an infinitesimal
change in IB makes the system to undergo a transition from
a dynamical state where it is mostly in the ground state to a
dynamical state where it is mostly in the excited state rendering
the system bistable. With βH � 1, two stable solutions are
available and the operation becomes bistable as observed both
experimentally and numerically. Hence, we may consider βH

as a parameter controlling the proximity of the bifurcation
threshold.

For βH →1, we obtain a linear dependence between β−1
E

and 〈IB〉 as given by

β−1
E =

[
RC

VC

e2〈N ′
e〉2

τ↓(τ↑ + τ↓)〈IB〉2

(
− 〈IB〉 − ε

τ↑
τ↓

)]
(20a)

=
[
RC

VC

τ↑ + τ↓
τ↓

(−〈IB〉 + IB−H )

]
, (20b)

where ε < 0 is a phenomenological parameter to account for
the variation of ∂〈N ′

e〉/∂〈τ↓〉 under various biasing conditions
(see Appendix A). The latter term in the parentheses of
Eq. (20a) specifies the threshold current IB−H for the bifur-
cated, hysteretic threshold. By substituting 〈IB〉 from Eq. (14)
to the prefactor of Eq. (20a), 〈N ′

e〉2 and 〈IB〉2 terms cancel
each other leaving the prefactor with (RC/VC)(τ↑ + τ↓)/τ↓.
The detailed derivation of the analytic formulation is outlined
in Appendix B.

Using a simple approximation for the variation of 〈N ′
e〉

with τ↓, we may derive an analytic formula for the bifurcation
threshold on the EJ versus 〈IB〉 plane (see Appendix A). The
EJ dependence of IB−H comes mainly from Eq. (8), which
leads to the analytic form given by

IB−H

e
∝ 	se↑ + exp

( − κE2
J

)√
1 + 	2

B/E4
J

, (21)

where the first term in the numerator 	se↑ is the upward
transition rate due to single electron tunneling, whereas the
second term arises due to LZ tunneling. The parameter κ

involves all the other parameters inside the exponent of Eq. (8).
This functional dependence between IB−H and EJ in Eq. (21)

is also in good agreement with the results of our numerical
simulations.

The BOT behavior described here is referred to as “normal”
operation. In this configuration, the junction is initially in the
upper band and quasiparticle tunneling due to base current
will bring the junction to the lowest band where it performs
Bloch oscillations. This coherent oscillation will be inhibited
by Zener tunneling and the system jumps back to the upper
state and the whole process is repeated again. If the sign of
VC (and consequently IE) is reversed, the base current will
induce transitions to the upper band, an operational mode that
we call “inverted” operation. Since the normal operation is
conceptually clearer, we have concentrated our studies in this
mode of BOT.

II. FABRICATION AND MEASUREMENT

The BOT samples employed in this work were fabricated
using a 20-nm-thick Ge mask on top of LOR 3B resist.
Patterning of the Ge layer was performed using conventional
e-beam lithography at 20 keV. After patterning, the PMMA
layer was developed in MIBK:IPA (1:3) solution and subjected
to a plasma etch with CHF4 plasma. Finally, the LOR under
the germanium was etched in oxygen plasma up to the desired
extent of undercut.

Shadow angle evaporation at four different angles was
employed to generate the structures consisting of three metals.
Originally, the BOT was envisioned to have a normal-insulator-
normal (NIN) junction as the base junction, but the technique
of fabricating both superconductor-insulator-superconductor
(SIS) and NIN junctions on the same sample is exceedingly
difficult and, therefore, we opted to have a NIS base junction
instead. The SIS junction is formed of two Josephson junctions
in the SQUID geometry; this facilitates tuning of the Josephson
energy by magnetic flux. The process order in the evaporation
sequence was (I) chromium, (II) aluminum, (III) oxidization,
(IV) aluminum, and (V) copper. NMP or PG remover was
used for liftoff. Oxidation was done in Ar:O2 (6:1) mixture at
80 mTorr for 1 min.

A typical sample used in this study is displayed in Fig. 2.
The area of the SIS junctions is 100 × 150 nm2 each (equal
areas within 10%). The NIS junction on the base has an area
70 × 100 nm2, roughly half of the SQUID junctions. The
measurements were done on a plastic dilution refrigerator
(PDR-50) from Nanoway Ltd. The base temperature of the
refrigerator was 50 mK. The filtering in the PDR consisted
of 70-cm-long Thermocoax cables on the sample holder and
1 kOhm series resistors at 1.5 K. In addition, microwave
filters from mini-circuits (BLP 1.9) were used at the top of
the cryostat.

The measurement setup in this work was similar to that
described in Ref. 27. The BOT base was dc current biased
by a resistor RB = 1–10 G, which was located at room
temperature. Voltages were measured with low-noise LI-75A
voltage preamplifiers while currents were monitored using
DL1211 low-noise current amplifiers.

The resistance values of the three circuit branches were
determined at 4.2 K. Since there was a weak temperature
dependence in RC , we determined the actual value from
1/

√
V asymptote28 of the IV curves measured at low EJ .
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TABLE I. BOT parameters for the measured sample. RN and RJJ

are the normal-state resistances of the NIS and JJ tunnel junctions
in the SQUID-loop geometry, respectively. Resistances are given in
units of k and energies in μeV.

BOT No. RN RJJ RC EJ Emin
J EC �

1 53 27 550 17 2.7 40 150
2 75 21 305 25 3.3 60 165

The maximum Josephson energy EJ was calculated using the
Ambegaokar-Baratoff relation which yielded EJ = 17 μeV.
The flux-modified Josephson energy was obtained from
the formula EJ (�) = EJ

√
cos2(π�/�0) + d2 sin2(π�/�0),

where d = EJ1 −EJ2
EJ1 +EJ2

denotes the asymmetry in Josephson
energies between the two SQUID loop junctions with EJ1

and EJ2 , respectively. By fitting EJ (ϕ) to the measured IV
curves, we found d = 0.15 and 0.13 for samples No. 1 and No.
2, respectively. Emitter-collector and base-emitter IV curves
were employed to determine the effective energy gap � of
the samples (see Table I), which is 20–30 μeV smaller than
the bulk value � = 0.18 meV. This reduction of the gap
is presumably due to the inverse proximity effect29 due to
the chromium resistors. The spatial variation of the inverse
proximity effect would also explain the larger asymmetry
between the SQUID junctions than is expected due to the
difference in their areas.

III. EXPERIMENTAL RESULTS

A. IV characteristics

IV characteristics of sample No. 1 measured at a few
magnetic flux values are illustrated in Fig. 3: the emitter-
collector current IE is recorded as a function of VC at IB = 0.
The data clearly show Coulomb blockade of supercurrent3,4 at
all investigated values of the Josephson coupling energy. The
peak in the IV in the subgap region is a signature of the inelastic
Cooper pair tunneling, commonly referred to as P(E) peak

0.5

1.0

1.0

0.5

0.0(n
A

)
I E

V (mV)C

FIG. 3. (Color online) IV characteristics of sample No. 1 at a
few values of Josephson coupling energy: EJ = 9 μeV (black line),
7.3 μeV (red line), 6 μeV (blue line), 4.5 μeV (magenta line), and
2.8 μeV (green line), without base current (IB = 0) at T = 90 mK.

[cf. Eq. (7)]. The weakness of the blockade in Fig. 3 is assigned
to the small Coulomb energy EC = 40 μeV, the value of which
is determined from the position of the P (E) peak, extrapolated
to EJ = 0. At larger bias voltages, Zener tunneling to higher
bands takes place, which causes the phase fluctuation theory
to break down. Our results on Zener tunneling are similar to
those of Kuzmin et al. who investigated a single Josephson
junction in an environment of chromium resistor.30

Figure 4 demonstrates the effect of the base current on the
IV of the BOT. The normal and inverted operation regions are
defined by sign combinations (VC , IE , −IB) and (VC , IE , IB),
respectively.9 Both the normal and inverted modes of operation
display a strong increase in the onset of the LZ tunneling
current, which is seen as the movement of the shoulders in the
IV curves up to larger currents. The down-turning shoulders
in the upper and lower sets of the IV curves are distinct
features of LZ tunneling,13 while the data at IB = 0 display
only smeared bumps of these features. This enhancement of the
LZ current suggests that effectively the energy gap between
the ground and excited states is increased due to the noise
induced by the current in the base junction. The shoulders
move even further apart with growing base current, which
indicates an increase in the effective energy gap at the Brillouin
zone boundary. In general, the inverted operation displays
comparable characteristics as the normal operation, but we
found that bistable behavior appeared at smaller bias currents
in the inverted regime compared with the normal operation
mode; in some cases, these modes differed by a factor of 4 in
the base current for bifurcation threshold. This difference in the
required base currents for bifurcation threshold is seen in the
simulations as well. Nonetheless, since the normal operation
appears to provide more clear-cut data, we concentrated our
studies on this operating regime.

B. Gain determination

Figure 4(b) displays a basic set of data for current gain
determination in the normal operating region. Emitter current
IE is depicted as a function of collector voltage VC at eight
values of base currents IB . The regime with a large negative
slope marks the active bias regime of the BOT amplifier. The
steepest monostable curve [the second one from left at IB =
0.095 nA in Fig. 4(b)] has a narrow linear regime in the center
of the negative slope part, the width of which amounts to about
2 pA in IB . This corresponds to the maximum dynamic range in
IB over which the BOT has substantial current gain at this bias
point. Roughly, a change in the base current by �IB = 2 pA
corresponds to 50 pA in IE , and the current gain becomes βE =
25. Eventually, the slope of the IV diverges with increasing IB ,
after which the IV characteristics become hysteretic as seen at
the largest value of IB = 0.105 nA in Fig. 4(b). Clearly, in the
BOT operation near the divergence point, the dynamic range
is inversely proportional to the current gain.

We have checked that bifurcation does not depend on the
value of the current bias resistor in the range 108–1010 .
Moreover, we have performed simultaneous transconductance
gm = �IE

�VB
and current gain measurements to determine the

input impedance of the BOT Zin = �VB

�IB
= �VB

�IE
× �IE

�IB
= βE

gm
.

We find that the input impedance diverges at the same point as
the gain.
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FIG. 4. (Color online) (a) Middle traces: magenta and black IV curves are measured without base current at EJ = 6.5 and 5.8 μeV,
respectively. Red curves, corresponding to EJ = 6.5 μeV, are measured at IB = +0.3, +0.34, and +0.38 nA (traces from right to left). Blue
curves have the same bias conditions as the red curves but were measured at EJ = 5.8 μeV. The red curves are offset by (+0.22 mV, +0.42 nA)
for clarity, like the blue curves by (+0.22 mV, −0.42 nA). (b) The normal operation region of the BOT at EJ = 7.1 μeV with increasing IB .
Negative slope is the Landau-Zener tunneling regime, increases with IB and eventually the slope diverges: IB = +0.06, 0.065, 0.07, 0.075,
0.08, 0.085, 0.095, and 0.105 nA (from right to left). Filled (open) circle traces are of IE when VC is swept from left (right) to right (left). The
measurement temperature was at T ∼ 90 mK.

According to basic BOT theories,7,12,25 the current gain
is independent of the base current. However, the situation
changes near the bifurcation point. This is because there
can be two different kinds of base current components: one
comprising of tunneling events causing interband transitions
(the only component in the traditional BOT base current)
and another one leading only to intraband events. Only
the interband transitions lead to gain in the BOT, while
the intraband transitions are to maintain the bias current.
As the base current grows, the ratio of these two current
components may change with increasing IB which leads to
current dependence of the gain and, eventually, to the diverging
behavior when approaching the bistability point. Hence, the
observed strong increase in βE with increasing base current
is a sign of the operation near the bifurcation point where the
gain grows according to Eq. (20).

In addition to the analysis of data as in Fig. 4(b), we
have measured the current gain using traces of IE versus
IB as illustrated in Fig. 5. The figure displays data at five
different values of the VC at EJ = 7.1 μeV. The current
gain is calculated from the negative slope of IE-IB traces:
βE = −�IE

�IB
. The steepest negative slope yields the optimum

current gain, which we determined as an average of the up
and down IB sweeps. At large gains, there was often a rather
large difference (∼factor of 2) between the gains of up and
down sweeps. In such cases, we considered the operation of
the BOT bistable at these bias points and disregarded the larger
gain values that would have been obtained from these sweeps
(not shown in Fig. 6). When βE > 50, the gain determinations
became problematic because of 1/f noise and creep in the
measurement, which gradually took the device out of the linear
regime during the gain determination.

Figure 6 depicts data on the inverse of βE versus IB which
were obtained from the analysis of IE (IB) scans performed
in the range with EJ = 4.6–10.5 μeV. A data point in Fig. 6
corresponds to the maximum slope determined from a single

IE-IB trace illustrated in Fig. 5. Similarly, at different VC

values (different traces in Fig. 5) we determined maximum
βE’s and the corresponding IB’s for different EJ values to
generate Fig. 6. With increase in IB , the maximum βE increases
and eventually diverges at the bifurcation threshold. Plotting
β−1

E makes the analysis of the diverging gain regime simpler
and allows us to examine the vicinity of the bifurcation point
where we are supposed to have β−1

E (IB) → 0.
Experimentally, the problem in this region arises because

the dynamic range becomes zero and measurements without
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FIG. 5. (Color online) Measurement of the current gain by
tracing IE vs IB at EJ = 7.1 μeV. The steepest slope yields the
operating point with the largest current gain βE at the corresponding
collector voltage VC . Traces were measured at T = 90 mK using
VC = −0.443, −0.429, −0.419, −0.410, and −0.401 mV (traces
from right to left). Different signs of IE and IB correspond to the
regime of normal operation. Red (purple) traces are for growing
(decreasing) sweep of IB .
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FIG. 6. (Color online) Inverse gain 1/βE as a function of bias
current IB . Each data point was obtained from a IE vs IB sweep
illustrated in Fig. 5. The solid curves were obtained using Eq. (20)
fitted to the highest IB quartile fraction of the data sets (first to eighth
lowest β−1

E values).

noise-induced smearing become impossible. Nevertheless, the
data in Fig. 6 display how the critical regime is approached
at β−1

E > 0.02 which corresponds to our highest reliable gain
values. All of the data at small values of β−1

E are seen to show
a nearly linear dependence on IB , especially at large values of
Josephson energies. At our smallest value of EJ = 2.7 μeV
(sample No. 1), we could not reach the bistable regime at
all. The theoretical dependence for β−1

E (IB), illustrated by red
curves in Fig. 6, were obtained by fitting Eq. (20a) to the data
just near the divergence point, as required by its regime of
validity.

C. Bifurcation threshold

The experimentally determined values of IB−H for the
bifurcation point are plotted in Fig. 7 on the IB−H -EJ plane.
The plot was generated from the fits in Fig. 6 by selecting
the points of β−1

E (IB−H ) = 0. Figure 7 indicates that the onset
of bistability is nearly independent of base current at large
values of EJ , while a steep increase in IB−H is observed below
EJ = 6 μeV. The observed behavior is quite well reproduced

#2#1

FIG. 7. (Color online) Bifurcation threshold on the EJ vs IB

plane. Red (filled) and blue (open) circles denote the IB−H values
for the samples No. 1 and No. 2, respectively. Solid curves display
the theoretical dependence from Eq. (21).

by our phenomenological formula in Eq. (21) which is depicted
by the solid curve.

For sample No. 2, we found a similar threshold curve which
indicates that the bifurcation behavior and its dependence on
EJ is a fundamental characteristic of the Bloch oscillating
transistor. The bifurcation threshold curves for both the sam-
ples are depicted in Fig. 7. For sample No. 2, the bifurcation
threshold current is higher than that for sample No. 1. From
the fitted curves we found that κ [see Eq. (21)] for sample
No. 1 is higher than for sample No. 2 which comes from the
fact that κ contains term RC which is higher in sample No.
1 than in sample No. 2. The smaller base current needed for
bifurcation for sample No. 1 than in comparison to sample No.
2 is accounted from the fact that βH for sample No. 1 is higher
than for sample No. 2. Absence of bifurcation was observed
in both samples No. 1 and No. 2 at their respective lowest EJ

values.
The rate (�β−1

E

�IB
) at which 1/βE reaches the bifurcation point

depends on EJ as seen from Fig. 8(a). Initially, the slope
increases rapidly with EJ up to 6 μeV, while between 6–
10.5 μeV the slope appears to be saturated. In this region,
the bifurcation threshold current is almost independent of EJ

(cf. Fig. 7). The slope variation over the whole range of EJ

amounts to a factor of 5.5. Hence, the variation of EJ does not
necessarily change βE strongly, which is a desirable property
concerning 1/f noise due to critical current fluctuations.

Theoretically, the rate �β−1
E

�IB
is hard to evaluate from Eq. (20).

The significant prefactor of Eq. (20b) contains two terms :

VC/RC and (τ↓ + τ↑)/τ↓. We have analyzed how �β−1
E

�IB
varies

theoretically with EJ for sample No. 1 by estimating the
factor RC

VC

τ↑+τ↓
τ↓

. By using Eq. (14), we can relate τ↓+τ↑
τ↓

to

the experimentally determined quantity 〈IE〉
VC/RC

, while VC is
obtained from the bias voltage, which is increased by 60%
over the range of EJ = 3.9–10.5 μeV. In Fig. 8(b), we show
the variation of τ↓+τ↑

τ↓
with EJ as determined for the maximum

current 〈IE〉 at the subgap I (V ) peak. Together, these opposing

contributions result in a change by a factor of 3.3 in �β−1
E

�IB
, which
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FIG. 8. (Color online) (a)
�β−1

E

�IB
vs EJ plotted near the bifurcation threshold. Each point at different EJ was derived from fits in Fig. 6.

(b) τ↑+τ↓
τ↓ , deduced from experimentally determined 〈IE 〉

VC/RC
, is plotted vs EJ . Solid curves are seen to display the similar character, but the

theoretical estimate falls short by 70% from the change in Fig. 8(a).

falls slightly short from the observed factor of 5.5 in Fig. 8(a).
Hence, we can conclude that our simple model explains the
rate of approach towards the bifurcation threshold with fair
extent.

We have also tried to determine the ratio of interband and
intraband transitions which is governed by 〈Ne〉. According to
Eqs. (14) and (15), there is the following relation between the
base current and 〈Ne〉: 〈IB〉 = e〈Ne〉2

	B

τ↓
τ↑+τ↓

. With the approxi-

mation 〈IB〉 ∝ 	B , we can conclude that 〈Ne〉 ∝ IB−H

√
τ↑+τ↓

τ↓
.

From Fig. 8(b), the increase in
√

τ↑+τ↓
τ↓

is ∼2 whereas from

Fig. 7 the decrease in IB−H for sample No. 1 is ∼4. Thus, we
can conclude that 〈Ne〉 goes down with increasing EJ . But,
unfortunately, we can not determine the exact number of 〈Ne〉
from this analytical formulation.

In our numerical analysis, we have considered the circuit
model used by Hassel et al.9 and modified it for current bias
configuration. Here, we have calculated the island charge as
a function of time by taking into account three contributions:
charge relaxation through RC together with the tunnel current
through the emitter and base junctions, respectively. The
tunnel currents through these junctions are calculated using
time-dependent P (E) theory.9 In the simulation, P (E) is
calculated numerically by considering only the real part of the
environmental impedance. The simulation runtime was chosen
longer than the time constant due to RB and the capacitance
from base to ground so that the steady state was reached
properly. Moreover, we monitored the tunneling events on the
island with time, which clearly revealed the Bloch oscillating
state and its transition to the higher band. By counting the
number of tunneling events when the system undergoes a
change from higher band to lower band we could calculate
〈Ne〉 from the simulation.

IV. DISCUSSION AND CONCLUSIONS

According to the basic theory of the BOT operation, the gain
should depend exponentially on EJ /EC via the tunneling rates
	↑ and 	in↓ (Ref. 25) when EC � EJ . In this small-EJ limit,

the energy gap between the first two bands is small, which
facilitates the use of the up- and down-transition rates [Eqs. (8)
and (9)] from perturbation theory. In our experiments, we are
well in this limit, which has not been the case in many of the
previous measurements, for example, in Ref. 7 the maximum
gain of βE = 35 was achieved for EJ /EC = 3.4. A current
gain of βE = 25 was reported for low EJ /EC = 0.3 in Ref. 31.

In our present paper, we have observed a large current
gain of ∼50 even at EJ /EC = 0.1. The estimates from
the basic theory25 amount to βE = 4.8–7 for EJ = 5–
11.8 μeV, well below the measured values. Moreover, we
did not observe any variation of the maximum gain with
EJ , which, together with magnitude of βE , is consistent with
the operation near the bifurcation point where the main gain
mechanism has a different origin than in the regular BOT
operation. For amplifier operation, the operation near the bi-
furcation threshold can be used to reduce the equivalent current
noise and, consequently, to improve noise matching when mea-
suring objects with characteristic impedance in the range of
>1 M.32 The increasing input impedance near the threshold
point tends to decrease the bandwidth. In any case, however,
the BOT is likely to be most useful in low-noise low-frequency
applications.

In the operating regime near the bifurcation point, the
base current is a combination of a working point current,
not inducing interband transitions, and a significantly smaller
part that leads to transitions, the ratio of these two currents
being given by the parameter 〈Ne〉. In our phenomenological
modeling with a large number of intraband transitions, the
current gain is simply related to 〈N ′

e〉 and the upward tunneling
rate 	↑ [see Eqs. (15) and (16)]. Hence, a large current gain
is expected when approaching a regime where there are two
stable solutions for the base current with different values for
〈Ne〉. When 〈Ne〉 is large, then almost all of the current is
used to just keep the operating point. In our simulation, we
find a factor of 15 change in 〈Ne〉 over the measured range
but, unfortunately, our analysis is not able to yield absolute
numbers for 〈Ne〉 from our measured data.

When comparing our findings with the numerical work of
Hassel and Seppä,8,12 we find a weaker overall dependence
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of the device performance on the sample parameters and
biasing parameters than was found in the simulations. The
weaker overall dependence may, of course, be valid only for
the regime of the sample parameters/device configurations
that were investigated in this work. Nevertheless, the weaker
parameter dependence is an important factor that contributes
to the success of the simple phenomenological modeling that
we have employed. The weaker overall changes may also
indicate that there is external noise present in the measure-
ments and our results should be compared with simulations
performed at a higher effective temperature. Furthermore,
as an example of the differences, let us point out that if
we take the bifurcation threshold parameter from Ref. 12,
βH = 0.02( RC

RN
)2 exp[πe2RC

16h̄ ( EJ

EC
)2], we find that our sample No.

1 should be bifurcated at all base currents (βH ∼ 2.4–11.5).
We think that the absence of bifurcation at IB = 0 with βH well
above 1 indicates the necessity to add a capacitance in parallel
to RC into the simulations, which would take into account
the parasitic capacitance component on the sample chip. This
parasitic capacitance will influence the Coulomb blockade at
large frequencies, at which it will reduce the real part of the
impedance seen by the Josephson junction.

In conclusion, we have investigated the dynamics and
modeling of the BOT when approaching a bifurcation point
governed by intricate interband transition dynamics. Our
results present an experimental analysis on the behavior of
the BOT in the regime where its behavior is fully governed
by switching dynamics with the rates imposed by the biasing
conditions. We have reached record-large current gains even
though the device was operated just at small Josephson
coupling energies EJ = 2.7–10.5 μeV. We have mapped a
crossover transition diagram on the EJ versus IB plane and
compared its shape to analytic modeling, where the intraband
transitions are included in terms of a phenomenological
parameter 〈Ne〉. The same modeling was also successfully
applied to describe how the current gain diverges as a function
of the base current IB . Our findings are consistent with the
gain divergence as 1/(1-βH ) where the bifurcation threshold
parameter βH is only weakly dependent of EJ . The weak
dependence makes this regime attractive for application where
large current gain is needed at low frequencies.
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APPENDIX A: ANALYTICAL DERIVATION
OF THRESHOLD CURVE

It is difficult to obtain an analytic expression for the
derivative ∂〈N ′

e〉/∂τ↓ and, hence, we had to be satisfied with

crude approximations. Equation (19) specifies the relation
between βH and the derivative ∂〈N ′

e〉/∂τ↓ as follows: βH =
e

〈IB 〉
∂〈N ′

e〉
∂τ↓

. The partial derivative of 〈N ′
e〉 with respect to τ↓ can

be approximated as

∂〈N ′
e〉

∂τ↓
= 〈N ′

e〉
τ↓

+ ε, (A1)

where ε < 0 is a phenomenological correction term. In order
to determine the variation of 〈N ′

e〉 with τ↓ explicitly, we follow
an interpolative approach using

〈N ′
e〉 = [1 + (	Bτ↓)2]1/2, (A2)

which agrees with the limits; when τ↓ is short 〈N ′
e〉 approaches

1 and 〈N ′
e〉 � 	Bτ↓ when τ↓ is long. Hence,

∂〈N ′
e〉

∂τ↓
=

√
1 + (	Bτ↓)2

τ↓
, (A3)

which leads to

ε = ∂〈N ′
e〉

∂τ↓
− 〈N ′

e〉
τ↓

= − 1

τ↓
√

1 + (	Bτ↓)2
. (A4)

Using Eq. (A1), we can write for the bifurcation threshold
parameter

βH = e

〈IB〉
∂〈N ′

e〉
∂τ↓

(A5)

= e

〈IB〉
[ 〈N ′

e〉
τ↓

+ ε

]
. (A6)

Using the expression of 〈IB〉 from Eq. (14),

〈IB〉 = e〈N ′
e〉

τ↓
(
1 + τ↑

τ↓

) ,

and substituting it with 〈N ′
e〉

τ↓
into Eq. (A6), we get the equation

IB−H

e
� −ε

τ↓
τ↑

(A7)

at βH = 1. By inserting ε from Eq. (A4), we obtain an analytic
expression for the bifurcation curve

IB−H = 1

τ↑

1√
1 + (	Bτ↓)2

. (A8)

The upward transition rate 1/τ↑ depends on both LZ tunneling
	↑ and single-electron tunneling (	se↑). Single-electron events
induced by the base current were found to be important in the
simulated time traces of the island charge at high-EJ values.
Hence,

1

τ↑
= 	↑ + 	se↑. (A9)

According to LZ tunneling (	↑) [cf. Eq. (8)], .

	↑ ∝ exp
( − κE2

J

)
, (A10)
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FIG. 9. (Color online) Bifurcation threshold on the EJ vs IB

plane obtained from the simulation. The solid curve is the analytic
dependence from Eq. (21). The inset shows the dependence of β−1

E

on IB obtained from the numerical simulation at EJ = 10 μeV; the
fitted line indicates IB−H = 0.16 nA.

where the parameters inside the exponent are absorbed in κ .
Thus, we arrive at an exponential dependence of IB−H with
E2

J :

IB−H

e
∝ 	se↑ + exp

( − κE2
J

)√
1 + 	2

B/E4
J

,

which is Eq. (21) in the main text. The effect of single-electron
tunneling reflects on the bifurcation threshold curve through
the saturation of IB−H ( �=0) at higher-EJ values.

We have used Eq. (21) to fit the bifurcation threshold
diagram. We find good agreement with both experimental and
simulated data (cf. Figs. 7 and 9). Although our simulated
threshold values deviate from our experimental EJ ’s, we
find similar functional tendency in the curves. Both in the
simulation and experiment we observe that the bifurcation
takes place earlier in the “inverted” regime than in the “normal”
operation. In the inset of Fig. 9, we display a calculated β−1

E

versus IB plot at EJ = 10 μeV. In the simulation, we also
found a minimum EJ below which there is no bifurcation.
Hence, we can conclude that our simulation quite well explains
the experimental findings.

APPENDIX B: IB VS βE

According to Eq. (18),

β−1
E = RC

VC

e2〈N ′
e〉2

τ↑(τ↑ + τ↓)

1

〈IB〉 (1 − βH ) . (B1)

By inserting βH from Eq. (A6), we reach the approximate
form of βE near the bifurcation threshold:

β−1
E =

⎡⎣VC

RC

〈IB〉
e2

τ↑(τ↑ + τ↓)

〈N ′
e〉2

1

1 − e
〈IB 〉

( e〈N ′
e〉

τ↓
+ ε

)
⎤⎦−1

=
[
RC

VC

τ↑ + τ↓
τ↓

( − 〈IB〉 + IB−H

)]
,

where IB−H denotes the bifurcation threshold current. The
above formulation is valid only in the vicinity of the divergence
point, where the dominant change in β−1

E can be viewed as
linear in 〈IB〉.
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