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Shell pressure on the core of MnO/Mn3;0, core/shell nanoparticles
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Here we show that spontaneous oxidation of MnO nanoparticles into MnO/Mn;O4 core/shell nanoparticles has
the effect of a local pressure, decreasing the MnO cell parameter and increasing strain, resulting in the increase
of the MnO antiferromagnetic/paramagnetic transition temperature Ty . These effects are more severe in smaller

nanoparticles.
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I. INTRODUCTION

A myriad of core/shell nanoparticles (NPs) have been
developed and studied in the last decades aiming at the
increase of functionality, stability, dispersibility, biocom-
patibility, and specific targeting, for instance.' Shells can
also interact synergetically with the core by changing
lattice parameters, resulting in strain-engineered materials
with tuned, improved, and new properties.>® This includes
materials with strain-induced ordered structures,* materials
with tuned thermodynamic properties,™® and materials with
tuned and new optical,”'® electronic,'* electro-optical,'”
magnetoelectric,'®!” and magnetic'®?° properties. In the
case of magnetic properties, attention focused on coupling
magnetic and electric properties by strain-induced multifer-
roic materials,'®!” on increasing anisotropy by shell-induced
strain,'® and on controlling the core/shell exchange coupling
by strain.'8

In the context of exchange coupling, one of the sys-
tems that has received more attention in recent years is
MnO/Mn3QOy4 core/shell NPs, an “inverted” system where the
core is antiferromagnetic (AF) and the shell is ferrimagnetic,
growing epitaxially on the core.?'~2® This results in a rich
magnetic behavior including an enhancement of the transition
temperature of the shell due to the MnO core,”® a change in
the nature of phase transition,>”-?® and an increase of the MnO
antiferromagnetic transition temperature 7 in the NPs when
compared to bulk MnQ.?*2628-3% Some of these phenomena are
poorly understood and we anticipate that controlling surface
oxidation and strain starting from nonoxidized cores can give
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a new insight on the rich magnetic behavior of MnO and
MHO/MH304 NPs.

Literature devoted to the synthesis of MnO NPs shows
that the NPs are always surface oxidized to a certain extent
when exposed to air, resulting in a MnO/Mn3QOy4 core/shell
structure, even when it is not explicitly mentioned. This
is the case of MnO NPs formed by the decomposition of
Mn-oleate in trioctylamine and oleic acid. The dispersion
of NPs and nanopods is light green at high temperature (the
color of bulk MnO) becoming brown when cooled (the color
of Mn30y), indicating surface oxidation.’! The formation
of brownish oxidized MnO NPs and nanopods was also
reported after the decomposition of H,O:Mn-ac in different
ratios of trioctylamine:oleic acid.*> Another example is the
decomposition of Mn-acetate in trioctylamine and oleic acid
under N,, leading to the formation of MnO NPs with sizes from
7 to 20 nm.** Again, the authors mention the formation of a
black dispersion at high temperature suggesting that the MnO
NPs are surface oxidized. In the case of MnO NPs formed by
the decomposition of Mn—fatty acid salts in the presence of
free fatty acid in octadecene, n-eicosane, and tetracosane at
300°C,* no direct evidence of oxidation is provided but the
reduction of the MnO lattice parameter compared to that of
the bulk (4.439 A compared to 4.445 A of bulk MnO?®) is an
indirect evidence of oxidation.

Since spontaneous oxidation of MnO NPs is ubiquitous
after air exposure, we have designed a set of experiments
where MnO NPs are studied at different stages of air exposure.
This allowed us to investigate the role of surface oxidation and
strain on the magnetic properties of MnO NPs.
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II. EXPERIMENT

The systems investigated here are composed of AF MnO
NPs with two different average sizes, obtained by the decom-
position of Mn-acetate in octadecene (smaller size, labeled
S) and trioctylamine (larger size, labeled L). Sample S was
obtained by adding 8.1 g of manganese(Il) acetate (98%,
Aldrich) to 110 mL of 1-octadecene (95%, Sigma-Aldrich) in
a 250 mL round bottom flask under argon. The dispersion was
magnetically stirred, heated up to 290°C at about 6°C/min,
and kept at 295°C for 2 h to guarantee total decomposition.
Near 290°C the dispersion turns light green becoming more
intense with time. After cooling to room temperature, the
dispersion was separated into 3 approximately equal parts.
After separation, one part was always kept in argon (sample
S-NO), another part (35 mL) was mixed with 10 mL of air
(sample S-PO), and the third part was fully oxidized in air
(sample S-Oxi). All parts were then equally washed with
dichloromethane and ethanol, centrifuged, dried, and stored
in argon.

Sample L was obtained by adding 7.1 g of manganese(II)
acetate to 80 mL of trioctylamine (98 % Sigma-Aldrich) under
argon. The dispersion was magnetically stirred, heated up to
300°C at about 6°C/min, and kept at 295°C during 1 h to
guarantee total decomposition. The dispersion was cooled,
separated into 3 parts, and further manipulated as described
for sample S. In this case, the L-PO sample was mixed in a
proportion of about 27 mL of dispersion to 10 mL of air.

Transmission electron microscopy (TEM) was performed
using a Jeol-2000 FXII microscope, with point-to-point and
line-to-line resolutions of 0.28 nm and 0.14 nm, respectively,
and equipped with a INCA 200 X-Sight (Oxford Instruments)
energy dispersive x-ray spectrometer (EDS). High-resolution
TEM (HRTEM) was performed in a Tecnai G2-F30 field
emission gun microscope with a supertwin lens and 0.2 nm
point-to-point resolution and 0.1 line resolution. Samples
for TEM observations were prepared by dispersing the
nanoparticles in hexane and evaporating suspension drops on
carbon-coated copper grids.

X-ray absorption spectroscopy (XAS) measurements were
performed at the Spanish CRG beamline (SpLine-BM25A)
at the European Synchrotron Radiation Facility (Grenoble,
France). XAS spectra were recorded at Mn K edge at room
temperature. The energy was set using a Si(111) double-crystal
monochromator and several scans for each sample were taken
to check the sample stability along the time and to improve
the signal-to-noise ratio. The incoming beam was monitored
using an ionization chamber, which was filled with a 50% N5,
50% He gas mixture. NO and PO samples were dispersed in
an epoxy resin (CitoFix Powder, Struers) under argon to avoid
oxidation during manipulation and then mounted in a standard
sample holder. Data were collected in the fluorescence yield
mode with a 13-element Si(Li) energy dispersive detector
(from e2v Instruments). The Mn-Ko fluorescence line was
recorded with the detector placed parallel to the x-ray electric
polarization field (i.e., forming 90° from the incoming x-ray
beam). Data treatment was achieved with ATHENA software.3°

dc magnetic susceptibility measurements were performed
in a superconducting quantum interference device (SQUID)
magnetometer model MPMS-XL, from Quantum Design, Inc.,
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under helium atmosphere. Measurements were performed as
a function of temperature with an applied field of 100 Oe at
increasing temperatures from 10 K to 200/250 K after cooling
in the absence of the field (ZFC cooling) and cooling under
100 Oe (FC cooling). NO and PO samples were dispersed in
an epoxy resin (CitoFix Powder, Struers) under argon to avoid
oxidation during manipulation and then mounted in a straw.

Powder neutron diffraction (PND) experiments were per-
formed at the Institut Laue Langevin (ILL, France) at the
diffractometers D1B and D20 using a monochromatic beam
of 1.28 A and 1.36 A (high-resolution configuration), re-
spectively. Neutron diffraction patterns were recorded as a
function of the temperature from 10 to 140 K. NO and PO
samples were mounted in a standard vanadium can sealed
with indium under argon. Sample L-PO was studied at D1B
while all other samples were studied at D20. The contribution
of the instrument to the peaks broadening was determined by
the instrument resolution function built from the refinement
of a Na,Ca;Al,F 4 standard sample, while wavelengths were
refined using a Si standard. The analysis of the diffraction
patterns was performed by Rietveld refinement using the
FULLPROF package.’” The microstructure effects were treated
with the integral breadth method using the Voigt model for
both the instrumental and intrinsic diffraction peak shape
considering a Thompson-Cox-Hastings pseudo-Voigt convo-
luted with axial divergence asymmetry function to describe
the peak shape. The following constraints were applied to
the refinements. At each temperature, the B,, parameter was
fixed to an interpolation of the values reported in Ref. 38.
In S-Oxi and L-PO samples, nuclear size at intermediate
temperature was kept constant and equal to the low- and
high-temperature average value. In L-Oxi and L-PO samples,
strain at intermediate temperature (117 to 122 K and 50 to 130
K, respectively) was linearly interpolated between low- and
high-temperature values.

III. RESULTS AND DISCUSSION

The synthesis of the samples investigated here was designed
to minimize surface oxidation in NO samples and increase
performance in PND and HRTEM experiments, namely by
avoiding the use of a surfactant and by scaling-up the synthe-
sized samples. Both procedures lead to a poorer control of size
distribution and aggregation state when compared to smaller
scale and surfactant-coated NPs, as seen in transmission
electron microscopy (TEM) images (Fig. 1). Anyway, the NPs
obtained from the synthesis in octadecene (sample S-Oxi) have
sizes in the 20 to 50 nm range with an average of about 30
nm, while the oxidized NPs obtained in trioctylamine (sample
L-Oxi) have sizes in the 20 to 100 nm range with an average
of about 50 nm. HRTEM performed on oxidized samples
shows the existence of core/shell NPs, where the shell is
epitaxially grown on the MnO core, as previously found??
(Fig. 2) and detailed next. Figure 2(a) shows a NP with the
calculated fast Fourier transform (FFT) of the image in the
inset. The filtered image using the Mn3O, diffraction spots
[marked with arrows in the inset of Fig. 2(a)] is shown in
Fig. 2(b), where the location of Mn30O, at the NPs’ surface
becomes clear. Figures 2(c)-2(e) highlight both the core-shell
structure of the NPs and the epitaxy between MnO and Mn3O;.
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FIG. 1. TEM image of sample L-Oxi (left) and S-Oxi (right).
Scale bars correspond to 100 nm.

Figures 2(d) and 2(e) show the FFT of the NP in Fig. 2(c)
calculated mainly (but not just) in the surface and core of the
particle, respectively. In Fig. 2(e) (core) the spots correspond
to the MnO cubic structure with some diffused intensity at half
the reciprocal distance, while in Fig. 2(d) (surface) the spots
of the MnO structure appear together with the Mn3;O4 ones
and perfectly oriented at about half distances in the reciprocal
space.

The oxidation of the MnO NPs can be first observed by eye
as the color of the suspensions changes from light green to dark
green and then to brown. In an attempt at a more quantitative
approach, x-ray near-edge spectroscopy (XANES) in the Mn
edge was used (Fig. 3). The spectra of the L samples is similar

[121] MnO

FIG. 2. (a) HRTEM image of sample L-Oxi with associated fast
Fourier transform (FFT) image; (b) same image filtered at the Mn; Oy
diffraction spots marked with arrows; (¢) HRTEM image of sample
L-Oxi with two highlighted regions, at surface and core, on which FT
was applied; (d) surface FFT and (e) core FFT. In panel (d) and (e),
spots 1, 2, 3, and 4 correspond to the (113), (202), (3-1 1), and (1-1-1)
planes of the [-121] MnO zone axis, respectively. In panel (d), spots 5,
6,7, and 8 correspond to the (113), (202), (3-11), and (1-1-1) planes of
the [-121] Mn;0,4 zone axis, respectively, considering a nondistorted
cubic spinel structure with the cell parameter dgpine = 2aMno-

PHYSICAL REVIEW B 87, 224429 (2013)

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0.0 T e b b e

1.6
(b) ﬁ\
"/ X

1.4

1.2

norm. absorption (arb. units)

1.0 -
0.8
0.6
0.4
0.2
0.0 meemer T

6535 6540 6545 6550 6555 6560 6565 6570
E (eV)

FIG. 3. (Color online) XANES spectra of L and S samples [panels
(a) and (b), respectively]. The spectra of MnO and Mn;O, samples
are also shown in both panels.

to that of the MnO bulk sample. Changes with oxidation are
quite small, although in the L-Oxi sample the edge at 6544
eV is shifted to higher energies as expected for more oxidized
Mn.** In the case of S samples, the main features of the spectra
are still those of MnO but different relative intensities are
found, associated with different Mn environments in these
samples when compared to bulk MnO. At the same time, these
differences in the relative intensities cannot be attributed to
the simple existence of bulk Mn3Oy4-like Mn environments,
showing therefore the existence of nonbulk Mn environments.
Concerning the evolution of the spectra with oxidation, the
S-NO and S-PO samples are similar and closer to that of
MnO, while the S-Oxi sample shows also features of Mn3Qy,
as the edge shifted to higher energy and with the appearance
of a shoulder at 6557 eV. The small changes observed in the
XANES spectra of L samples when compared to S samples is
probably associated with the larger volume/surface ratio in the
L particles that makes the XANES spectra dominated by the
MnO-like contribution.

The effect of oxidation and size was further studied by
dc susceptibility (M/H, M being magnetization and H the
applied magnetic field) (Fig. 4). The temperature dependence
of M/H of the nonoxidized samples has the characteristic
behavior of AF MnO systems, with a maximum around 120 K
associated with an AF-paramagnetic transition and residual
thermal irreversibility (measured as the difference between
the FC and ZFC curves). With oxidation, this maximum
becomes broader and another component with large thermal
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FIG. 4. (Color online) Temperature dependence of the low-field
susceptibility M/ H of L samples [panel (a)] and S samples [panel (b)]
obtained after ZFC (open symbols) and FC (full symbols) procedures.
Insets show a zoom over the low M /H values.

irreversibility becomes visible below 50 K, associated with
the presence of ferrimagnetic Mn3Oy4. The effect of oxidation
and size on the AF-paramagnetic transition is better seen in a
normalized d(MT /H)/dT plot (Fig. 5), which is proportional
to the magnetic specific heat in the context of mean-field theory
(see, for instance, Ref. 40). In both sets of samples, it is clear
that with oxidation, the peak of d(MT/H)/dT and therefore
the transition becomes broader, this being more severe on the
high-temperature side. At the same time, with oxidation, the
peak position has a small shift towards higher temperatures.
Concerning size effects on the nonoxidized samples, the peak
of the L-NO sample occurs at 117 K close to the transition
temperature of bulk MnO (~118 K*') while in the nonoxidized
sample with smaller size (S-NO) the peak occurs at 115

K. Therefore, in nonoxidized MnO samples, the transition
temperature decreases with the decrease of size, as usually

found in other magnetic NPs and attributed to finite-size

effects. Also, the previous increase of Ty reported in MnO

NPs when compared to bulk?32%2%-30 is shown here to be

associated with the spontaneous oxidation occurring in MnO
NPs.

The possible origins of the Ty increase in MnO cores
(summarized in Ref. 26) were previously associated to size
and surface effects with different possible causes such as (i) an
enhancement of exchange interaction,*? (ii) variations in the
crystal field resulting in high-spin low-spin transitions and/or
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FIG. 5. (Color online) Temperature dependence of the normal-
ized temperature derivative of the low-field susceptibility temperature
product d(MT/H)/dT of L samples [panel (a)] and S samples
[panel (b)]. Vertical dotted line correspond to the maximum of
d(MT/H)/dT of sample L-NO.

the appearance of new degrees of freedom which interact
with the AF order parameter,* and (iii) size dependence of
the lattice parameter.** In the case of MnO/Mn30, NPs in
confining matrices, it was also suggested that the 7y increase is
a matrix effect,2’-28 as a pressure effect induced by the matrix,
or a geometry effect.”® However, not all authors report an
increase of Ty . Ultrafine NPs (3.7-5.4 nm) showed a decrease
of Ty,* while a recent report shows a slight increase of Ty
in 13 nm MnO NPs (120 K) and a decrease of Ty in 8 nm
ones (114 K).** In this case, the difference was attributed
to particle morphology, NPs/matrix interface, and to other
magnetic species due to changes in the surface coordination
number. According to the present results, the behavior of Ty
in MnO/Mn304 NPs is a combination of an increase imposed
by oxidation and the decrease resulting from size decrease, the
former being the dominant effect in larger NPs and the latter
the dominant effect in ultrafine NPs.

A better insight on the structural changes induced by
oxidation and on how oxidation leads to an increase of Ty
is obtained by the analysis of PND results. As expected,
below T the MnO nanoparticles have a magnetostructural
transition, as shown by the split of nuclear peaks and the
appearance of peaks associated with AF ordering (Fig. 6). The
patterns of the nonoxidized samples can be refined to a cubic
face centered cell (space group Fm3m) at high temperature,
and to a rhombohedral nuclear cell (space group R3m) and
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FIG. 6. (Color online) Powder neutron diffraction patterns of
samples S-NO and S-Oxi at 140 K and at 20 K, obtained at D20
powder diffractometer (ILL). Vertical (green) lines represent the
position of the allowed Bragg peaks of nuclear (1) and magnetic
(2) origin of MnO and nuclear origin of Mn;O, (3). Continuous (red)
lines correspond to Rietveld refinement and residues (blue, noise-like
line).

by the propagation vector k = [0, 0, 3/2] referred to the
rhombohedral cell (which corresponds to the [1/2, 1/2, 1/2]
propagation vector referred to a distorted cubic cell) at low
temperature. The rhombohedral structure can be described
in terms of a pseudocubic cell with a cell edge a,. and an
angle between edges of 90 + A (degrees).***’ In the oxidized
samples, broad and small shoulders appear at g ~ 25 nm~" and
g ~ 50 nm~!, corresponding to the most important features
of Mn;04 [(211)/(202) and (422)/(404) planes, respectively,
space group I4,/amd].*® In the studied temperature range,
the magnetic peak at ~12 nm~! has two components, a
narrower and more intense one decreasing with temperature
up to ~120 K and a broader and less intense scattering
nearly constant in the studied temperature range, in accordance
with early neutron diffraction results.*® Recently, polarized
neutron scattering data showed that the latter component
is an incoherent scattering associated with the presence of
disordered spins.’*

It is clear from Fig. 7(a) that oxidation reduces the cell
parameter a , this effect being more dramatic in the S samples.
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FIG. 7. (Color online) Temperature dependence of the structural
parameters of the (pseudo) cubic cell a,. [panel (a)] and A [panel
(b)]. Inset in panel (b) shows zoom over high-temperature region.

This can be understood considering the fact that Mn3;Oy4
grows epitaxially on MnO?? and that the MnO/Mn; 0Oy lattice
mismatch is such that the MnO lattice is larger than the Mn3;Oy4
one. As shown in Ref. 22, growth can occur on the (111) MnO
plane, which by Mn?* vacancies adopts an atomic coordination
similar to that of the (202) plane (space group 14, /amd) of
Mn; 04 and with higher interatomic distances in MnO (3.143 A
versus 3.121 and 2.882 A in Mn;04). At low temperature, the
distortion angle A decreases with the increase of oxidation
[Fig. 7(b)]. At the same time, for nonoxidized samples A
shows a relatively sharp transition near 117 K (in agreement
with the magnetometry results), while for oxidized samples A
approaches zero more smoothly and at higher temperatures.
The behavior of A(T') is also consistent with a small decrease
of the transition temperature with size when comparing the
nonoxidized samples.

The average apparent size of the MnO nuclear ordering
of L samples is higher than that of S samples and constant
with temperature being of the order of those obtained from
TEM. The magnetic ordering average apparent size is about
half of the nuclear one, suggesting that in average MnO NPs
are magnetic bi-domains. With oxidation, the nuclear average
apparent size of the L samples shows a decrease of the order
of the Mn30Oy shell size, while in S samples no decrease is
observed [Fig. 8(a)]. On the other hand, the effect of oxidation
is quite pronounced in strain, which increases about 2 and 3
times [Fig. 8(b)] being more intense in the smaller sample. The
increase of strain is consistent with the observed decrease of

224429-5



N. J. O. SILVA et al.

L —e— L-NO
60 - ~m LOxi
L __ —*—MnO+Mn304
500 N T e e,
L -
’E\ r " —0—S-NO
c 40 —£—$-PO
‘g r —0— S-Oxi
N LA oy A
. S —ve e B
Np oo o o, | (a)
R ————— e
10 EE— O=ao—cro8g
0 L L L ‘ L L ‘ L ‘
40- o sox i
E o A (b)
cC — ¥l
[ D/D\\DFLD/ D\
~ anl B LOxi
x 30 ﬂ%ﬂ\mdj .
SN gt
[ S
5 o
g _F —aspo RN Ppp—
@ 20F o sno Ty
e LNO
15 -
e ——— A4 ?
0 T oo R S e i R
C Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il .\ Il ‘ Il Il Il ‘ Il Il Il ‘ \éjo Il ‘
0 20 40 60 80 100 120 140

T(K)

FIG. 8. (Color online) Panel (a): Temperature dependence of the
average apparent size of the MnO nuclear ordering (curves constant
with temperature) and of the average apparent size of the MnO
magnetic ordering (curves decreasing to zero at high temperature).
The sum of the MnO and Mn3;O, average apparent sizes of sample
L-Oxi at high temperature is also shown. Panel (b): Temperature
dependence of the average maximum strain.

ap. with oxidation induced by the epitaxial growth of Mn3O4
on the MnO surface. All samples show a decrease of strain
with the increase of temperature, probably associated with
the magnetic-induced structural distortion that decreases with
increasing temperature due to the decrease of the AF sublattice
magnetic moment .%

The low temperature 1 of NO samples is close to that
reported for bulk (bulk values oscillate from p = 4.58(6) u 58
to u =4.84+0.3 up>*), decreasing in PO and Oxi samples,
due to disorder induced by oxidation (Fig. 9). Again, the
decrease of the low-temperature p in MnO/Mn3O4 NPs is
not a pure finite-size or a pure surface effect but rather a
shell-induced effect. This effect can also be observed in the
decrease of the low-temperature A with oxidation, since u is
proportional to ~/A.*7# As observed in the case of A, the
approach to zero is smoother in oxidized samples and their Ty
is higher. Between 120 and 140 K the intensity of the magnetic
peak is of the order of noise hindering the determination of u
and in particular the determination of the temperature at which
w is zero. The decrease of p with temperature is followed
by the decrease of the average apparent size of the magnetic
domains [Fig. 8(a)]. Again, the decrease of this size in the
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FIG. 9. (Color online) Temperature dependence of the sublattice
magnetic moment u. Inset shows a zoom over the high-temperature
region.

oxidized samples is smoother and small magnetically ordered
domains survive up to higher temperature.

At this point, it is clear that oxidation has an influence on
both structural and magnetic properties of MnO NPs, inducing
an increase of 7Ty and a reduction in the lattice size with a
concomitant increase of strain. The relation between structural
and magnetic changes can be observed in Fig. 10, where Ty
determined by A(T) ~ 0 is plotted as a function of a. at
140 K. Due to the broadening of the transition induced by
oxidation, Ty values thus determined are larger than those
determined from the temperature at which d(MT/H)/dT
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FIG. 10. (Color online) Ty as a function of the cell parameter
ap. determined at 140 K for the studied samples. Line represent
the expected dependence of Ty with a,. in bulk MnO where a,, is
changed by an external pressure p. This dependence was obtained
by comparing the Ty (p) dependence of Ref. 44 with the normalized
ape(p)/a,-(0) dependence obtained from the V(p) dependence of
Refs. 50,51, considering a,. o« V!/* and eliminating the pressure
parameter to obtain Ty(a,.) at room temperature. Data was then
scaled to the bulk a,. value at 140 K (Ref. 47).
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is maximum. In both L and S series, oxidation leads to a
decrease of a,, resulting in an increase of Ty, while the Ty of
S samples are shifted to lower values; i.e., for a given a,., the
corresponding T is lower in S samples, probably because of
size effects.

Moreover, the trend is similar to the effect of an external
pressure on bulk MnO experimentally observed for pressures
below ~1 GPa.’**! The a,. for bulk at room pressure and
140 K is lower than that of the present samples, which may
reflect a small systematic difference in our determination of
ap. compared to that of Ref. 47. The effects of an external
pressure in the structural and magnetic properties of bulk MnO
are quite complex, involving distinct order parameters and their
coupling with strains,>? and thus shell-induced pressure effects
on MnO NPs are also expected to be complex. However, the
changes in Ty are well understood, in first approach, in terms
of the magnetic Gruneisen parameter y,, = —90InTy/01na,,
with y,, = 68 in L and S series compared to y,, = 65 found in
bulk-pressure dependence results, being higher than that found
in CuO (y,, = 30).> The increase of Ty with the decrease of
a,c is also in accordance with theoretical calculations that
show the increase of the modulus of the exchange constants
with the decrease of ap..>*

IV. CONCLUSIONS

In summary, the effects of size and oxidation on the
properties of MnO/Mn3O4 NPs were independently addressed.
It was shown that surface oxidation is responsible for the often

PHYSICAL REVIEW B 87, 224429 (2013)

observed increase of Ty in MnO NPs, due to an effect of shell
strain, resulting in pressure effect on the MnO core. This effect
is balanced by the finite-size effect that tends to decrease Ty
with the decrease of size. The final Ty value results from the
balance between oxidation and size effects, this being the most
probable origin of the dispersion of values found in literature.
This highlights the possible control of the magnetic properties
of MnO by the control of size and oxidation.
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