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Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films
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A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-
Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler et al., Phys. Rev. B 79, 045205
(2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily
varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the
Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach,
we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by
means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage
measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can
be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find
that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in
the hole concentrations of the samples.
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I. INTRODUCTION

Due to their particular magnetic properties, including
magnetic anisotropy,1–3 anisotropic magnetoresistance4,5 and
magnetothermopower,6 in past years ferromagnetic semicon-
ductors have continued to be of great scientific interest in ex-
ploring new physics and conceptual spintronic devices.7–11 The
most prominent ferromagnetic semiconductor is (Ga,Mn)As,
where a small percentage of Mn atoms on Ga sites introduces
localized magnetic moments as well as itinerant holes which
mediate the ferromagnetic interaction of the Mn spins (p-d
exchange interaction).12 Both theoretical and experimental
studies have shown that the magnetic anisotropy, i.e., the
dependence of the free energy of the ferromagnet on the
magnetization orientation, depends on the elastic strain and
the hole concentration in the (Ga,Mn)As layer,12,13 opening
up several pathways to manipulate the magnetic anisotropy of
(Ga,Mn)As.14–16

A common spectroscopic method to probe the magnetic
anisotropy of ferromagnets, in particular, (Ga,Mn)As, is
angle-dependent ferromagnetic resonance (FMR),17–23 where
FMR spectra are taken as a function of the orientation
of the external magnetic field. If the magnetic properties
of the ferromagnet are homogeneous, a zero wave vector
(k = 0) mode of collectively, uniformally precessing magnetic
moments couples to the microwave magnetic field, e.g., in a
microwave cavity, allowing for detection of the magnetization
precession. The resonance field of this mode, referred to as the
uniform resonance magnetic field, depends on the employed
microwave frequency and the magnetic anisotropy parameters.
Thus, by recording FMR spectra at different orientations
of the external field with respect to the crystal axes, the
anisotropy parameters can be deduced from the experiment.
However, if the magnetic properties of a ferromagnetic layer
are nonhomogeneous or the spins at the surface and interface
of the layer are pinned, nonpropagating modes with k �= 0,
referred to as standing spin-wave resonances (SWRs), can be

excited by the cavity field and thus be detected in an FMR
experiment. On one hand, this can hamper the derivation of
anisotropy parameters; on the other hand, a detailed analysis
of these modes can elucidate the anisotropy profile of the layer
and the nature of spin pinning conditions. Furthermore, the
excitation of spin waves is of topical interest in combination
with spin pumping,24–27 i.e., the generation of pure spin
currents by a precessing magnetization.28–30 In this context, the
exact knowledge of the magnetization precession amplitude as
a function of the position coordinate within the ferromagnet is
of particular importance.24

Several publications report on SWR modes in (Ga,Mn)As
with a mode spacing deviating from what is expected according
to the Kittel model for magnetically homogeneous films with
pinned spins at the surface.31–36 These results have been
attributed to an out-of-plane anisotropy field linearly31,36 or
quadratically varying33–35 as a function of the depth into
the layer, as well as to specific spin pinning conditions at
the surface and at the interface to the substrate.35 While
most of these studies have focused on the spacings of the
resonance fields when modeling SWR measurements, in
Ref. 36 a more sophisticated approach, based on a normal
mode analysis,37,38 was employed to model resonance fields
as well as relative mode intensities for the external field ori-
ented along high-symmetry directions, assuming a circularly
precessing magnetization.

In this work, we present a more general modeling approach
for SWR, based on a finite-difference formulation of the
Landau-Lifshitz-Gilbert (LLG) equation. This approach holds
for any orientation of the external magnetic field and accounts
for elliptical magnetization precession (Sec. II). It allows for
a simulation of arbitrarily varying profiles of the magnetic
properties across the thickness of the film, including vatiations
of the magnetic anisotropy parameters, the exchange stiffness,
and the Gilbert damping parameter. As a result of the
simulation, we obtain the Polder susceptibility tensor as a
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function of the depth within the ferromagnet. Based on this
result, the absorbed power upon SWR and the magnetization
precession amplitude as a function of the depth can be
calculated for any orientation of the external magnetic field.

We apply our modeling approach to a set of four (Ga,Mn)As
samples epitaxially grown with different V/III flux ratios
(Sec. III), motivated by the observation that V/III flux ratios
of �3 lead to a gradient in the hole concentration p,39

which in turn is expected to cause nonhomogeneous mag-
netic anisotropy parameters.31,36 Electrochemical capacitance-
voltage (ECV) measurements revealed a nearly linear gradient
in p across the thickness of the layers investigated. To
show that our modeling approach is capable of simulating
SWR spectra for arbitrary magnetic field orientations, angle-
dependent SWR data were taken and compared with the
model using one set of magnetic parameters for each sample,
revealing gradients in the uniform resonance magnetic fields.
We discuss the influence of the gradient in p on the observed
uniform resonance field gradients as well as the possible
influences of strain and saturation magnetization gradients on
the observed out-of-plane anisotropy profile. It should be em-
phasized, however, that the objective of this work is to show the
usefulness of our modeling approach, while a detailed investi-
gation of the origin of the gradient in the out-of-plane magnetic
anisotropy profile and therefore a detailed understanding of the
particular materials physics of (Ga,Mn)As is beyond the scope
of this study. Finally, we summarize our results and discuss
further potential applications of this work (Sec. IV).

II. THEORETICAL CONSIDERATIONS

In this section, we provide the theoretical framework
necessary to describe the full angle dependence of the SWR
spectra presented in Sec. III. Referring to the coordinate system
depicted in Fig. 1, we start from the canonical expression
for the free enthalpy density (normalized to the saturation
magnetization M) for a tetragonally distorted (Ga,Mn)As
film:13,20,40,41

G = const − μ0 H · m + B001m
2
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FIG. 1. (Color online) Relation between the two coordinate sys-
tems employed. The (x,y,z) frame of reference is spanned by the cu-
bic crystal axes, while the (1,2,3) coordinate system is determined by
the equilibrium orientation of the magnetization (3 direction) and two
transverse directions, the 2 direction being parallel to the film plane;
the latter system is z and μ0 H dependent, as described in the text.

Here, μ0 H is a static external magnetic field, B001 is a
uniaxial out-of-plane anisotropy parameter, reflecting shape
and second-order crystalline anisotropy,13 and B4⊥, B4‖, and
B11̄0 are fourth-order crystalline and second-order uniaxial
in-plane anisotropy parameters, respectively;1 mx , my , and
mz denote the components of the normalized magnetization
vector m(z) = M(z)/M(z) along the cubic axes [100], [010],
and [001], respectively. We assume the magnetic properties of
the layer to be homogeneous laterally (within the xy plane) and
inhomogeneous vertically (along z); the anisotropy parameters
in Eq. (1) and the magnetization are consequently a function of
the spatial variable z. To obtain the anisotropy parameters from
Eq. (1) in units of energy density, it would therefore be required
to know the z dependence and the absolute value of M .

The minimum of Eq. (1) determines the equilibrium
orientation of the magnetization, given by the angles θ0 = θ0(z)
and φ0 = φ0(z) (cf. Fig. 1). To describe the magnetization
dynamics, we introduce a new frame of reference, (1,2,3),
shown in Fig. 1, in which the equilibrium orientation of the
magnetization m0 coincides with axis 3. For small pertur-
bations, the magnetization precesses around its equilibrium
with finite transverse components of the magnetization mi

(i = 1,2) as illustrated in the inset in Fig. 1. The transformation
between the two coordinate systems is given in Appendix A
by Eqs. (A1) and (A2). We write, for the (normalized)
magnetization,

m =
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⎜⎝

0

0

1

⎞
⎟⎠

︸ ︷︷ ︸
m0

+

⎛
⎜⎝

m1

m2

0

⎞
⎟⎠ + O

(
m2

1,m
2
2

)
. (2)

The evolution of the magnetization under the influence of
an effective magnetic field μ0 Heff is described by the LLG
equation42,43

∂t m = −γ m × μ0 Heff + αm × ∂t m, (3)

where γ is the gyromagnetic ratio and α a phenomenological
damping parameter. The effective magnetic field is given by36

μ0 Heff = −∇mG + Ds

M
∇2 M + μ0h(t), (4)

where ∇m = (∂m1,∂m2,∂m3) is the vector differential operator
with respect to the components of m, Ds = 2A/M is the
exchange stiffness with the exchange constant A, ∇2 is the
spatial differential operator ∇2 = ∂2

x + ∂2
y + ∂2

z , and h(t) =
h0e

−iωt is the externally applied microwave magnetic field
with angular frequency ω; h(t) is oriented perpendicularly to
μ0 H . Since the magnetic properties are independent of x and
y, Eq. (3) simplifies to

∂t m = −γ m × [−∇mG + Dsm′′ + μ0h(t)] + αm × ∂t m,

(5)

with m′′ = ∂2
z m, neglecting terms of the order of m2

i (for i =
1,2). By definition of the (1,2,3) coordinate system, the only
nonvanishing component of ∇mG in the equilibrium is along
the 3 direction. For small deviations of m from the equilibrium
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we find44

∇mG =

⎛
⎜⎝

G11m1 + G21m2

G12m1 + G22m2

G3

⎞
⎟⎠ , (6)

where we have introduced the abbreviations Gi = ∂mi
G|m=m0

and Gij = ∂mi
∂mj

G|m=m0 ; the explicit expressions for these
derivatives are given in Appendix A.

In the following, we calculate the transverse magnetization
components assuming a harmonic time dependence mi =
mi,0e

−iωt . The linearized LLG equation, considering only the
transverse components, reads(

H11 H12

H21 H22

)(
m1

m2

)
− Ds

(
m′′

1

m′′
2

)
= μ0

(
h1

h2

)
, (7)

where we have introduced the abbreviations H11 = G11 −
G3 − iαω/γ , H12 = H ∗

21 = G12 + iω/γ , and H22 = G22 −
G3 − iαω/γ . We have dropped all terms which are nonlinear
in mi and products of mi with the driving field.

Resonant uniform precession of the magnetization (m′′
i =

0) occurs at the so-called uniform resonance field μ0Huni(z),
which is found by solving the homogeneous (h = 0) equation

H11(z)H22(z) − H12(z)H21(z) = 0
(8)

⇔ (G11 − G3)(G22 − G3) − G2
12 =

(
ω

γ

)2

for μ0H , neglecting the Gilbert damping (α = 0). Equation
(8) can be used to derive anisotropy parameters from angle-
dependent FMR spectra. As extensively discussed by Baselgia
et al.,44 using Eq. (8) is equivalent to using the method of
Smit and Beljers, which employs second derivatives of the
free enthalpy with respect to the spherical coordinates.41,45,46

To illustrate the role of the uniform resonance field in
the context of SWRs, we consider the special case where
magnetization is aligned along the [001] crystal axis (θ0 = 0),
before we deal with the general case of arbitrary field orien-
tations. Neglecting the uniaxial in-plane anisotropy (B11̄0 =
0) since this anisotropy is typically weaker than all other
anisotropies,13,41 we find G3 = −μ0H + 2B001 + 4B4⊥ and
G11 = G22 = G12 = 0, resulting in the uniform resonance
field

μ0H
001
uni (z) = ω/γ + 2B001(z) + 4B4⊥(z). (9)

To find the eigenmodes of the system, we consider the
unperturbed and undamped case, i.e., α = 0 and h = 0 in
Eq. (7). With m2 = im1 = m̃ we find the spin-wave equation

Dsm̃
′′ + μ0H

001
uni (z)m̃ = μ0Hm̃, (10)

in agreement with Ref. 36.
The relation of the anisotropy parameters defined in Ref. 36

to the ones used here is given by B001 =K100
eff /M + B11̄0,

B11̄0 =−K011
u /M , 2B4⊥ =−K⊥

c1/M , and 2B4‖ =−K
‖
c1/M .

Equation (10) is mathematically equivalent to the one-
dimensional time-independent Schrödinger equation, where
the uniform resonance field corresponds to the potential, m̃ to
the wave function, μ0H to the energy, and Ds is proportional to
the inverse mass. To calculate the actual precession amplitude
of the magnetization, the coupling of the eigenmodes of

Eq. (10) to the driving field is relevant, which is proportional
to the net magnetic moment of the mode.36,38 In analogy to a
particle in a box, the geometry of the uniform resonance field
as well as the boundary conditions determines the resonance
fields and the spatial form of the precession amplitude. For the
remainder of this work, we assume the spins to exhibit natural
freedom at the boundaries of the film, i.e., ∂zm̃ = m̃′ = 0
at the interfaces,36,47 since these boundary conditions have
been shown to describe the out-of-plane SWR data of similar
samples well.36 To graphically illustrate the influence of the
uniform resonance field on the SWR modes, we consider in
Fig. 2 a ferromagnetic layer with a thickness of 50 nm with
constant magnetic properties across the layer [Fig. 2(a)] and
with a linearly varying uniform resonance field [Fig. 2(c)];
in both cases we assume Ds = 13 T nm−2, a value similar to
that obtained in previous studies.36 For these conditions, we
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FIG. 2. (Color online) Simulation to demonstrate the influence
of the uniform resonance field μ0H

001
uni on the SWR modes for

m0||[001], assuming circular precession. In (a), μ0H
001
uni is set to

be constant across the layer, while in (c) it varies linearly [dashed
(blue) lines], in analogy with a square potential and a triangular
potential, respectively. Dotted (black) lines are the resonance fields,
calculated assuming boundary conditions of natural freedom (see
text). Solid (red) lines show the eigenmodes of the system, i.e., the
precession amplitude m̃ of the magnetization; for each mode the
dotted line corresponds to m̃ = 0. As shown in (a), for a constant
uniform resonance field the first mode occurs at the uniform resonance
field and exhibits a constant precession amplitude across the layer,
i.e., an FMR mode. The second and third modes (higher order modes
are not shown) exhibit a nonuniform magnetization profile. In order
to couple to the driving field the modes need to have a finite net
magnetic moment. As shown in (a), the positive and negative areas of
the second and third modes are equal, thus these modes are not visible
in the SWR spectrum (b). This is in contrast to the case of the linearly
varying uniform resonance field (c), where the mode profile is given
by Airy functions, which have a nonzero net magnetic moment also
for the second and third modes, resulting in a finite SWR intensity of
these modes (d). Spectra in (b) and (d) were calculated by integrating
over the eigenmodes m̃ and convoluting the square of the result with
Lorentzians.
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numerically solve Eq. (10) by the finite-difference method
described in Appendix B 1, in order to obtain the resonance
fields (eigenvalues) and the z dependence of the transverse
magnetic moments (eigenfunctions). To which amount a mode
couples to the driving field is determined by the net magnetic
moment of the mode, which is found by integrating m̃(z) over
the thickness of the film. For the magnetically homogeneous
layer, the only mode that couples to the driving field is the
uniform precession mode at μ0H

001
uni , since modes of higher

order have a zero net magnetic moment [Fig. 2(a)], resulting in
one resonance at the uniform resonance field [cf. Fig. 2(b)]. For
the nonuniform layer, with μ0H

001
uni (z) linearly varying across

the film, the mode profile is given by Airy functions31,36,38 and
various nonuniform modes couple to the driving field, resulting
in several SWRs, with their amplitude proportional to the
square of the net magnetic moment36,38 of the corresponding
mode [cf. Figs. 2(c) and 2(d)].

We now turn to the general case of arbitrary field orienta-
tions. Due to the magnetic anisotropy profile, the magnetiza-
tion orientation is a priori unknown and a function of z and
μ0 H . Furthermore, the assumption of a circularly precessing
magnetization is not generally justified. To solve Eq. (7)
for arbitrary field orientations, we employ a finite-difference
method as outlined in Appendix B 2. By solving Eq. (7),

we obtain the z-dependent generalized Polder susceptibility
tensor χ̄ (μ0 H,z), which relates the transverse magnetization
components Mi(z) = M(z)mi(z) with the components of the
driving field by (

M1

M2

)
= χ̄ (μ0 H,z)

(
h1

h2

)
. (11)

In a microwave absorption measurement, the components Mi

which are out of phase with the driving field are detected.
The absorbed power density is related to the imaginary part of
χ̄ (μ0 H,z) and can be calculated by48

P = ωμ0

2z0
Im

{∫ 0

−z0

[
(h∗

1,h
∗
2)χ̄(μ0 H,z)

(
h1

h2

)]
dz

}
, (12)

where z0 is the thickness of the ferromagnetic layer. Note that
the position coordinate z is negative in the film (cf. Fig. 1).

To obtain an impression of how gradients in different
anisotropy parameters influence the SWR spectra, we plot in
Fig. 3 simulated SWR spectra together with the magnetization
precession cone as a function of the depth in the ferromagnetic
layer. We assume a constant saturation magnetization (its
value is not relevant for the outcome of the simulation), a
constant exchange stiffness Ds = 35 T nm2 unless otherwise
specified, α = 0.09, and B001 = 90 mT, B4|| = −50 mT,
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FIG. 3. (Color online) Atlas illustrating the influence of gradients in the anisotropy parameters on SWR spectra. In (a) all anisotropy
parameters are kept constant with the values given in the text, except B001 which is varied linearly. Correspondingly, in (b) and (c) B4⊥ and
B4|| were varied linearly, respectively. Panels (i) show the first derivative of simulations using Eq. (12) with respect to μ0H and panels (ii)-(iv)
show the precession cone Im(m∗

1m2 − m1m
∗
2) in a color plot together with the uniform resonance field μ0Huni(z) (dashed blue lines) at three

different external field orientations; the black dotted lines indicate the resonance field positions of the modes. Panel (a i) additionally shows
the influence of a linear gradient in the exchange stiffness parameter on the spin-wave spectra, see text for further details and discussion.
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B4⊥ = 15 mT. In Fig. 3(a), we assume B001 to vary across the
layer thickness according to B001(z) = B001 − b001 × z with
b001 = −0.8 mT/nm. Figure 3(a i) shows the simulated SWR
spectra calculated by taking the first derivative of Eq. (12) with
respect to μ0H for different angles ψ defined in the inset in
Fig. 3(c iv). We observe several SWR modes for μ0 H||[001],
with the number decreasing as μ0 H is tilted away from [001].
At ψ = 40◦ only one mode is visible, while for ψ = 0◦ we
again observe multiple SWR modes. This observation can be
understood by considering the uniform resonance fields as a
function of the depth for these orientations. In Figs. 3(a ii)–
(a iv), we show the uniform resonance field [dashed (blue)
line] for ψ = 0◦, ψ = 30◦, and ψ = 90◦, respectively, together
with the magnetization precession cone Im(m∗

1m2 − m1m
∗
2) in

a contour plot as a function of depth and μ0H . At ψ = 90◦,
the uniform resonance field varies strongly across the film,
which can be understood by considering Eq. (9). This results in
several spin-wave modes, with their resonance fields indicated
by dotted lines.

For other field orientations, the formula for the uniform
resonance field can also be derived but results in a longer,
more complex equation than Eq. (9). Important in this context
is that positive values of B001 lead to an increase (decrease) in
the resonance field for magnetization oriented perpendicular
(parallel) to the film plane, accounting for the reversed sign of
the slopes of μ0Huni in Figs. 3(a ii) and 3(a iv). Consequently,
in between these two extreme cases μ0Huni must be constant
across the layer for some field orientation, in our case for ψ =
30◦, resulting in a single SWR mode [cf. Figs. 3(a i) and 3(a iii).
In addition to the SWR simulations with constant Ds, we plot
in Fig. 3(a i) simulated SWR spectra with Ds varying linearly
across the film, with Ds = 35–65 T nm2 [dotted (blue) lines]
and Ds = 35–5 Tnm2 [dashed (green) lines]. A decreasing Ds

leads to a decreasing spacing in the modes, and vice versa, for
an increasing Ds, as can be seen, e.g., for μ0 H||[001].

In Fig. 3(b), we consider the case where all magnetic
parameters are constant with the values given above, except
B4⊥(z) = B4⊥ − b4⊥ × z with b4⊥ = −0.4 mT/nm. As is
evident from Eq. (9), this results in the same slope of μ0Huni

for ψ = 90◦ as in the case above where we varied B001

only [cf. Fig. 3(a iv) and 3(b iv)]. In contrast to the case
depicted in Fig. 3(a), however, here for ψ = 0◦ the uniform
resonance field is constant. This can be understood when
evaluating the parameters that enter into the calculation of
the uniform resonance field [Eq. (8)]. If m is in the film
plane, none of the parameters in Eqs. (A4)–(A6) depends
on B4⊥, resulting in a constant uniform resonance field for
ψ = 0◦. As m is tilted away from the film plane, B4⊥ enters
into some of the terms in Eqs. (A4)–(A6). As a consequence,
μ0Huni varies, first such that it increases [cf. Fig. 3(b iii)]
and, finally, such that it decreases as a function of the depth
[cf. Fig. 3(b iv)].

Finally, we discuss the case where all parameters are con-
stant except B4||(z) = B4|| − b4|| × z with b4|| = −0.4 mT/nm
[Fig. 3(c)]. Here, μ0Huni is constant for ψ = 90◦ as predicted
by Eq. (9). As m is tilted away from [001] a varying B4|| leads
to a varying uniform resonance field as shown in Figs. 3(c ii)
and 3(c iii). Here, a sign reversal of the slope as is the case in
Figs. 3(a) and 3(b) does not take place and multiple resonances
occur, starting at ψ = 60◦ [Fig. 3(c i)].

III. EXPERIMENTAL RESULTS AND DISCUSSION

(Ga,Mn)As samples with a nominal Mn concentration of
≈4% were grown on (001)-oriented GaAs substrates by low-
temperature molecular-beam epitaxy at a substrate temperature
of 220◦C using V/III flux ratios of 1.1, 1.3, 1.5, and 3.5, referred
to as samples A, B, C, and D, respectively. The layer thickness
was 210–280 nm as determined from the ECV measurements
(cf. Fig. 4). For samples with V/III flux ratios of �3 a gradient
in the hole concentration has been reported,39 hence this set
of samples was chosen to study the influence of a gradient in
p on the out-of-plane magnetic anisotropy. Further details on
the sample growth can be found in Refs. 39 and 41.

The hole concentration profiles of the as-grown (Ga,Mn)As
layers were determined by ECV profiling using a BioRad
PN4400 profiler with a 250-ml aqueous solution of 2.0 g
NaOH + 9.3 g EDTA as the electrolyte. For further details
on the ECV analysis see Ref. 39. The results of the ECV mea-
surements for the layers investigated are shown in Fig. 4(a).
Except for the sample with V/III = 3.5, they reveal a nearly
linearly varying hole concentration across the layer thickness
with different slopes and with the absolute value of the hole
concentration at the surface of the layer varying by about
20%. The profiles are reproducible within an uncertainty of
about 15%. Secondary ion mass spectroscopy measurements
of similar samples showed that the Mn content can vary by up
to 40% across the sample depth.39

To investigate the magnetic anisotropy profiles of the
samples, we performed cavity-based FMR measurements,
using a Bruker ESP300 spectrometer operating at a microwave
frequency of 9.265 GHz (X band) with a microwave power of
2 mW at T = 5 K; we used magnetic field modulation at a
frequency of 100 kHz and an amplitude of 3.2 mT. Since we

(a)

(b)

FIG. 4. (Color online) (a) The hole concentration in the different
(Ga,Mn)As samples is shown as a function of the depth within the
layers as determined by ECV profiling. (b) Uniform resonance fields
μ0H

001
uni (z) for the four samples obtained from simulations for the

out-of-plane orientation of the external field (ψ = 90◦) as a function
of the depth.
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(d)(c)

V/III=1.5 V/III=3.5

V/III=1.3V/III=1.1

FIG. 5. (Color online) The spin-wave resonance data [dotted (blue) lines] are shown together with simulations [solid (red) lines] using the
numerical procedure described in the text and in Appendix B2. Data were obtained as a function of the external magnetic field orientation
and magnitude for samples with a V/III flux ratio of (a) 1.1, (b) 1.3, (c) 1.5, and (d) 3.5. The rotation angle ψ is defined in the inset and the
parameters used for the simulations are summarized in Table I.

are mainly interested in the out-of-plane magnetic anisotropy,
we recorded spectra for external magnetic field orientations
within the crystal plane spanned by the [110] and [001] crystal
axes in 5◦ steps (cf. the inset in Fig. 5). For each orientation, the
field was ramped to 1 T in order to saturate the magnetization
and then swept from 650 to 250 mT; the spectra for the samples
investigated are shown in Fig. 5.

We start by discussing qualitative differences in the spectra.
Samples A and B exhibit several pronounced resonances for
the external field oriented along [001], which we attribute to
standing SWRs [Figs. 5(a) and 5(b)]. For these samples, the
[001] direction is the magnetically hardest axis since at this
orientation the resonance field of the fundamental spin-wave
mode is larger than at all other orientations. As the external
field is rotated into the film plane, the resonance position of this
mode gradually shifts to lower field values as expected for a
pronounced out-of-plane hard axis. In contrast, samples C and
D exhibit the largest resonance fields for a field orientation
of 50◦–60◦ [Figs. 5(c) and 5(d)] pointing to an interplay
of second- and fourth-order out-of-plane anisotropy with
different signs of the corresponding anisotropy parameters.
These samples exhibit SWRs as well, however, they are less
pronounced than for samples A and B.

To quantitatively model the spin-wave spectra we numeri-
cally solve for each magnetic field orientation the spin-wave
equation, (7), by the finite-difference method as outlined in
Appendix B 2. Although this method allows for the modeling
of the SWR for arbitrary profiles of the anisotropy parameters,
the exchange stiffness, the Gilbert damping parameter, and
the saturation magnetization, we assume the parameters to
vary linearly as a function of z. This approach is motivated
by the linear gradient in the hole concentration, which in
first approximation is assumed to cause a linear gradient in
the anisotropy parameters, resulting in the SWRs observed
in the samples.31,36 In Table I, we have summarized the
parameters used in the simulation for the different samples.
Parameters in capital letters denote the value at the surface
of the sample, while those in lowercase letters denote the
slope of this parameter; e.g., the z dependence of the second-
order, uniaxial out-of-plane anisotropy parameter is given by
B001(z) = B001 − b001 × z. We estimate an error margin of
about ±20% and ±5 mT for the slopes and absolute values
of the anisotropy parameters, respectively. The reason for this
uncertainty is that both, a gradient in Ds and a gradient in the
anisotropy parameters can affect the SWR mode spacing, as
we discuss below. The layer thickness used for the simulation
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TABLE I. Simulation parameters and their z dependence of the samples under study as obtained by fitting the simulations to the SWR
measurements. For anisotropy parameters capital letters denote the value at the surface of the film and lowercase letters the slope as described
in the text. For sample A, the first value of b001 was used for the first 100 nm and the second one for the remaining layer. In addition to the
anisotropy parameters, the saturation magnetization is also assumed to vary linearly across the layer, while its absolute value is unknown and
not important for the SWR simulations.

B001 b001 B4‖ b4‖ B4⊥ b4⊥ Ds
∂M(z)
∂zM(0)

Sample V/III (mT) ( mT
nm ) (mT) ( mT

nm ) (mT) ( mT
nm ) (T nm2) α ( 1

μm )

A 1.1 90 −0.1, −0.3 −50 0.05 25 −0.3 35 0.09 −3
B 1.3 130 −0.5 −50 0 0 0 20 0.06 −4
C 1.5 75 −0.4 −55 −0.04 −15 0 40 0.11 −4
D 3.5 91 −0.3 −55 −0.04 −15 0 20 0.09 −3

can be inferred from Fig. 4(a) and was determined from the
ECV data under the assumption that at the position where the
hole concentration rapidly decreases, the magnetic properties
of the layer abruptly undergo a transition from ferromagnetic
to paramagnetic. For simulations, we divided each film into
n = 100 layers, with constant magnetic properties within each
layer. For the gyromagnetic ratio we used γ = gμB/h̄, with
g = 2.21

As a result of the simulation we obtain the Polder sus-
ceptibility tensor χ̄(μ0 H,z) and the transverse magnetization
components as a function of z and μ0 H . Additionally, we
obtain the z dependence of the uniform resonance field
by solving Eq. (8) for each field orientation. In an SWR
absorption experiment with magnetic field modulation, the
obtained signal is proportional to the first derivative of the
absorbed microwave power with respect to the magnetic field.
Thus, we calculate the absorbed power using the simulated

susceptibility and Eq. (12) and numerically differentiate the
result in order to compare the simulated SWR spectra with
the experiment. Additionally, we use a global scaling factor,
accounting, e.g., for the modulation amplitude, which is the
same for all field orientations, and we multiply all the simulated
data with this factor. In Fig. 5, we plot the experimental data
together with the simulations using the parameters given in
Table I, demonstrating that a reasonable agreement between
theory and experiment can be found with one set of simulation
parameters for all magnetic field orientations for each sample.

We now discuss the angle dependence of the SWR spectrum
of sample A shown in Fig. 5(a) based on the uniform resonance
field and the resulting magnetization mode profile obtained
from the simulation. To this end, we plot in Figs. 6(a)–5(c)
the magnetization precession amplitude Im(m∗

1m2 − m1m
∗
2)

for selected external field orientations as a function of
the depth and external magnetic field in a contour plot,

0

)c()b(
(a)

Im(m1m2-m1m2) (10-5)* *
01.2

Im(m1m2-m1m2) (10-5)* *
00.3

Im(m1m2-m1m2) (10-5)* *
00.53

)f()e()d(

001

ar
b.

(a)

FIG. 6. (Color online) Simulated magnetization mode profile and uniform resonance field of sample A. The contour plots show the
magnetization precession amplitude Im(m∗

1m2 − m1m
∗
2) as a function of the position within the film and the external magnetic field for the

external field aligned (a) along [001], (b) at an angle of 50◦ with respect to [110] (cf. the inset in Fig. 5), and (c) along [110]. Dashed (blue)
lines in (a–c) show the uniform resonance field, obtained by numerically solving Eq. (8) for each given field orientation. Dotted (black) lines
in (a) indicate the resonance magnetic fields. (d–f) A magnification of the data [dotted (blue) lines] and simulation [solid (red) lines] from
Fig. 5(a) shown using the same scale for all orientations. In (e), a simulation with a different set of parameters is shown for comparison (black,
dashed line), see text.
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together with the corresponding uniform resonance field. In
Figs. 6(d)–5(f), we show for each external field orientation a
magnification of the corresponding SWR spectrum together
with the simulation. Note that in contrast to the normal-mode
approach (Appendix B 1) used to calculate the modes in Fig. 2,
where the coupling of each mode to the cavity field has to be
found by integration, the approach elaborated in Appendix B 2,
directly yields the transverse magnetization components,
already accounting for the coupling efficiency and the line
width. Further, the approach presented in Appendix B 2, is
also valid when the difference in the resonance fields of two
modes is comparable to or smaller than their line width, in
contrast to the normal-mode approach.38

If the external field is parallel to the surface normal (ψ =
90◦), the uniform resonance field varies by about 350 mT
across the film thickness [cf. the dashed line in Fig. 6(a)],
resulting in several well-resolved standing spin-wave modes.
The SWR fields are plotted as dotted lines in Fig. 6(a); since
the spacing of the resonance fields is larger than the SWR line
width, the modes are clearly resolved [cf. Figs. 6(a) and 5(d)].
In the simulation two regions with different b001 values were
used in order to reproduce the spacing of the higher order
spin-wave modes found in the experiment. Using the same
slope as in the first 100 nm for the entire layer would lead
to a smaller spacing between the third-order and the higher
order modes. Instead of defining two regions with different
slopes b001, a gradient in the exchange stiffness with a positive
slope could also be used to model the experimentally found
mode spacing as discussed in the context of Fig. 3. Since the
exchange interaction in (Ga,Mn)As is mediated by holes12

and p decreases across the layer, we refrain from modeling
our results with a positive gradient in Ds. Further, the results
in Ref. 36 rather point to a negative gradient in Ds in a similar
sample. However, a decreasing Mn concentration as a function
of the depth could lead to an increase in Ds.34

Finally, we note that, since B11̄0 = 0 in the simulations,
the magnetization precesses circularly for ψ = 90◦ and thus
Im(m∗

1m2 − m1m
∗
2) = 2 sin2 τ ,49 with the precession cone

angle τ . For all other orientations, m precesses elliptically,
which is accounted for in our simulations. In the simulations
of the precession amplitudes, we have assumed an externally
applied microwave magnetic field with μ0h = 0.1 mT.

At an external field orientation of ψ = 50◦ the uniform
resonance field is nearly constant across the layer, and
consequently only one SWR mode is observed with an
almost-uniform magnetization precession across the layer
[cf. Fig. 6(b)]. The precession amplitude is a measure for
the SWR intensity. While the fundamental mode at ψ = 90◦
exhibits a larger precession cone at the interface, it rapidly
decays as a function of the depth, in contrast to the nearly
uniform precession amplitude for ψ = 50◦. Since the entire
layer contributes to the power absorption, the SWR mode
at ψ = 50◦ is more intense than the fundamental mode
for ψ = 90◦, which is indeed observed in the experiment
[cf. Figs. 6(d) and 5(e)].

For the magnetic field within the film plane [ψ = 0◦;
cf. Fig. 6(c)], the uniform resonance field again varies linearly
across the film, however, in a less pronounced way than
for the out-of-plane field orientation and with an opposite
sign of the slope. The sign reversal of the slope can be

understood in terms of the uniaxial out-of-plane anisotropy
parameter B001: positive values of these parameters lead to an
increase (decrease) in the resonance field for the magnetization
oriented perpendicular (parallel) to the film plane, accounting
for the slopes of the uniform resonance fields in Fig. 6.
Since the gradient in the uniform resonance field is less
pronounced for ψ = 0◦ than for ψ = 90◦, the spin-wave
modes are not resolved for ψ = 0◦, since their spacing is
smaller than the SWR line width, leading to one rather broad
line [cf. Figs. 6(c) and 5(f)]. A steeper gradient in B4||, in
combination with a different Gilbert damping (or with an
additional inhomogeneous damping parameter) and amplitude
scaling factor, could improve the agreement of simulation and
experiment in the in-plane configuration, as discussed later. A
detailed study of the in-plane anisotropy profile is, however,
beyond the scope of this work. Given that the presented
simulations were obtained with one set of parameters, the
agreement of theory and experiment is reasonably good also
for the in-plane configuration, since salient features of the
SWR line shape are reproduced in the simulation.

Having discussed the angle dependence of the SWR spectra,
we turn to the z dependence of the out-of-plane anisotropy of
sample A. Our simulations reveal that it is governed by the
z dependence of both B001(z) and B4⊥(z). Assuming only a
gradient in B001 results in a reasonable agreement of theory and
experiment for the external field oriented along [001] and [110]
but fails to reproduce the spectra observed for the intermediate
field orientations, e.g., ψ = 50◦. This is illustrated by the
dashed (black) line in Fig. 6(e), which represents simulations
with a constant B4⊥(z) for ψ = 50◦. As can be seen, this
simulation produces several SWRs, whereas in the experiment
only one resonance is present, which is better reproduced by
the simulation with both B001(z) and B4⊥(z) varying across the
layer.

We now discuss the anisotropy parameters of all samples.
In contrast to sample A, the out-of-plane anisotropy profile
of all other samples appears to be governed by a gradient in
B001(z). As already discussed qualitatively, the hard axis of
the samples is determined by an interplay of B001 and B4⊥.
For samples A and B B4⊥ is positive and 0, leading to an
out-of-plane hard axis. In contrast, samples C and D exhibit
a negative B4⊥, leading to a hard axis between out-of-plane
and in-plane. The B4|| parameter is negative and of similar
magnitude for all samples.

Since the out-of-plane anisotropy profile of sample A
is governed by B001(z) and B4⊥(z), a comparison of the
out-of-plane anisotropy profile among all samples based on
anisotropy parameters is difficult. We therefore compare the
uniform resonance fields, where both anisotropy parameters
enter. As is evident from Fig. 6, the strongest influence of
the magnetic inhomogeneity of the layers on the uniform
resonance fields is observed for the external field along [001].
To compare the hole concentration profile in Fig. 4(a) with
the anisotropy profile, we therefore plot in Fig. 4(b) the z

dependence of the uniform resonance field μ0 H001
uni for this

field orientation. The figure demonstrates that the gradient in
μ0 H001

uni is correlated with the gradient in p. For the sample
with the strongest gradient in p the gradient in μ0 H001

uni is
also most distinct, while the samples with a weaker gradient
in p exhibit a less pronounced gradient in μ0 H001

uni . However,
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for sample D, exhibiting a nearly constant p, we still observe
standing SWRs for μ0 H||[001] [Fig. 5(d)], reflected in a slight
gradient of μ0 H001

uni . This observation suggests that addition-
ally other mechanisms lead to a variation of the anisotropy
profile. One possibility would be a gradient in the elastic strain
of the layer, due to a nonhomogeneous incorporation of Mn
atoms in the lattice. However, x-ray diffraction measurements
of this sample, in combination with a numerical simulation
based on dynamic scattering theory, reveal a variation of the
vertical strain �εzz as small as 3 × 10−5 across the layer.
According to the measurements in Ref. 13, such a variation
in strain would lead to a variation of the B001 parameter by a
few milliteslas only, insufficient to account for the variation
of μ0 Huni by almost 100 mT across the layer. A more
likely explanation seems to be a variation of the saturation
magnetization, which should also influence the anisotropy
parameters. In the simulation, a nonhomogeneous saturation
was assumed, potentially explaining also the observed gradient
in the anisotropy parameters and therefore in the uniform
resonance field.

In contrast to the out-of-plane anisotropy parameters, B4||
was found to depend only weakly on z, for all samples except
sample B, where it was constant. Additionally, B11̄0, typically
of the order of a few milliteslas,13 might have an influence
and interplay with B4|| in determining the in-plane anisotropy.
Here, however, we focus on the out-of-plane anisotropy and
therefore neglect B11̄0 in our simulations. An in-plane rotation
of the external field would be required for a more accurate mea-
surement of B4|| and B11̄0 but is outside the scope of this work.

According to the valence-band model in Ref. 12, an
oscillatory behavior of the magnetic anisotropy parameters
is expected as a function of p. Therefore, depending on the
absolute value of p, different values for, e.g., ∂B001/∂p are
expected. In particular, there are regions where a anisotropy
parameter might be nearly independent of p and other regions
with a very steep p dependence. Since the absolute value of
p is unknown, a quantitative discussion of the p dependence
of the obtained anisotropy parameters based on the model in
Ref. 12 is not possible. In addition to p, the p-d exchange
integral,12 which may also vary as a function of the depth
in a nonhomogeneous film, also influences the anisotropy
parameters,12 further complicating a quantitative analysis.

For all samples, we used a constant exchange stiffness
Ds in our modeling. As alluded to above, there is some
ambiguity in this assumption, since the exchange stiffness
and the gradient in the anisotropy both influence the mode
spacing. For simplicity, however, we intended to keep as
many simulation parameters as possible constant. The absolute
values obtained for the exchange stiffness agree within a factor
of 2 with the ones obtained in previous experiments36,50 but
are a factor of 2–4 larger than theoretically predicted.51 For
the reasons discussed above, there is a large uncertainty also
in the derivation of the absolute value of Ds from standing
spin-wave modes in layers with a gradient in the magnetic
anisotropy constants.

In order to use one parameter set for all field orientations,
the Gilbert damping parameter was assumed to be isotropic
in the simulations. The modeling of the SWR data could
be further improved by assuming a nonisotropic damping,
its value being larger for μ0 H||[110] than for μ0 H||[001]

(cf. Fig. 5). This, however, only improves the result when
assuming a field-orientation-dependent scaling factor for the
amplitude, which could be motivated, e.g., by the assumption
that the microwave magnetic field present at the sample
position depends on the sample orientation within the cavity.
The absolute values of α determined here are comparable
with the ones obtained in ultrafast optical experiments52 but
are larger than the typical α = 0.01 . . . 0.03 values found by
frequency-dependent FMR studies.53,54 As already alluded to,
inhomogeneous line-broadening mechanisms may play a dom-
inant role,54 in particular, for as-grown samples.55 We therefore
assume that the values for α obtained in this study overestimate
the actual intrinsic Gilbert damping. A frequency-dependent
SWR study would be required to determine the intrinsic α.
Such a study could possibly also reveal a p-dependent α as
theoretically predicted.55 In our study, assuming a z-dependent
α did not improve the agreement between simulation and
experiment, corroborating the conjecture that inhomogeneous
broadening mechanisms dominate the line width and therefore
obscure a possible z dependence of α.

IV. SUMMARY

We have presented a finite-difference-type modeling ap-
proach for standing SWRs based on a numerical solution of the
LLG equation. With this generic formalism, SWR spectra can
be simulated accounting for elliptical magnetization preces-
sion, for arbitrary orientations of the external magnetic field,
and for arbitrary profiles of all magnetic properties, including
anisotropy parameters, exchange stiffness, Gilbert damping,
and saturation magnetization. The approach is applicable not
only to (Ga,Mn)As but to all ferromagnets.

Four (Ga,Mn)As samples, epitaxially grown with V/III flux
ratios of 1.1, 1.3, 1.5, and 3.5, were investigated by ECV
and SWR spectroscopy, revealing a correlation of a linear
gradient in the hole concentration with the occurrence of
standing SWRs, in particular, for the external field oriented
out of plane. Using the presented modeling approach, the
SWR spectra could be reproduced in a simulation with one
parameter set for all external field orientations. The simulation
results demonstrate that the profile of the out-of-plane uniform
resonance field is correlated with the hole concentration
profile. However, our measurements and simulations show that
a nonuniform hole concentration profile is not the only cause
that leads to the observed nonuniform magnetic anisotropy;
possibly, a variation in the saturation magnetization also
influences the anisotropy parameters. To gain a quantitative
understanding of this issue, more samples with known hole
concentrations would be required, where both the absolute
values and the profiles of p are varied. Such a study was,
however, outside the scope of this work.

Besides the modeling of SWR intensities and line widths,
the presented formalism yields the magnetization precession
amplitude as a function of the position within the ferromagnet.
It can therefore be used to investigate spin-pumping inten-
sities in (Ga,Mn)As/Pt bilayers.27 The spin-pumping signal,
detected as a voltage across the Pt layer, should be proportional
to the magnetization precession cone in the vicinity of the
(Ga,Mn)As/Pt interface. By measuring the spin-pumping
signal as well as the SWR intensities of (Ga,Mn)As/Pt and
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by using our modeling approach, it should be possible to
investigate to what extent a magnetization mode which is
localized at a certain position within the (Ga,Mn)As layer
contributes to the spin-pumping signal.
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APPENDIX A: COORDINATE TRANSFORMATION
AND FREE ENTHALPY DERIVATIVES

The transformation between the crystallographic coordi-
nate system (x,y,z) and the equilibrium system (1,2,3) is given
by

⎛
⎜⎝

mx

my

mz

⎞
⎟⎠ = T

⎛
⎜⎝

m1

m2

m3

⎞
⎟⎠ , (A1)

with

T =

⎛
⎜⎝

cos θ0 cos φ0 − sin φ0 sin θ0 cos φ0

cos θ0 sin φ0 cos φ0 sin θ0 sin φ0

− sin θ0 0 cos θ0

⎞
⎟⎠ . (A2)

The derivatives of the free enthalpy density, Eq. (6), with
respect to the magnetization components are

G3 = ∂m3G|m=m0 = −μ0H3 + 2B001 cos2 θ0

+B11̄0(sin θ0 cos φ0 − sin θ0 sin φ0)2

+ 4B4⊥ cos4 θ0 + 4B4‖ sin4 θ0(cos4 φ0 + sin4 φ0),

(A3)

G21 = G12 = ∂m1∂m2G|m=m0

= cos θ0(1 − 2 cos2 φ0)[B11̄0

+ 12B4‖ sin2 θ0 cos φ0 sin φ0], (A4)

G11 = ∂m1∂m1G|m=m0 = 2B001 sin2 θ0

+ 12 cos2 θ0 sin2 θ0[B4⊥ + B4‖(cos4 φ0 + sin4 φ0)]

+B11̄0 cos2 θ0(cos φ0 − sin φ0)2, (A5)

G22 = ∂m2∂m2G|m=m0 = 2B11̄0(sin φ0 + cos φ0)2

+ 24B4‖ sin2 θ0 cos2 φ0 sin2 φ0. (A6)

APPENDIX B: FINITE-DIFFERENCE METHOD

In this Appendix, we describe how the spin-wave equation
can be numerically solved by the finite-difference method.
We start with the simple case of a circularly precessing
magnetization, neglecting Gilbert damping and the driving
field (Sec. B 1). Then we turn to the general case, where the
magnetization precesses elliptically and the Gilbert damping
as well as the driving field is included (Sec. B 2).

1. The one-dimensional, homogeneous, undamped case

Here, we describe how the resonance fields and the spin-
wave modes can be found, assuming a circularly precessing
magnetization m2 = im1 = m̃, a constant exchange stiffness,
and a z-independent equilibrium magnetization. This case has
been considered in Ref. 36 using a semianalytical approach
to solve the spin-wave equation, Eq. (10). The approach
considered here is slightly more general, as it is straightforward
to determine resonance fields and eigenmodes of the system
for an arbitrary z dependence of the uniform resonance
field. To solve Eq. (10), we divide the ferromagnetic film
into a finite number n of layers with equal thickness l and
constant magnetic properties within each of these layers. The
z dependence of m̃ and μ0H

001
uni is thus given by an index

j = 1 . . . n. Within each of these layers the uniform resonance
field and m̃(z) are thus constant and given by the values
μ0H

001,j

uni =: Kj and m̃j , respectively. The second derivative
of m̃ is approximated by

m̃′′(z = j · l) ≈ m̃j−1 − 2m̃j + m̃j+1

l2
. (B1)

Consequently, Eq. (10) is converted to the homogeneous
equation system⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...

. . . Kj−1+2d −d 0 . . .

. . . −d Kj +2d −d . . .

. . . 0 −d Kj+1+2d . . .

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

m̃j−1

m̃j

m̃j+1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= μ0H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

m̃j−1

m̃j

m̃j+1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

with the abbreviation d = −Ds/l2. The boundary condition
of natural freedom36 (von Neumann boundary condition)
reads m̃0 = m̃1 and m̃n−1 = m̃n and can be incorporated into
Eq. (B2). Since the matrix on the left-hand side of Eq. (B2) is
sparse, it can be efficiently diagonalized numerically, yielding
the resonance fields (eigenvalues) and the corresponding
modes (eigenvectors). After diagonalizing the matrix, the
relevant resonance fields are found by sorting the eigenvalues
and considering only the modes with positive resonance fields,
corresponding to the bound states in the particle-in-a-box
analogon. The SWR amplitude of each mode is proportional to
its net magnetic moment; thus, the amplitudes can be found by
integrating the (normalized) eigenmodes. The mode profile,
the resonance fields, and the SWR intensities are illustrated in
Fig. 2 for a constant and a linearly varying uniform resonance
field. The finite line width of the SWR modes can be accounted
for by assuming a Lorentzian line shape for each mode with a
certain line width and with the resonance fields and intensities
calculated as described above.36 Note that this approach to
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derive resonance fields and intensities is only valid if the
mode separation is large compared with the line width of the
modes; this restriction does not apply to the model presented
in Appendix B 2.

2. The general case

To solve Eq. (7) for arbitrary μ0 H and arbitrarily varying
magnetic properties, we again divide the ferromagnetic film
into a finite number n of layers with equal thickness l and
constant magnetic properties within each of these layers. In
contrast to the case in Appendix B 1, where only the uniform
resonance field was varied across the layer, here potentially all

magnetic properties entering Eq. (7) can be assumed to be z

dependent. Additionally, the components of the driving field
μ0hi (i = 1,2) can also vary as a function of z, since the (1,2,3)
frame of reference is z dependent and thus the projections of
the driving field have to be calculated for each layer. The z

dependence of the components mi (i = 1,2), of the parameters
H11, H12, H21, and H22 (defined in Sec. II) and the exchange
stiffness is thus given by the index j = 0 . . . n; the second
derivative of each of the components mi is approximated as in
Eq. (B1).

The linearized LLG equation, Eq. (7), is thus converted into
the inhomogeneous equation system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
...

. . . H
j−1
11 −2dj−1 H

j−1
12 dj−1 0 0 0 . . .

. . . H
j−1
21 H

j−1
22 −2dj−1 0 dj−1 0 0 . . .

. . . dj 0 H
j

11−2dj H
j

12 dj 0 . . .

. . . 0 dj H
j

21 H
j

22−2dj 0 dj . . .

. . . 0 0 dj+1 0 H
j+1
11 −2dj+1 H

j+1
12 . . .

. . . 0 0 0 dj+1 H
j+1
21 H

j+1
22 −2dj+1 . . .

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

m
j−1
1

m
j−1
2

m
j

1

m
j

2

m
j+1
1

m
j+1
2

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= μ0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

h
j−1
1

h
j−1
2

h
j

1

h
j

2

h
j+1
1

h
j+1
2

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

with the abbreviation dj = −D
j
s /l2. At the boundaries of the

magnetic film we again assume the spins to exhibit natural
freedom, m0

i = m1
i and mn

i = mn+1
i .

To simulate a spin-wave spectrum for a given orientation
of the external field and a given profile of the magnetic
properties, we numerically sweep the magnetic field and

calculate the equilibrium magnetization orientation for all
indices j = 0 . . . n at a given external field. The inverse
of the matrix in Eq. (B3), multiplied by μ0M(z), is the
generalized Polder susceptibility tensor χ̄ (μ0 H,z), which
relates the transverse magnetization with the driving field
[cf. Eq. (11)].
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