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NMR investigation of the low-temperature dynamics of solid 4He doped with 3He impurities
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The lattice dynamics of solid 4He has been explored using pulsed NMR methods to study the motion of
3He impurities in the temperature range (0.05–0.20 K) where experiments have revealed anomalies attributed to
superflow or unexpected viscoelastic properties of the solid 4He lattice. We report the results of measurements
of the nuclear spin-lattice and spin-spin relaxation times that measure the fluctuation spectrum at high and
low frequencies, respectively, of the 3He motion that results from quantum tunneling in the 4He matrix. The
measurements were made for 3He concentrations 16 < x3 < 2000 ppm. For 3He concentrations x3 = 16 and
24 ppm, large changes are observed for both the spin-lattice relaxation time T1 and the spin-spin relaxation time
T2 at temperatures close to those for which the anomalies are observed in measurements of torsional oscillator
responses and the shear modulus. These changes in the NMR relaxation rates were not observed for higher 3He
concentrations.
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I. INTRODUCTION

The observation of distinctive anomalies in the frequency
and dissipation of torsional oscillators (TOs) containing
solid 4He, often referred to as nonclassical rotational inertia
fractions (NCRIFs), by Kim and Chan1,2 has stimulated
considerable activity. This is because the NCRIFs could be
the signature of a supersolid state as outlined by Leggett3

and predicted by Andreev and Lifshitz several years ago.4

A large number of independent experiments5–9 have shown
that the NCRIF magnitude and temperature dependence are
strongly dependent on defects such as 3He impurities10,11 and
the quality of the crystals, and can be made very small by very
careful annealing.2 The observation of NCRIFs was preceded
by reports of a striking anomaly in the measurement of sound
attenuation in solid 4He by Goodkind and colleagues who
had compared their observations to that predicted for a true
phase transition of a fraction of the solid to a supersolid
state.12,13 Additional support for the interpretation of the
NCRIF anomalies in terms of a true thermodynamic phase
change to a new state of matter was provided by the observation
of a small but distinct contribution to the heat capacity of the
solid at the same temperatures as those reported for the onset
of the NCRIFs.14

A straightforward interpretation in terms of a transition
of part of the solid to a coherent superfluid component
has, however, been hampered by a number of puzzling
observations. These include the lack of evidence for a critical
exponent, an apparent very low critical velocity,6 the absence
of experimental evidence for fourth sound modes,15,16 and the
null results of attempts to observe pressure-induced superflow
though small restrictions,17 although mass transport has been
observed with the use of porous vycor glass conduits used to
allow mass flow to the solid via superfluid in the pores.18,19 In
addition, measurements of the shear modulus of solid 4He by
Beamish and colleagues20,21 have revealed a prominent fre-
quency dependent change in the elastic shear modulus with an
enhanced dissipation peak having a temperature dependence
comparable to that observed for the NCRIF. These results
suggest that the torsional oscillator anomalies may result from

unusual elastic22 or viscoelastic23 properties of the solid 4He
rather than superfluidity. Other interpretations attribute the
anomalies to macroscopic superflow mediated by defects or
dislocation networks24 or in terms of a vortex model25 for
which the high temperature tail of the NCRIF is associated
with the finite response time of vortices to the oscillating flow
fields in the TOs. Another set of researchers suggest that the
superfluidity arises from nonequilibrium behavior leading
to superflow along defects or the formation of a quantum
“superglass” around extended defects26 with ultraslow
relaxation dynamics reminiscent of glass dynamics.27

The need for any interpretation to account for both sample
dependent coherent decoupled flow and changes in the lattice
elastic properties was confirmed strikingly by Kim et al.28 who
observed that the TO response could be changed significantly
by rotating the cryostat, with the resonant frequency changing
with speed, but that at the same time, the TO mode that showed
significant drive dependence was not susceptible to changes in
the elastic modulus of the lattice.28

Further recent studies have confirmed that the dynamics of
the 4He lattice plays an important role in the low temperature
bulk properties of solid 4He, and rather than observing a
phase transition to a supersolid state, one may be observing a
complex thermally excited dynamical response.

These studies include the analyses of Maris29 who showed
that in almost all TO cell designs there was a significant
previously neglected contribution to the oscillator frequency
response from helium elasticity that could mimic the behavior
expected for a supersolid component. In addition, Beamish
et al.30 showed that the frequency shift in many TOs could
attributed to a “giant plasticity” of the helium in the hollow
torsion rod of the device. They also found that the dislocation
lengths were much larger and the dislocation networks much
less connected than those needed to explain the TO effects in
terms of superfluidity in a dislocation network. Finally, a new
experiment by Chan et al.31 using a TO design completely free
from any bulk solid shear modulus stiffening effect showed no
measurable anomalous TO effect attributable to a nonclassical
rotational inertia.
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It is clear from all the studies, particularly the most recent,
that it is important to study and understand the microscopic dy-
namics of solid 4He using different techniques and especially
noninvasive techniques since all previous studies have involved
the application of macroscopic external mechanical stimuli.
Measurements of the quantum tunneling of the 3He atoms
in the solid provide a unique means of probing microscopic
lattice properties because the 3He-4He exchange rates depend
exponentially on the lattice separation and on the magnitude
and dynamics of the crystal field deformation that surround
impurities.32,33 The characteristic NMR relaxation rates are de-
termined by the modulation of the nuclear dipole-dipole inter-
actions by the tunneling motion and the scattering of the
diffusing atoms by the crystal deformation field around the 3He
impurities and other lattice defects.33,34 The NMR relaxation
rates are therefore very sensitive to the local elastic properties
of solid 4He and to any changes in the crystal ground state that
would modify the tunneling rate. We have therefore carried out
systematic measurements of the nuclear spin relaxation rates of
3He impurities in solid 4He for a wide range of concentrations
with an emphasis on low concentrations x3 < 30 ppm for
which one expects well characterized NCRIFs from previous
studies and yet sufficient to obtain good signal to noise ratios
for NMR measurements. Also for these concentrations, the
amount of the 3He localized on dislocations estimated from the
expected density of dislocations for well-annealed samples35

is expected to be a small fraction of the total, less than 1 ppm,
so that one can be sure that the experiments probe the motion
of the 3He atoms through bulk solid 4He. Preliminary results
of these NMR studies have been reported elsewhere.36,37

II. EXPERIMENTAL ARRANGEMENT

The NMR cell was designed as a nested cross-coil arrange-
ment with receiving and transmitting coils orthogonal to each
other and the applied magnetic field (see Fig. 1). The inner coil
is a cylindrical receiving coil wound around a polycarbonate
sample cell which contained an in situ Straty-Adams pressure
gauge. The outer coil is a thermally isolated orthogonal
transmitting coil for the rf pulses that slide onto the receiving
coil. This nested arrangement38 provides (i) minimization of
the unwanted pick-up of the transmitter pulse by the receiving
coil, and (ii) adequate thermal isolation from the heat generated
in the transmitting coil that is heat sunk to the still of the
dilution refrigerator. Thermalization of the sample was assured
by thermal contact with a silver post extending from the
dilution refrigerator and the temperature was measured using
a Cernox resistance thermometer calibrated against a 3He
melting curve thermometer. The sample gas was admitted via a
capillary sealed with epoxy (Stycast 2850 GT) at the opposite
end of the cell. The sample cell could withstand pressures up
to 100 bars and remain superfluid leak-tight.

Samples were grown by the blocked capillary method.
Gas samples of predetermined 3He fraction were prepared
at room temperature by mixing pure (99.99%) 3He and 4He,
compressing the gas mixture to about 50 bars, and filling the
sample cell with the gas mixture to a pressure of 46 bars, after
which the cell was cooled to 1.2 K. When the temperature
is cooled to the melting curve, the helium pressure follows
the melting curve while the mixture solidifies, after which the
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FIG. 1. (Color online) Schematic representation of the low
temperature NMR cell. The sample in this NMR cell is cylindrical,
5.0 mm diameter and 7.5 mm long. The preamplifier and tuning
capacitor are located on a 1 K cold plate located a distance of 1.2 m
from the sample cell. The rf transmitting and receiving coils are
simplified in this figure.

pressure measured by the gauge in the cell remains constant
indicating that the sample is solid. The samples were prepared
to all have the same final pressure of 27.75 ± 0.05 bars at
1.2 K. The molar volume of the samples were determined
to be Vm = 20.85 ± 0.05 cm3 from the PVT data of Grilly
and Mills39 and the formula derived by Mullin.40 Finally the
samples were annealed for 24 h just below the melting point
except for one case for which a minimum annealing of 0.5 h
was carried out to determine the effect of the crystal quality
on the nuclear spin relaxation times.

The measurements of the nuclear spin-spin and spin-lattice
relaxation times were carried out using a superheterodyne
pulsed NMR spectrometer operating at a Larmor frequency
of 2.05 MHz. At this frequency the calculated relaxation
times due to exchange motion were of the order of 104 s
at 3He concentrations x3 = 20 ppm, extrapolating from pre-
vious measurements.41–44 The longitudinal relaxation time is
expected to increase rapidly with frequency,41 making studies
at higher Larmor frequencies extremely difficult.

The signal/noise ratio for samples with x3 ≈ 20 ppm is
very weak (<10−2) for a 10 kHz bandwidth employing a
standard geometry with resonant NMR circuit connected
directly to a room temperature amplifier. In order to enhance
the signal/noise we developed a preamplifier that could be
operated at low temperatures in the applied magnetic field.38

The device used a pseudomorphic high electron mobility field
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FIG. 2. (Color online) Example of NMR Hahn echo for a sample
of 500 ppm 3He in solid 4He at T = 0.4 K, showing the in-phase and
out-of-phase components.

effect transistor with adjustable bias so that the output could
be matched to a 50 ohm cable. The total power dissipation
was 0.5 mW and to attain the lowest sample temperatures
the amplifier was separated from the sample cell by a 75 cm
length of cable and anchored to a 1 K thermal plate. A typical
NMR echo recorded using a 90x–180x rf pulse sequence for a
500 ppm 3He sample is shown in Fig. 2 after signal averaging
for 10 pulse sequences using a 17 kHz bandwidth. As it is
necessary to wait several times T1 between pulse sequences,
up to 15 h were required to obtain each data point at the lowest
temperatures. Therefore the total number of data points is
modest, but sufficient we believe to reveal and confirm relevant
features in the temperature dependence of the relaxation times.

One of the most important properties of the sample that
must be determined is the exact 3He concentration, because
for the long capillary line used (1.2 m below the 1 K
plate) an appreciable fraction of the 3He atoms can plate
out on the capillary walls and lead to changes in the 3He
concentration of the solid sample compared to that of the
original gas concentration. Fortunately, the NMR signal itself
allows one to obtain an accurate calibration by measuring
the NMR echo amplitude for fixed spectrometer gain at
intermediate temperatures and comparing it to a relatively high
concentration sample (2000 ppm) for which any fractional
change would be small. In Fig. 3 we show the temperature
dependence of NMR echo amplitudes for several different
samples. All the samples show the characteristic Curie law
behavior until reaching temperatures of the order of 0.1 K
where phase separation occurs. At these low temperatures the
3He forms Fermi liquid droplets with temperature independent
NMR amplitudes and with different relaxation times. Using
this procedure one can measure the 3He concentration to
approximately 5% accuracy. For example, for a sample
prepared from a nominally 30 ppm gas mixture, the final solid
3He fraction was measured to be 24 ppm. Note that a small
deviation was observed in the amplitude of the echo signal
for the 16 ppm sample at T = 175 mK and this is attributed
to the sudden and unexpected sharp increase in T1 at that
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FIG. 3. (Color online) Observed temperature dependence of
NMR echo amplitudes for several different samples measured for
the same spectrometer pulse and gain settings. The broken lines
represents the Curie-law behavior.

temperature. Waiting times between measurements were set at
5 times T1 to provide 5% accuracy in amplitude measurements
but at 175 mK this drops to 2.5 times T1 and a small decrease
in observed amplitude results.

III. EXPERIMENTAL RESULTS

Figure 4 shows the observed temperature dependence of
the nuclear spin-lattice relaxation time (T1) and the spin-spin
relaxation time (T2) for a sample with x3 = 16 ppm and the
comparison with the results for a sample with x3 = 500 ppm.
The temperature independent tunneling induced relaxation
occurs for 0.2 < T < 0.55 K and a small upturn in T1 is
observed for T > 0.55 K with a corresponding downturn in T2.
This high temperature behavior is attributed to the onset of the
effect of thermally activated vacancies. The most interesting
features are the sharp peak in T1 at T = 175 mK and a
less well-defined minimum in T2 at the same temperature
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FIG. 4. (Color online) Observed temperature dependence of the
spin-lattice and spin-spin relaxation time for two samples (i) x3 =
16 ppm, and (ii) x3 = 500 ppm.
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for the sample with x3 = 16 ppm. The same behavior as
a function of temperature is observed for a sample with
x3 = 24 ppm prepared with a considerably reduced annealing
time.37 The sharp changes in T1 and T2 are not observed for
samples with concentrations x3 > 200 ppm. These features
near 175 mK are unexpected in the traditional interpretations
of the relaxation of dilute 3He in solid 4He that attribute the
relaxation to a temperature independent quantum tunneling
J34 of the 3He atoms through the 4He lattice. The temperatures
at which these sharp features for T1 and T2 occur coincide
with the temperatures for which anomalies are observed for
measurements of the rotational inertia1,2 and shear modulus
experiments.21,45 On cooling below 175 mK, a precipitous
drop in the value of T1 is observed at T = 95 mK, which is
the temperature associated with the phase separation of the
solid mixture into 3He rich droplets in otherwise pure solid
4He. This interpretation is confirmed by the observed change
in the NMR amplitude below the phase separation temperature
as shown in Fig. 3 and by the significant hysteresis on cycling
through the phase separation temperature.37

IV. DISCUSSION

The nuclear spin-lattice and spin-spin relaxation times are
determined by the modulation of the dipole-dipole interactions
Hdd between the 3He atoms. The modulation arises from the
motion of the atoms either due to 3He-4He quantum tunneling
(particle exchange) or 3He-vacancy exchange for solid 3He-
4He mixtures. The latter is only observed above approximately
0.5 K because the number of thermally activated vacancies is
otherwise extremely small. The relaxation rates are calculated
in terms of the spectral densities (or Fourier transforms) of
the time dependent autocorrelation functions 〈Hdd (t)Hdd (0)〉
with the component of the spectral densities at the Larmor
frequency and twice the Larmor frequency determining the
spin-lattice relaxation and the component at zero frequency
determining the spin-spin relaxation for the cases where the
Larmor frequency is greater than the modulation frequency.
This view is valid only when the tunneling excitations (atom
or vacancy exchange) are in good thermal contact with the
fundamental lattice excitations (phonons). If that is not the
case, a phonon bottleneck for the relaxation can be observed
with a remarkable T −6 dependence at very low temperatures.
For a general treatment of the well-established relaxation
mechanisms in solid and liquid He, the reader is referred to
Abragam and Goldman.46 The motion of the 3He atoms is
not that of a bare particle. Because the zero point motion of
a 3He atom is greater than that of a neighboring 4He atom,
there is an appreciable lattice deformation around a 3He atom
and this deformation and its motion depends on the plasticity
of the lattice. If there is a change in the fundamental lattice
properties this can be observed through measurements of the
NMR relaxation times.

The theoretical treatments of the relaxation of dilute
3He atoms in solid 4He33,34,47–50 all take into consideration
the lattice deformation surrounding a 3He impurity. The
deformation has been described in terms of a long range
anisotropic interaction between 3He atoms given by

K(rij ) = K0(3 cos2θij − 1)

(
a0

rij

)3

(1)

for the deformation energy at site j due to an impurity at site
i, where a0 is the lattice constant.32,51 The 3He atoms travel
through the lattice and scatter from one another with a closest
approach given by the distance bc for which the kinetic energy
of the tunneling particle (∼J34) becomes comparable to the
elastic deformation energy

bc =
(

J34

K0

)1/3

a0. (2)

The mean separation of the 3He atoms rm = a0x
−1/3
3 and

for x3 � x30 = J34
K0

∼ 10−3 the 3He atoms are in continuous
interaction with elastic fields of one another. For x3 < x30, the
atoms move coherently by tunneling until scattered by other
3He atoms or other lattice defects. This simple estimation of the
concentration x30 for which there is a crossover from simple
coherent diffusion to the continuous interaction regime was
analyzed in detail by Landesman and Winter48 using a moment
expansion for the calculation of the physical diffusion and
they found a very different value with x30 ∼ ( J34

K0
)2 ∼ 10−6.

Huang et al.34 re-examined this estimate using a more precise
accounting of of the energetics of the scattering process and
estimated x30 ∼ 10−4. As we will show below, the Landesman
model gives a good description of the values of the spin
lattice relaxation time measured by different research groups
with a characteristic concentration dependence of T1 ∝ x

−2/3
3

for x3 > 10−4 and a very different concentration dependence
below 10 ppm.

In order to understand the possible origins of the experi-
mentally observed peak in T1 at low temperatures, we need
to examine how the tunneling motion of the 3He atoms and
their accompanying lattice deformations determine the nuclear
spin-lattice relaxation. Landesman33 treated the motion of the
3He atoms in the presence of the deformations using a fictitious
spin model. In this model a fictitious spin Si takes the values 0
or ±1 according to whether a site i is occupied by a 4He atom
or a 3He atom with real nuclear spin I z

j = ±1, respectively.
The probability that a site j is occupied by a 3He atom is
represented by τj = (Sj

z )2 and the elastic deformation energy
by the Hamiltonian

HK = −2h̄
∑
jk

Kjkτj τk. (3)

The tunneling Hamiltonian is given by

HT = −2h̄J34

∑
j,k

Pjk, (4)

where Pjk = 1
2 (Sz

jS
+
j S−

k Sz
k + Sz

jS
−
j S+

k Sz
k ) + H.c. is the permu-

tation operator for atoms at sites i and j .
The time dependence of the fictitious spin operators Sj and

τj are given by

S+
j (t) = eiHKtS+

j e−iHK t = S+
j eiωj t , (5)

where ωj = 2
∑

j<k Kjkτk . In this time dependence Landes-
man did not include a lattice relaxation term to account for
relaxation of the lattice as the deformation surrounding the
impurity atom moves through the lattice. Given the recent
results from elastic studies of solid helium at low temperatures
this could be an important effect. The relaxation times can now
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be estimated by calculating the correlation functions of the
nuclear dipole-dipole interactions. We consider the reduced
correlation function

�m
ijkl = 4

x3

〈
T m

ij (t)T m
kl (0)†

〉
, (6)

where the Tij are the irreducible nuclear spin operators
[that transform analogously to the spherical harmonics
Ym

2 (�ij )]. T m
ij (t) = eiHMtT m

ij e−iHMt with Hm = HK + HT the
total Hamiltonian responsible for the motions in the lattice. For
the dilute lattice the tunneling Hamiltonian does not commute
with all Tij and one finds that the derivative

�̈ij,ij (t)/�(0)

= −12x3J
2
34

∑
p

Fip(t)cos[(Kij − Kjp)t]

(
a0

rij

)6

, (7)

with Fip(t) = ∏
s cos[ωs(t)], where ωs = x3(Kis − Kps)t .

Evaluating F (t) using the statistical method of Anderson52

yields

�̈(t)/�(0) = −48�′x3J
2
34 exp[−x3�(K0t)

3/4], (8)

where �′ = 0.28 and � = 8.77.33,48 Integrating Eq. (8)
Landesman33 finds a correlation time τc given by

τ−1
c = B

J 2
34

K0
x

−1/3
3 , (9)

with B = 23.
The correlation time τc < ω−1

L for all the experiments
reported and we therefore find for the calculated nuclear
spin-lattice relaxation time in Landesman’s model

T L
1 = ω2

L

46M2

1

Jeff
x

−2/3
3 , (10)

where M2 is the second moment for pure 3He and Jeff =
J 2

34/K0. As shown in Fig. 5 this calculated value provides

T 
 x

   
 (s

)
1

32/
3

T   =  2.43 10  x    (s)
1 3

-3 -4/3Coh

T  = 0.86 x     (s)1 3
-1/3 L
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0.1

10.0

(Emp)

FIG. 5. (Color online) Observed 3He concentration dependence
of the nuclear spin-lattice relaxation time for dilute 3He in solid
4He. Orange circles, Schratter et al.,43 up triangles, Allen et al.,53

diamonds, Schuster et al.,54 down triangles,55 open squares,44 and
solid squares.37
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FIG. 6. (Color online) Comparison of the values of the observed
nuclear spin-lattice relaxation times for x3 = 16 ppm (red circles)
and x3 = 24 ppm (blue triangles) with the theoretical model of
Landesman (broken lines a and b) for tunneling 3He impurities in
the 4He lattice with a fixed lattice distortion. The sharp drop at 90 mK
marks the well known phase separation with the formation of pure 3He
nanodroplets. The 24 ppm sample was never cooled below 120 mK
to avoid hysteresis and memory effects associated with the phase
separation.

a good description of the observed values of T1 in the
temperature-independent “plateau” region for 3He concen-
trations x3 > 100 ppm for Jeff

2π
= 1.2 kHz and no other

adjustable parameter. At lower concentrations a much stronger
concentration dependence is observed with T1 ∝ x

−4/3
3 . This

behavior at low concentrations is attributed to the crossover
from the continuous interaction regime to a region of coherent
diffusion for which the characteristic time is determined by the
time for a 3He atom to travel the mean distance rm = x

−1/3
3 a0

between 3He atoms. This time is given by τcoh = rm/vg ,
where the group velocity vg = a0zJ34. The best fit to the
low concentration data is given by T Coh

1(Emp) = 2.5 × 10−3x
−(4/3)
3

shown by the solid red line of Fig. 5, and corresponding to
J34/(2π ) = 0.83 MHz.

The empirical fit to the temperature independent relaxation
for x3 = 16 and 24 ppm is shown by the broken lines in Fig. 6.
While the fit to experimental data is good at high temperatures
the anomalous relaxation observed at 175 mK is more than a
factor of 2 larger than the Landesman prediction for a simple
tunneling motion of the 3He atoms through the lattice. The
anomaly occurs well above the phase separation temperature
(90 mK) and is not attributable to the phase separation which
would lead to a sharp decrease in the relaxation time and not the
sharp peak that was observed. This conclusion was confirmed
by studying a sample with 24 ppm that was never cooled to
the phase separation temperature (see Fig. 6).

It is important to note that a simple change in the elastic field
interaction K associated with thermal population of excited
states with different values for K0 would not explain the
observed results and would simply lead to a broad step in the
value of T1. The results therefore imply that the anomalous
peak observed for T1 results either from a change in the
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dynamical properties of the lattice that occur at 175 mK or
that there is a phase transition that occurs at that temperature
and the peak observed in T1 results from the fluctuations at the
phase transition.

A. Effect of a transition to supersolid state
on the NMR relaxation times

We now consider what would be expected if there was a
simple phase transition to a state in which there was a small
fraction of superfluid condensate, and then we will discuss how
the effect of a dynamical relaxation of the lattice as described
by Beamish and colleagues would influence the nuclear spin
lattice relaxation time T1.

If there was a sharp phase transition at a fixed temperature
TC below which a superfluid state appears, one would expect a
sudden change in the spectral density at TC that determines T1

and T2 because of the sharp increase in fluctuations just below
TC that would modulate the spin-spin interactions (assuming
that the 3He atoms are carried by the superfluid component).
One of the most significant results of Chan et al.2 is that the
critical velocity attributed to the superfluid interpretation of
the NCRIFs is very low, typically 10−4 m/s. The fluctuations
would therefore add weight to the spectral density at low
frequencies and not at high frequencies (>MHz). Because
the spectral densities are determined by the fluctuations of
the 3He dipole-dipole interactions (and no other magnetic
interactions are present) they are normalized and thus the
increase in spectral weight at low frequencies would result
in a decrease in the spectral weight at high frequencies with
an increase in T1 and a concommittant decrease in T2.

If we designate the component of the spectral density due
to 3He particle exchange as JE(ω) and the component due to
a possible superfluid component as JS(ω), we have∫

1

T1
dω =

∫
[JE(ω) + JS(ω)]dω = πM2, (11)

where M2 is the NMR second moment. For liquid 4He the
coherence length scales as ξ = a0(TC − T )−2/3, where TC is
the critical temperature, and because of the very low critical
velocities (inferred from torsional oscillator measurements),
we anticipate a characteristic relaxation time that behaves as
τs = τso(TC − T )−2/3 for T < TC , using τso

∼= rm/vc, where
rm = x−1/3a0 is the mean separation between atoms, a0 is the
lattice spacing, and vc is the critical velocity. If the supersolid
component component has weight α(T ) then the exchange
component must have weight 1 − α(T ) so that the sum rule∫

1
T1

= πM2 is obeyed. Thus the observed relaxation rate will
be given by

1

T1Obs
= α(T )JS(ωL) + [1 − α(T )]JE(ωL), (12)

where JS(ωL) is negligible. If T1E is the calculated value of T1

for exchange motion only, we find

T1Obs

T1E

= 1

[1 − α(T )]
, (13)

where for a supersolid fraction we take α(T ) = a1
T0

|T −TC )|2/3

for T < TC and α(T ) = 0 for T > TC . a1 is an adjustable

T 
 (s

)

FIG. 7. (Color online) Comparison of the observed temperature
dependence of the nuclear spin-lattice relaxation time T1 with the
dependence expected for a true phase transition at T = 175 mK for
a sample with x3 = 16 ppm as described in the text.

parameter related to the “supersolid” density which is of the
order of 0.01 but sample dependent.

An example of a fit using the above expression for T1Obs

is shown by the broken line in Fig. 7 for TC = 175 mK and
a1 = 0.01 with no other adjustable parameter. In reality we
would expect to have a small Gaussian spread (of about 7 mK)
in the critical temperature because of the inhomogeneities and
it would not be difficult to obtain a good fit to T1 for reasonable
numbers but no other experiment points to a sharp transition
(except for the onset of NCRIFs in very pure samples), e.g., no
sharp peak in the heat capacity is reported. A more stringent
test of this interpretation is provided by examining the results
for the T2 measurements for the same sample. The same
argument as used for evaluating T1 needs to be followed for
T2 but this time we need to know the values for τs0 and the
exchange time τE .

First we consider the theoretical predictions for T2 for small
x3. The values of the correlation time calculated by Landesman
[Eq. (10)] that give a good fit to the T1 data do not lead to values
of T2 that are in agreement with the experimental data. This
discrepancy has been reviewed by Kim et al.56 who showed
that the detailed spectral density at low frequencies cannot
be described by a single Lorentzian spectral density. A better
approach to evaluating T2 was given by Huang et al.34 who
calculated the scattering of tunneling 3He impurities in the
elastic crystal fields using detailed energy conservation and
found T H

2 = 1.69 × 10−4x3 s for x3 > 100 ppm. This result is
compared with the experimental data and Landesman’s theory
in Fig. 8. For very dilute concentrations, x3 < 100 ppm, the
model of coherent diffusion as discussed above gives T Coh

2 =
1.68 s.

For these dilute samples the tunneling motion of the 3He
impurities would lead to a temperature independent relaxation,
but once again we observed strong deviations from temperature
independence below 175 mK. However, unlike the T1 results
which show a clean peak, there is considerable scatter in
the T2 data and the dependence observed is that of a small
peak followed by a strong dip, and then at even lower
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FIG. 8. (Color online) Observed 3He concentration dependence
of the nuclear spin-spin relaxation time for dilute 3He in solid 4He
for several concentrations reported by different authors. The solid
lines T L

2 and T H
2 are the predictions of the theories of Landesman33

and Huang et al.,34 respectively. T Coh
2 is the value of T2 for coherent

diffusion where the mean separation is greater than the scattering
length. See legend of Fig. 6 for definition of symbols.

temperature there is an order of magnitude drop at the phase
separation temperature where Fermi liquid droplets form. We
now calculate what would be expected for a simple superfluid
phase transition. In terms of the spectral densities (at zero
frequency) for the superfluid and normal components we have

1

T2Obs
= α(T )JS(0) + [1 − α(T )]JE(0), (14)

while the fixed temperature independent tunneling term is

1

T2E

= JE(0). (15)

We therefore find

T2Obs

T2E

= 1

bα(T ) + [1 − α(T )]
, (16)

where b = JS(0)/JE(0) = τS0/τE > 1 and τE is the charac-
teristic tunneling time in the normal solid. Because of the
large value of b, the result for T2Obs does not look like the
inverted image of T1 (as one would naively expect) but is
much wider. An example of an attempted fit for the adjustable
parameters b = 4 and a1 = 0.01 is shown in comparison with
experimental values of T2 in Fig. 9. Even allowing for the
scatter of the data, this approach does not provide a good
description of the temperature dependence of T2. We should
note that if the system is very inhomogeneous with different
parts of the sample having different values of b and a1 one
would expect a lumpy spectral density at low frequencies
and a corresponding scatter in the results for T2, but since T1

measures the spectral weight at MHz frequencies, one could
still observe a sharp peak for T1 because it is the integrated
weights of the low frequency components of the spectral
densities that must be subtracted from the high frequency
spectral density. In this sense the T1 measurements are a much
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FIG. 9. (Color online) Comparison of the observed temperature
dependence of the nuclear spin-spin relaxation time T2 for a sample
with x3 = 16 ppm with the dependence expected for a true phase
transition at T = 175 mK (broken purple line) as described in the text
with the high temperature limit given by Landesman’s model.

cleaner test for the existence of a phase transition that the T2

measurements.

B. Effect of lattice dynamics on the NMR relaxation rates

An alternative approach to interpreting the NMR relaxation
rates is to assume that as a result of the tunneling of the
3He atoms there is an internal stress on the 4He lattice
as the distortion around the 3He impurity moves with or
attempts to move with the impurity as it tunnels from site to
site. The mean frequency of this motion is ωx = x4/3K0 ≈
3.5 × 103 Hz. We can surmise that the relaxation of the
lattice due to this time dependent disturbance is long and
adds a bottleneck for energy exchange between the tunneling
excitations and the thermal bath of phonons. The correlation
function for the lattice operators τ (T ) of Eq. (3) can be
written as

〈τ (t)τ (0)〉 = 〈τ (0)2〉R exp
(−iωx + τ−1

S

)
t, (17)

where 〈· · ·〉R represents an average over lattice coordinates,
τS is the lattice averaged relaxation time which we assume
corresponds to the Debye relaxation τS = τ0 exp(E0/T ) used
to interpret the results of the shear modulus measurements.20–22

Integrating Eq. (17) we find for the additional lattice relaxation
time

τx(T ) = r1
τ0e

E0/T

1 + (ωxτ0eE0/T )2
= r1

ωx

u

1 + u2
, (18)

where u = ωxτ0e
(E0/T ). τ0 and E0 are adjustable parameters

that we expect to be comparable to the values determined from
the shear modulus experiments.22,45 The magnitude of r1 can
be estimated crudely from the relaxation rate R = ωx

r1
using the

golden rule with R = 4π
h̄

∑
E |〈E1|K|E2〉|2ρ(E)δ(E1 − E2 −

h̄ωx) for an attempt frequency ωx . K is the lattice distortion and
the density of states ρ(E) ∼ E2/E3

D , where ED is the Debye
energy. We find R ∼ 1.2 × 10−4 s−1. In Fig. 10 we show
the fit to the relaxation times T1, using T1Obs = T1E + τx(T )
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FIG. 10. (Color online) Comparison of the observed temperature
dependence of the nuclear spin-lattice relaxation time T1 (for a
sample with x3 = 16 ppm) with the dependence calculated for lattice
relaxation due to the motion of the distortion of the lattice around
impurities, using parameters inferred from the measurements of the
shear modulus.

for τ0 = 8.3 × 10−9 s and E0 = 1.8 K. These values are to
be compared with those inferred from the shear modulus
experiments,20–22 τ0 = 2.3 × 10−9 s and E0 = 0.77 K.20 The
larger value of E0 may result from the presence of larger
3He concentrations in the NMR experiments compared to the
shear modulus experiments. Although the values of τ0 and
E0 are different from those deduced by Beamish et al.,21,22

the fit is quite good given the approximations that have been
made. It is important to note that the observed relaxation
is the sum T Coh

1(Emp) + τX(T ) of the temperature independent
coherent relaxation and the lattice relaxation τX(T ) which act
in series. The longest time of the two components determines
the observed relaxation and only the peak of the Lorentzian
form of τX(T ) is seen at low temperatures

This interpretation of the results is consistent with the
observations of Sasaki et al.57,58 who followed the temperature
dependence of the NMR signals of 10 ppm 3He in solid 4He
for densities such that the phase separation forms solid clusters
of 3He. While they were able to observe the solid clusters
they were not able to detect the signal from isolated 3He
atoms above the phase transition at low temperatures, and
they attributed this to a long spin-lattice relaxation time that
lead to saturation and signal loss at the temperatures of interest
for exploring the anomalies of the 4He lattice.

C. Effect of dislocations on relaxation times

The most significant effect of the presence of dislocations
on the NMR studies is that the 3He atoms will pin the disloc-
ation lines leaving some of the 3He atoms located on the
dislocation lines and the lines themselves essentially immobile
at low temperatures. The number of 3He atoms that are
expected to be affected by this is very small. The localization
of the 3He atoms would lead to three distinct components
of the NMR signals and their relaxation: (i) the contribution

from atoms fixed on the dislocation lines, (ii) the interactions
between fixed localized 3He atoms with those tunneling freely
in the solid, and (iii) the interactions between pairs where both
are free to move in the lattice. The latter has been the focus
of the discussions above. For those atoms that are essentially
fixed the line shapes would be very broad leading to short
values of T2 and very long values for T1. The echoes would
have more than one contribution and if the numbers of fixed
atoms were significant the echo would have a central peak,
corresponding to the spin-spin interactions between immobile
atoms. We have not observed such a peak or a deviation from
a single exponential decay for the dilute samples down to the
lowest temperatures studied.

This result is not surprising when one considers the
number of dislocations present even in crystals of average
quality. Paalanen et al.59 and Iwasa et al.35,60 show that the
dislocation density � and the dislocation network length LN

are related by �L2
N = 0.2 and � ∼= 106 cm−2 with LN ∼

(3–6) × 10−4 cm ∼104a0. The concentration of 3 He atoms that
would saturate the dislocation network is therefore estimated
as x3s ∼ ( a0

LN
)2 ∼ 10−8. The dislocation density would need

to be much larger than that expected for even average quality
crystals35,60 if the pinned 3He atoms were to be observable.
Recent experiments by Haziot et al.61 imply that for crystals
grown by the blocked capillary method �L2

N is about 100 times
larger than the estimate given above, but that the dislocation
density � is close to the estimate above. These new data do
not change our conclusions.

In addition to dislocation lines, Balibar has pointed out62

that grain boundaries are also likely to bind 3He impurities—
possibly affecting NMR relaxation times in a temperature-
dependent manner. A key parameter determining the impor-
tance of grain-boundary binding is the typical grain size LG.
We have no direct information on LG for our blocked-capillary
samples, although, for example, LG ≈ 0.5 mm was observed
by Franck et al.63 in annealed helium films.

The grain size LG controls any possible effect of grain-
boundary binding on the NMR response in two distinct ways:
(a) The maximum concentration of 3He that can be bound at
grain boundaries is of order a0/LG, assuming full monolayer
coverage with bound 3He, and (b) the time scale for 3He
atoms to freely diffuse on and off grain boundaries is of order
L2

G/D, where D is the diffusion coefficient. For LG = 0.5 mm
we calculate a0/LG = 0.7 ppm, much less than the 3He
concentrations used in the present experiments. For a diffusion
constant D = 3 × 10−6 cm2/s53 we find L2

G/D ≈ 103 s, much
shorter than the relaxation times T1 that we observe. The latter
implies that the collisions between the 3He impurities in the
bulk sample dominates the relaxation process. Therefore, it
appears that the grain size in our samples would need to be
much smaller than was observed in films in Ref. 60 for the
binding of 3He atoms at grain boundaries to be the cause of
the T1 anomalies we observe.

D. NMR relaxation for droplets

For all samples studied (except the 24 ppm sample) a
sharp phase transition is observed at low temperatures below
which the NMR amplitudes are independent of temperature
(see Fig. 4) as expected for the well-known phase separation
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into Fermi liquid droplets.64 The observed phase separation
temperatures are in good agreement with the values calculated
by Edwards and Balibar.64 The rate of formation of the droplets
is very slow (typically 2–10 h)65 and great care must be
taken to ensure that equilibrium is reached before measuring
amplitudes and relaxation times near the phase separation.
After phase separation, the relaxation times are observed to
become temperature independent.65,66 The observed relaxation
times are consistent with a relaxation that occurs at the wall
of degenerate Fermi liquid droplets. Huan et al.65 showed
that the relaxation time was given by T1 = (Ncore/Nwall)τX,
where Ncore and Nwall are the number of atoms in the core
of the droplet and in the wall, respectively. τX is the intrinsic
relaxation time at the wall due to the 3He tunneling is given
by τX = J3/M2, where J3 is the tunneling rate at the wall
and M2 is the NMR second moment. This estimate leads to
values of T1 ∼ 170 s in good quantitative agreement with the
observations (see Fig. 5).

V. CONCLUSION

Measurements of the nuclear spin-lattice relaxation times
for very dilute 3He concentrations have shown the existence
of pronounced peaks in the relaxation times at the same
temperatures as those for which anomalies are observed
in torsional oscillator and shear modulus measurements of
solid 4He. Less well-defined variations are observed for the

nuclear spin-spin relaxation times. The detailed temperature
dependencies do not fit a model in which there is a well-defined
phase transition to a supersolid or superfluid state where
the critical fluctuations can induce dramatic changes in the
relaxations times with critical exponents for the temperature
dependence near the transition temperature. The observations
are best described by the introduction of an additional
relaxation process in series with the usual tunneling-relaxation
process and caused by the response of the lattice to the motion
of the lattice distortions around the tunneling impurity atoms.
The characteristic parameters for this model, the tunneling rate,
and the lattice excitation energy are remarkably close to those
values deduced from measurements of the shear modulus.
Further studies are needed at lower 3He concentrations and
lower magnetic fields to create a better separation between the
phase separation temperature and the temperatures for which
the NMR and other anomalies are observed.
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*Current address: École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland.

†Current address: Georgia Institute of Technology, Atlanta, Ga, USA.
‡sullivan@phys.ufl.edu
1E. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004).
2E. Kim and M. H. W. Chan, Science 305, 1941 (2004).
3A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).
4A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969).
5E. Kim, J. S. Xia, J. T. West, X. Lin, A. C. Clark, and M. H. W.
Chan, Phys. Rev. Lett. 100, 065301 (2008).

6A. S. C. Rittner and J. D. Reppy, Phys. Rev. Lett. 97, 165301 (2006).
7J. D. Reppy, Phys. Rev. Lett. 104, 255301 (2010).
8E. J. Pratt, B. Hunt, V. Gadagkar, M. Yamashita, M. J. Graf, A. V.
Balatsky, and J. C. Davis, Science 332, 821 (2011).

9Y. Aoki, J. C. Graves, and H. Kojima, J. Low Temp. Phys. 150, 252
(2008).

10P. Gumann, M. C. Keiderling, D. Ruffner, and H. Kojima, Phys.
Rev. B 83, 224519 (2011).

11P. Gumann, M. C. Keiderling, and H. Kojima, J. Low Temp. Phys.
168, 162 (2012).

12J. M. Goodkind, Phys. Rev. Lett. 89, 095301 (2002).
13P. C. Ho, I. P. Bindloss, and J. M. Goodkind, J. Low Temp. Phys.

109, 409 (1997).
14X. Lin, A. Clark, and M. Chan, Nature (London) 449, 1025 (2007).
15Y. Aoki, H. Kojima, and X. Lin, Low Temp. Phys. 34, 329 (2008).
16S. Kwon, N. Mulders, and E. Kim, J. Low Temp. Phys. 158, 590

(2010).
17J. Day and J. Beamish, Phys. Rev. Lett. 96, 105304 (2006).

18M. W. Ray and R. B. Hallock, Phys. Rev. Lett. 100, 235301 (2008).
19M. W. Ray and R. B. Hallock, Phys. Rev. B 79, 224302 (2009).
20O. Syshchenko, J. Day, and J. Beamish, Phys. Rev. Lett. 104,

195301 (2010).
21J. Day, O. Syshchenko, and J. Beamish, Phys. Rev. B 79, 214524

(2009).
22O. Syshenko, J. Day, and J. Beamish, J. Phys.: Condens. Matter 21,

164204 (2009).
23C.-D. Yoo and A. T. Dorsey, Phys. Rev. B 79, 100504(R) (2009).
24M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof’ev, B. V.

Svistunov, and M. Troyer, Phys. Rev. Lett. 97, 080401 (2006).
25P. W. Anderson, Science 324, 631 (2009).
26B. Hunt, E. Pratt, V. Gadagkar, M. Yamashita, A. Balatsky, and

J. C. Davis, Science 324, 632 (2009).
27M. J. Graf, J. J. Su, H. P. Dahal, I. Grigorenko, and Z. Nussinov, J.

Low Temp. Phys. 162, 500 (2011).
28D. Y. Kim, H. Choi, W. Choi, S. Kwon, E. Kim, and H. C. Kim,

Phys. Rev. B 83, 052503 (2011).
29H. J. Maris, Phys. Rev. B 86, 020502(R) (2012).
30J. R. Beamish, A. D. Fefferman, A. Haziot, X. Rojas, and S. Balibar,

Phys. Rev. B 85, 180501(R) (2012).
31D. Y. Kim and M. H. W. Chan, Phys. Rev. Lett. 109, 155301

(2012).
32J. D. Eshelby, Solid State Phys. 3, 79 (1956).
33A. Landesman, Phys. Lett. A 54, 137 (1975).
34W. Huang, H. A. Goldberg, and R. A. Guyer, Phys. Rev. B 11, 3374

(1975).
35I. Iwasa, Phys. Rev. B 81, 104527 (2010).

224303-9

http://dx.doi.org/10.1038/nature02220
http://dx.doi.org/10.1126/science.1101501
http://dx.doi.org/10.1103/PhysRevLett.25.1543
http://dx.doi.org/10.1103/PhysRevLett.100.065301
http://dx.doi.org/10.1103/PhysRevLett.97.165301
http://dx.doi.org/10.1103/PhysRevLett.104.255301
http://dx.doi.org/10.1126/science.1203080
http://dx.doi.org/10.1007/s10909-007-9543-2
http://dx.doi.org/10.1007/s10909-007-9543-2
http://dx.doi.org/10.1103/PhysRevB.83.224519
http://dx.doi.org/10.1103/PhysRevB.83.224519
http://dx.doi.org/10.1007/s10909-012-0581-z
http://dx.doi.org/10.1007/s10909-012-0581-z
http://dx.doi.org/10.1103/PhysRevLett.89.095301
http://dx.doi.org/10.1007/s10909-005-0094-0
http://dx.doi.org/10.1007/s10909-005-0094-0
http://dx.doi.org/10.1038/nature06228
http://dx.doi.org/10.1063/1.2911651
http://dx.doi.org/10.1007/s10909-009-0044-3
http://dx.doi.org/10.1007/s10909-009-0044-3
http://dx.doi.org/10.1103/PhysRevLett.96.105304
http://dx.doi.org/10.1103/PhysRevLett.100.235301
http://dx.doi.org/10.1103/PhysRevB.79.224302
http://dx.doi.org/10.1103/PhysRevLett.104.195301
http://dx.doi.org/10.1103/PhysRevLett.104.195301
http://dx.doi.org/10.1103/PhysRevB.79.214524
http://dx.doi.org/10.1103/PhysRevB.79.214524
http://dx.doi.org/10.1088/0953-8984/21/16/164204
http://dx.doi.org/10.1088/0953-8984/21/16/164204
http://dx.doi.org/10.1103/PhysRevB.79.100504
http://dx.doi.org/10.1103/PhysRevLett.97.080401
http://dx.doi.org/10.1126/science.1169456
http://dx.doi.org/10.1126/science.1169512
http://dx.doi.org/10.1007/s10909-010-0320-2
http://dx.doi.org/10.1007/s10909-010-0320-2
http://dx.doi.org/10.1103/PhysRevB.83.052503
http://dx.doi.org/10.1103/PhysRevB.86.020502
http://dx.doi.org/10.1103/PhysRevB.85.180501
http://dx.doi.org/10.1103/PhysRevLett.109.180501
http://dx.doi.org/10.1103/PhysRevLett.109.180501
http://dx.doi.org/10.1016/S0081-1947(08)60132-0
http://dx.doi.org/10.1016/0375-9601(75)90839-7
http://dx.doi.org/10.1103/PhysRevB.11.3374
http://dx.doi.org/10.1103/PhysRevB.11.3374
http://dx.doi.org/10.1103/PhysRevB.81.104527


KIM, HUAN, YIN, XIA, CANDELA, AND SULLIVAN PHYSICAL REVIEW B 87, 224303 (2013)

36S. S. Kim, C. Huan, L. Yin, J. Xia, C. Candela, and N. S. Sullivan,
J. Low Temp. Phys. 158, 584 (2010).

37S. S. Kim, C. Huan, L. Yin, J. S. Xia, D. Candela, and N. S. Sullivan,
Phys. Rev. Lett. 106, 185303 (2011).

38C. Huan, S. S. Kim, L. Phelps, J. S. Xia, D. Candela, and N. S.
Sullivan, J. Low Temp. Phys. 158, 692 (2010).

39E. Grilly and R. L. Mills, Ann. Phys. (NY) 18, 250 (1962).
40W. J. Mullin, Phys. Rev. Lett. 20, 254 (1968).
41R. A. Guyer, R. C. Richardson, and L. I. Zane, Rev. Mod. Phys. 43,

532 (1971).
42V. N. Grigoriev, B. N. Esel’son, V. A. Mikheev, V. A. Slusarev,

M. A. Strzhemechny, and Y. E. Shulman, J. Low Temp. Phys. 13,
65 (1973).

43J. Schratter, A. R. Allen, and M. G. Richards, J. Low Temp. Phys.
57, 179 (1984).

44A. S. Greenberg, W. C. Thomlinson, and R. C. Richardson, J. Low
Temp. Phys. 8, 3 (1972).

45J. Day and J. Beamish, Nature (London) 450, 853 (2007).
46A. Abragan and M. Goldman, Nuclear Magnetism: Order and

Disorder (Clarendon, Oxford, 1982).
47N. V. Prokof’ev and G. V. Shlyapnikov, Zh. Eksp. Teor. Fiz. 93,

2109 (1987).
48A. Landesman and J. M. Winter, Proceedings Low Temperature

Physics-LT-13 (Plenum, New York, 1974), pp. 73–78.
49A. Landesman, J. Low Temp. Phys. 30, 117 (1978).
50N. Sullivan and A. Landesman, Phys. Rev. B 25, 3396 (1982).
51V. A. Slyusarev, M. A. Strzhemechnyi, and I. A. Burakhovich, Fiz.

Nizk. Temp. 3, 1229 (1977).

52P. W. Anderson, Phys. Rev. 82, 342 (1951).
53A. R. Allen, M. G. Richards, and J. Schratter, J. Low Temp. Phys.

47, 289 (1982).
54I. Schuster, Y. Swirsky, E. J. Polturak, and S. G. Lipson, Europhys.

Lett. 33, 623 (1996).
55Y. Hirayoshi, T. Mizusaki, S. Maekawa, and A. Hideai, Phys. Lett.

A 57, 359 (1976).
56S. S. Kim, C. Huan, L. Yin, J. S. Xia, D. Candela, and N. S. Sullivan,

J. Phys. Conf. Series 400, 012031 (2012).
57R. Toda, P. Gumann, K. Kosaka, M. Kanemoto, W. Onoe, and

Y. Sasaki, Phys. Rev. B 81, 214515 (2010).
58R. Toda, W. Onoe, M. Kanemoto, T. Kakuda, Y. Tanaka, and

Y. Sasaki, J. Low Temp. Phys. 162, 476 (2011).
59M. A. Paalanen, D. J. Bishop, and H. W. Dail, Phys. Rev. Lett. 46,

664 (1981).
60I. Iwasa, K. Araki, and H. Suzuki, J. Phys. Soc. Jpn. 46, 1119

(1979).
61A. Haziot, A. D. Fefferman, J. R. Beamish, and S. Balibar, Phys.

Rev. B 87, 060509(R) (2013).
62S. Balibar (private communication).
63J. P. Franck, J. Gleeson, K. E. Kornelsen, J. R. Manuel, and K. A.

McGreer, J. Low Temp. Phys. 58, 153 (1985).
64D. O. Edwards and S. Balibar, Phys. Rev. B 39, 4083

(1989).
65C. Huan, S. S. Kim, L. Yin, J. S. Xia, D. Candela, and N. S. Sullivan,

J. Low Temp. Phys. 162, 167 (2011).
66S. C. J. Kingsley, V. Maidonov, J. Saunders, and B. Cowan, J. Low

Temp. Phys. 113, 1017 (1998).

224303-10

http://dx.doi.org/10.1007/s10909-009-9978-8
http://dx.doi.org/10.1103/PhysRevLett.106.185303
http://dx.doi.org/10.1007/s10909-009-9984-x
http://dx.doi.org/10.1016/0003-4916(62)90069-6
http://dx.doi.org/10.1103/PhysRevLett.20.254
http://dx.doi.org/10.1103/RevModPhys.43.532
http://dx.doi.org/10.1103/RevModPhys.43.532
http://dx.doi.org/10.1007/BF00654398
http://dx.doi.org/10.1007/BF00654398
http://dx.doi.org/10.1007/BF00681522
http://dx.doi.org/10.1007/BF00681522
http://dx.doi.org/10.1007/BF00655545
http://dx.doi.org/10.1007/BF00655545
http://dx.doi.org/10.1038/nature06383
http://dx.doi.org/10.1007/BF00115519
http://dx.doi.org/10.1103/PhysRevB.25.3396
http://dx.doi.org/10.1007/BF00683732
http://dx.doi.org/10.1007/BF00683732
http://dx.doi.org/10.1209/epl/i1996-00389-2
http://dx.doi.org/10.1209/epl/i1996-00389-2
http://dx.doi.org/10.1016/0375-9601(76)90610-1
http://dx.doi.org/10.1016/0375-9601(76)90610-1
http://dx.doi.org/10.1088/1742-6596/400/1/012031
http://dx.doi.org/10.1103/PhysRevB.81.214515
http://dx.doi.org/10.1007/s10909-010-0279-z
http://dx.doi.org/10.1103/PhysRevLett.46.664
http://dx.doi.org/10.1103/PhysRevLett.46.664
http://dx.doi.org/10.1143/JPSJ.46.1119
http://dx.doi.org/10.1143/JPSJ.46.1119
http://dx.doi.org/10.1103/PhysRevB.87.060509
http://dx.doi.org/10.1103/PhysRevB.87.060509
http://dx.doi.org/10.1007/BF00682571
http://dx.doi.org/10.1103/PhysRevB.39.4083
http://dx.doi.org/10.1103/PhysRevB.39.4083
http://dx.doi.org/10.1007/s10909-010-0260-x
http://dx.doi.org/10.1023/A:1022504401028
http://dx.doi.org/10.1023/A:1022504401028



