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Recent density functional theory (DFT) calculations by Först et al. [Phys. Rev. Lett. 96, 175501 (2006)] have
predicted that vacancies in both low and high carbon steels have a carbon dimer bound to them. This is likely to
change the thinking of metallurgists in the kinetics of the development of microstructures. While the notion of
a C2 molecule bound to a vacancy in Fe will potentially assume a central importance in the atomistic modeling
of steels, neither a recent tight binding (TB) model nor existing classical interatomic potentials can account for
it. Here we present a TB model for C in Fe, based on our earlier work for H in Fe, which correctly predicts the
structure and energetics of the C2 dimer at a vacancy in Fe. Moreover the model is capable of dealing with both
concentrated and dilute limits of carbon in both α-Fe and γ -Fe as comparisons with DFT show. We use both
DFT and TB to make a detailed analysis of the dimer and to come to an understanding as to what governs the
choice of its curious orientation within the vacancy.
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I. INTRODUCTION

A great deal of progress over many years has been made
in understanding the physics of the bonding and electronic
structure in pure magnetic iron,1 and this has been used
with great effect to advance the generation of schemes from
density functional theory (DFT) in the gradient corrected2

local spin density approximation3,4 (LSDA-GGA) through the
tight binding (TB) approximation5,6 to classical interatomic
potentials to be used for atomistic simulations by the materials
science community.7 Of course the metallurgist is rarely
interested in pure iron, and so the challenge to the physicist
has been to extend the theory to include interstitial carbon,
which is the defining element whose presence distinguishes
steel from iron. It is only in the last decade that real progress
has been made; first with some very extensive LSDA-GGA
calculations,8–13 second with the generation of (admittedly
very complicated) classical interatomic potentials based
in the embedded atom method,11,14 and third, the subject
of this paper, by some recent semiempirical quantum
mechanical schemes based in the tight binding approximation.
A particularly significant advance was made recently by
Hatcher, Madsen, and Drautz15 who constructed a very simple
orthogonal tight binding model for carbon and iron using a
minimal basis of C-p and Fe-d orbitals and a local charge
neutrality condition. This model is a natural basis for a bond
order potential,16 but we argue here that this basis may be too
small to capture some of the physics of carbon in iron. Instead
we introduce a model based in our earlier work on H in Fe17

employing a larger, nonorthogonal basis of C-p, Fe-d, and C
and Fe-s orbitals and treating charge transfer self-consistently
via an adjustable “Hubbard-U” parameter.18 The structure of
the paper is as follows. In Sec. II we describe our model for
carbon in iron and in Sec. III we demonstrate its predictive
power in both the concentrated (iron carbide) and dilute impu-
rity limits. In Sec. III C we focus on the carbon dimer bound to
a vacancy, taking in view the recent startling prediction from
LSDA-GGA that this is a predominant point defect in steel.10

Our discussion and conclusions are to be found in Secs. IV
and V.

II. DESCRIPTION OF THE MODEL

We take the same approach as in our earlier work on H
in Fe17 which is similar to that of Hatcher et al.15 on C in
Fe, namely to proceed from a given model for pure Fe and
generate a further parametrization for the interstitial element.
In contrast to Hatcher et al.15 we do not use a direct projection
of the LSDA-GGA Hamiltonian onto a tight binding basis,19,20

instead we employ a genetic algorithm21 to fit the parameters to
a small set of LSDA-GGA target data which enter an objective
function, which is minimized. As a consequence of employing
the simplest tight binding scheme, namely an orthogonal
basis of only d orbitals on the Fe atoms and p orbitals on the
C atoms, the model of Hatcher et al.15 differs significantly
from ours. One difference results from their underlying model
for pure Fe which includes an attractive bonding term in
the total energy which is environment dependent and which
accounts for a significant fraction of the total energy.19 This
was intended as a surrogate for the missing s electrons, but
the fact that this term is large and negative is surprising as one
expects the s band to exert a positive pressure.22–24 Another
difference is that in the minimal basis, having only p orbitals
on C atoms, the limit of pure carbon can only be approximately
rendered since it is the sp hybridization in carbon that leads
to the rich variety of single, double, and triple bonds and the
competition between sp2-bonded graphite and sp3-bonded
diamond. We will argue below that carbon sp hybridization
plays a key role in the structural stability of iron carbides and
also in controlling the configuration of the C2 dimer at an Fe
vacancy. Therefore in the current work we employ a larger
basis, namely s and d orbitals on Fe and s and p orbitals
on C atoms, from which we suppose that at the expense
of greater computational cost we have a physically better
motivated model. Moreover we use a nonorthogonal basis,
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TABLE I. Intersite bond integral and pair potential parameters for the Fe-Fe terms in our tight binding model. All quantities are in
Rydberg atomic units (a.u.) except for the cutoff radii, r1 and rc, which are in units of the equilibrium bcc lattice constant abcc

0 = 2.87 Å.
We include models using both volume-scaled and fixed cutoffs (see the text). These differ only in their pair potentials and are indicated
as “sc” and “fx,” respectively, in the last four rows. Properties of pure Fe resulting from these four models are displayed in Table II.
Parameters for C and H in Fe in Table V and used in the remainder of this paper are associated with the fixed cutoff sd model (sd-
fx). We note that these parameters differ from those published earlier;17 first by correcting misprints in the decay constant q in the ssσ

and sdσ terms, and second because we have moved the cutoff r1 from 10% larger to 10% smaller than abcc
0 . Third we now prefer fixed

multiplicative to scaled augmentative cutoffs. See also the text. These differences are then reflected in slightly different calculated properties in
Table II.

ssσ sdσ ddσ ddπ ddδ

h0 s0 h0 s0 h0 h0 h0

−0.35 0.45 −0.14067 0.5 −2.4383 1.9972 −0.90724
q = 0.3 q = 0.9
r1 = 1.1 r1 = 0.9
rc = 2.0 rc = 1.4

B1 p1 B2 p2 r1 rc

sd-fx 698.67 1.52 517.467 1.4576 0.9 1.4
sd-sc 665.60 1.40843 536.800 1.36297 0.9 1.4
d-fx 683.1 1.5376 459.5 1.4544 0.9 1.4
d-sc 682.8 1.5165 466.8 1.4350 0.9 1.4

and as we argued earlier17 we believe that this allows a more
natural way to include environment dependence in the bond
energy.

The tight binding model that we present here is identical
in its mathematical form to those we developed earlier.17

The functional forms of the bond and overlap integrals
are

h(r) = h0 e−qr , s(r) = s0 e−qr ,

and we tabulate all parameter values h0 and s0 in Tables I
(for Fe-Fe terms) and V (for Fe-C and Fe-H interactions). The
Fe-Fe and Fe-C pair potentials are

φ(r) = B1 e−p1r − B2 e−p2r

noting the sign, so that in Tables I and V parameter values for
B1 and B2 are positive. For Fe-H the pair potential is

φ(r) = B1

r
e−p1r .

We take a rather sophisticated approach to cutting off the
spacial dependence of these interactions. We require proper
energy conservation in molecular dynamics and cannot allow
discontinuities in second derivatives of bond integral or pair
potential functions. Previously17 we implemented the cutoff by
augmenting (that is, replacing) the function with a polynomial
of degree five within r1 < r < rc whose coefficients are chosen
so as to match the function continuously and differentiably to
its value at r1 and to zero at rc. We chose r1 = 1.1abcc

0 and rc =
1.4abcc

0 , where abcc
0 = 2.87 Å is the lattice constant of α-Fe,

so that functions are cut off to zero between second and third
neighbors of the bcc lattice. Subsequent improvements were
introduced after making two observations.26 (i) A smoother
effect can be achieved using a multiplicative cutoff, that is, to
multiply the function by a polynomial of degree five whose
value is one at r1 and zero at rc and whose coefficients
again ensure that the function is everywhere continuous

up to the second derivative. (ii) Because the multiplicative
cutoff “inherits” the shape of the function near r1 better than
the augmentative cutoff, we found that we could move r1

back to 0.9abcc
0 and achieve a smoother function overall. A

second difference compared to our earlier work17 is that there
we employed a volume dependent cutoff, whereas now we
prefer to use a cutoff that is fixed. Because of this small
modification it is necessary to obtain slightly amended pair
potential parameters. We show these in Table I, and in Table II
some predicted properties of pure Fe using both the canonical
d-band model for Fe and the nonorthogonal sd model. Our
canonical model can be read from Table I simply by ignoring
those parameters that don’t enter the Hamiltonian. This model
therefore differs from the canonical model that we published
earlier.17 In fact it is worth pointing out that both these
canonical d-band models reproduce the vacancy formation
and migration energies better than our nonorthogonal model;
although its H F

Vac. is outside the experimental range it is in
better agreement with published LSDA-GGA data. In our
opinion the simplest canonical model is very appropriate for
pure Fe and we do not see the need for the additional, attractive
“embedding potential” introduced by Madsen et al.19 The
inclusion of the s band and nonorthogonality in Fe is only
necessary once hydrogen or first row elements are included.
The reason for this is that the valence s band from these
elements lies typically below the Fe 3d bands; orthogonality
constraints in the concentrated limit then push the Fe 4s band
to above the Fermi level. In the dilute limit the electronic
structure has to differentiate between regions close to an
impurity and those far from it where the iron 4s local density
of states returns to its position in pure Fe below the Fermi
level. To account properly for this effect the impurity and
Fe s bands cannot be neglected. Of course in a minimal pd

basis for Fe-C tight binding models or bond order potentials
both s bands are neglected which is internally consistent,
but these models cannot account for, say, the carbon sp

hybridization.
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TABLE II. Properties of pure α-Fe. Target elastic constants are taken from experimental low temperature data (see Ref. 17); theoretical
hcp-bcc energy difference are taken from our own LSDA-GGA calculations; experimental vacancy formation and migration energies are from
Seeger,25 while remaining LSDA-GGA data are from Domain and Becquart,8 and Kabir et al.13 We show four models in data columns 1–4:
canonical (d) with scaled (sc) and fixed (fx) cutoffs and nonorthogonal (sd) with scaled and fixed cutoffs, respectively.

d-sc d-fx sd-sc sd-fx Target

K (Gpa) 161 174 185 192 168 (Expt.)
C ′ (GPa) 50 50 55 45 53 (Expt.)
c44 (Gpa) 118 117 106 100 122 (Expt.)
�Ehcp-bcc (mRy) 8 6 6 6 15 (LSDA-GGA)

H F
Vac. (eV) 2.0 1.6 1.61–1.75 (Expt.)

2.0 (LSDA-GGA)

H M
Vac. (eV) 1.16 0.81 1.12–1.34 (Expt.)

0.65–0.75 (LSDA-GGA)

A. The on-site carbon and Fe-C parameters

Our approach to finding carbon on-site energy parameters,
Fe-C Hamiltonian matrix elements, and pair potential param-
eters is to fit these to just seven target data (a refinement
was done later to improve the model in the dilute limit, see
Sec. III B). These data are taken from LSDA-GGA calculations
and illustrated in Fig. 1 which shows the heat of formation
of four compounds having the stoichiometry FeC. These are
either bcc α-Fe or fcc γ -Fe with C interstitials in tetrahedral
or octahedral sites. In the γ -Fe case these are identical to
the zincblende and rocksalt crystal structures. We fitted our
parameters to the four equilibrium volumes and three energy
differences. The outcomes of the fitting are shown to the left
of Fig. 1 and in Table IV. The resulting parameter values
are tabulated in Tables I, III, and V. For comparison and for
completeness we also show parameters of our earlier model
for hydrogen in Fe.17

It is important to make some comments about the energy-
volume curves in Fig. 1, also in relation to the equivalent
data for the hydrogen interstitial.17 First, in the bcc structure
both C and H prefer the tetrahedral site in the concentrated

limit of FeC and FeH, and this remains the preferred site
for H into the dilute limit. In contrast carbon occupies the
octahedral sites in both ferritic and austenitic steel. In α-Fe,
this is achieved at the expense of a local tetragonal distortion
of the lattice so as to drive apart the two apical Fe atoms in
the irregular octahedron of the underlying bcc lattice. This
is only possible if the C is sufficiently dilute, certainly more
dilute than the stoichiometry Fe4C, as we will see below, and
in fact the crossover is around Fe16C.27 Second, in the fcc
structure it is certainly striking that according to LSDA-GGA
FeC adopts the zincblende structure rather than the rocksalt
structure, albeit at an expanded volume, as the tetrahedral
interstice is much smaller than the octahedral. This is contrary
to the behavior of hydrogen, even though its atomic radius is
evidently smaller. Again there is a crossover towards the dilute
limit where C prefers the octahedral site in γ -Fe.27 We expect
that the competition between the two sites in FeC is driven
by the sp hybridization which will be maximal in the fourfold
coordinated tetrahedral site, whereas the sixfold octahedral
site offers a bonding environment favorable to the 90◦ bond
angles of unhybridized p orbitals. Therefore it is surprising
that the pd-basis model15 reproduces this result correctly. We
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FIG. 1. (Color online) Structural energy-volume curves for the four iron monocarbide phases FeC that were used in the fitting of the tight
binding model. These show the heat of formation as a function of the atomic volume per Fe atom in both bcc (α) and fcc (γ ) Fe each containing
C atoms in tetrahedral (TET) or octahedral (OCT) interstices. Note that the atomic volume 	0 of pure α-Fe is 79.765 a.u. In this, and subsequent
figures, GGA denotes the generalized gradient approximation to the LSDA.
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TABLE III. On-site Hamiltonian matrix elements for tight
binding models of Fe, H, and C. U is the Hubbard-U parameter
and J is the Stoner parameter.4,6 All quantities are in Rydberg atomic
units (a.u.); Nd is the number of d electrons, which is an adjustable
parameter in the canonical model.

εs − εFe
d εp − εFe

d Nd U J

Fe-d 7 0.05
Fe-sd 0.15 1.0 0.055
C −0.468 0.083 1.238 0
H −0.085 1.2 0

expect that this arises from the freedom of employing long
ranged C-C interactions in that model.15 Conversely we take
the canonical point of view that C-C interactions should not
extend beyond the first neighbor distance in diamond,28 as it
is known that longer range terms do not improve tight binding
models for diamond structure sp-bonded elements.29,30

B. The C-C parameterization

Taking the view that carbon-carbon interactions are to be
curtailed beyond the usual definition of the chemical bond
lengths of 1.2–1.5 Å, none of the tests that we will apply
in Sec. III will require us to specify the C-C bond integrals
or pair potential. There is however one notable exception
which we will be discussing in greater detail below. This
is the observation from LSDA-GGA calculations9 that two
carbon atoms bound to a monovacancy in Fe will form a
“dimer molecule” whose bond length is 1.44 Å. In our model
we have the freedom to choose our C-C interactions at will
since they do not affect any of the results in the concentrated
limit. It would be desirable if an existing model for diamond
could be adopted without modification, and we have used a
tight binding Hamiltonian for diamond from Harrison29 with
parameters adapted by Xu et al.28 (Our model is essentially
that of Harrison in terms of the scaling of the bond integrals
and pair potential with bond length. We take over the bond
integrals at the equilibrium volume in diamond from Xu et al.
but we do not adopt their scaling.) In this way for the C-C
parameters we use a simple power law model, namely

h(r) = h0 r−2, φ(r) = B1 r−4

with (in Rydberg a.u.)

hssσ
0 = −3.734, h

spσ

0 = 3.510,

h
ppσ

0 = 4.107, h
ppπ

0 = −1.157.

B1 = 50 a.u. leads to the correct lattice constant and bulk
modulus in diamond carbon. Unfortunately that choice of B1

does not quite reproduce the energy and C-C bond length of
the C2 molecule bound to the Fe monovacancy. Therefore we
employ B1 = 43 a.u. which leads to about an 8% error in the
diamond lattice constant. We have used the same value of B1

to calculate the total energy of diamond which is the quantity
we have used in Figs. 1–4 to determine the heat of formation
of Fe-C compounds from elemental α-Fe and diamond C. This
has the consequence that the tight binding theory consistently
overestimates −�Hf by 0.16 Ry (see for example Fig. 1); if we
use the value B1 = 50 a.u. the agreement with the LSDA-GGA
is rather better. To keep the C-C interactions to within the first
neighbors as expected in diamond and in hydrocarbons, we
apply a fixed multiplicative cutoff at r1 = 0.6abcc

0 and rc =
abcc

0 .

III. PREDICTIONS OF THE NEW MODEL

In this section we examine to what extent our model
reproduces some previously published or our calculated
LSDA-GGA data.

A. The concentrated limit

We first compare tight binding with LSDA-GGA for a
range of mostly fictitious Fe-C compounds with stoichiome-
tries Fe2C, Fe3C, and Fe4C in Figs. 2–4. The LSDA-GGA
calculations were done by means of the mixed-basis pseudopo-
tential (MBPP) method.31,32 The PBE-GGA exchange and
correlation functional,2 optimally smooth norm conserving
pseudopotentials33 for Fe and C, k points which are equivalent
to 8 × 8 × 8 Chadi-Cohen meshes for cubic structures, and a
Gaussian broadening by 0.2 eV were employed. The mixed
basis consisted of plane waves up to a maximum kinetic
energy of 340 eV and atom-centered basis functions with
d symmetry for Fe atoms and with p symmetry for C atoms
which are confined to spheres with radii of 1.19 Å and
0.66 Å, respectively. The broad agreement between tight
binding and LSDA-GGA is excellent and indeed in almost
all instances the ordering in energy of the phases is correctly
reproduced.

We will focus most closely on the stoichiometry Fe3C,
Fig. 3, which is the most significant composition in materials
science due to the ubiquitous occurrence of cementite in the
microstructures of steels. It is also notable that a significant
weakness in the tight binding model emerges here when trying
to describe the hypothetical substitutional phases D03, L60,
L12, and D022. This is not so surprising since this bonding

TABLE IV. Properties of iron monocarbides. These are the atomic volume of Fe, 	Fe, in FeC relative to 	0 = (abcc
0 )

3
/2 in the four

monocarbides obtained from bcc α-Fe and fcc γ -Fe in which C is in either tetrahedral or octahedral interstices. �E is the energy difference
per formula unit in Ry compared to the fcc octahedral compound. Targets are taken from our LSDA-GGA calculations.

α-tet α-oct γ -tet γ -oct

	Fe/	0 �E 	Fe/	0 �E 	Fe/	0 �E 	Fe/	0

TB 1.591 0.030 1.832 0.202 1.690 0.005 1.327
Target 1.549 0.020 1.788 0.147 1.613 −0.010 1.339
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TABLE V. Intersite bond integrals and pair potential parameters for the Fe-C and Fe-H terms. All quantities are in Rydberg atomic units
(a.u.) except for the cutoff radii r1 and rc which are in units of the equilibrium bcc lattice constant abcc

0 = 2.87 Å. This corrects two misprints
regarding the ssσ and sdσ bond integrals for Fe-H in Table V of Ref. 17.

ssσ spσ sdσ pdσ pdπ

h0 s0 h0 s0 h0 s0 h0 s0 h0 s0

q q q q q q q q q q

r1 r1 r1 r1 r1 r1 r1 r1 r1 r1

rc rc rc rc rc rc rc rc rc rc

Fe-C −1.7712 0.38434 3.9546 −0.59202 −0.17549 0.10283 −1.2300 0.32895 0.88500 −0.37025
0.56548 0.30106 0.76024 0.39114 0.30249 0.34080 0.64362 0.30636 0.66529 0.45518

0.528 0.611 0.595
1.790 1.644 1.674

Fe-H −1.0935 0.26587 −0.40748 0.21988
0.77628 0.28633 0.45450 0.47301

0.8 0.8 0.8 0.8
2 2 2 2

B1 p1 B2 p2 r1 rc

Fe-C 771.190 2.3962 19.325 1.5555 0.50071 1.5070
Fe-H 299.563 2.69225 0.75 0.95

environment is very different from the interstitial phases and
fortunately the substitutional phases are not of particularly
great interest. It is on the other hand very gratifying that the
tight binding model reproduces with great fidelity the ε and
θ iron carbide phases. At the same time the ordering of the
unfavorable simple hexagonal tungsten-carbide-like structure
is very well rendered; this hypothetical structure is obtained

from the hexagonal close packed ε-Fe3C by rotating alternate
Fe layers about the c axis by 60◦ and increasing the axial ratio
by

√
3/2. To emphasise the suitability of the tight binding

approximation in the modeling of steel microstructures, we
show in Table VI a detailed comparison of the calculated
crystal lattice parameters of the important phases, ε and θ

iron carbide, with experimental data.
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FIG. 2. (Color online) Energy volume curves for compounds with stoichiometry Fe2C, comparing the predictions of our model with
results of our LSDA-GGA calculations. These compounds have either bcc (α) or fcc (γ ) iron lattices with C placed at interstitial positions in
tetrahedral (t), octahedral (o), in the bcc case the saddle point (s) along the 〈110〉 direction and, in the fcc case, the saddle points (s) along
the 〈111〉 direction and (d) along the 〈110〉 direction. This latter site is midway between two nearest neighbor Fe atoms and so is expected
to have a high energy; on the other hand as is known from LSDA-GGA calculations27 and as our model also predicts, this site is along the
diffusion path in γ -Fe. The alternative path for diffusion (adopted by H) via an intermediate tetrahedral site has higher energy. This is discussed
in Sec. III B.
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FIG. 3. (Color online) Energy volume curves for compounds with stoichiometry Fe3C, comparing the predictions of our model with
results of our LSDA-GGA calculations. Here we show both interstitial and substitutional putative phases, all of which have large positive
heats of formation and are hence predicted not to exist. The first four in the column of labels represent bcc and fcc supercells containing
one vacancy and a C atom at either a neighboring tetrahedral (t) or octahedral (o) site. The next four are substitutional phases labeled using
their Strukturbericht designations. Of greatest interest are the remaining three Fe3C compounds: “WC” labels a hypothetical high energy
structure similar to a simple hexagonal tungsten-carbide-like phase (see the text); the only phases predicted to exist thermodynamically
are the ε carbide and the θ carbide, or cementite phase. It is interesting to note that the LSDA-GGA predicts these both to have a
positive heat of formation, which requires further investigation, since they are both known to exist ubiquitously in the microstructures of
steels.

B. The dilute limit

Of equal or even greater interest is the behavior of carbon
in the dilute limit. In the case of hydrogen in Fe we could
claim a success in that a model fitted in the most concentrated
stoichiometry transfers very well into the dilute limit.17 Carbon
in Fe has been more problematic and subsequent to the
fitting described in Sec. II A it was necessary to make further
genetic optimizations of the Fe-C parameters in order to render
correctly the migration energy and the binding of C to a
monovacancy—the quantities H

Mα

C and EB(1) in the first two
data columns of Table VII.

Our main results are presented in Tables VII and VIII.
We have constructed cubic 4 × 4 × 4 supercells for α-Fe and
γ -Fe in order to study, in particular, the energetics of the
monovacancy in Fe and its binding to carbon interstitials. As in
the case of hydrogen, the impurity does not occupy a vacant Fe
lattice site, as is clear from Fig. 3 which shows a large positive
heat of formation for the four substitutional phases considered.
Instead (again, as does hydrogen) carbon occupies a position
close to its preferred interstitial site, in this case the octahedral
interstice, at one of the cube faces bounding the vacancy. We
follow the definitions employed by Becquart et al.11 such that
the binding energy of one or more interstitials to a vacancy is
the difference in energy between that number of interstitials

and the vacancy occupying separate, noninteracting sites, and
the interstitials bound to the vacancy. In this way, we have,
from calculations based on a 128-atom supercell of pure Fe,

EB(1) = −[E(Fe127C) + E(Fe128)]

+ [E(Fe127) + E(Fe128C)]

and

EB(2) = −[E(Fe127C2) + 2E(Fe128)]

+ [E(Fe127) + 2E(Fe128C)],

where the signs are employed such that a positive binding
energy implies a preference for the two C atoms to bind at
a vacancy compared to the vacancy and two C interstitials
being widely separated. The total energies E involved are
calculated by relaxing supercells containing the numbers of
atoms indicated in parentheses. We therefore show in Table VII
EB(1), the binding energy of a single C atom to a monovacancy,
and EB(2k) (using the designations of Becquart et al.11) the
binding energy of two C atoms to a vacancy.

We have also calculated migration energies of carbon in
α-Fe and γ -Fe using static relaxations and also the nudged
elastic band method.36 TB describes these correctly in both
phases of Fe as seen in the data columns 1, 4, and 5 in Table VII.
In particular our TB model confirms the LSDA-GGA result
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FIG. 4. (Color online) Energy volume curves for compounds with stoichiometry Fe4C, comparing the predictions of our tight binding
model with our LSDA-GGA calculations. Here we show a variety of supercells in bcc (α) and fcc (γ ) crystal structures, each in face centered
cubic (fcc), body centered tetragonal (bct), and simple cubic (sc) supercell settings. In each of these cases, a C atom is placed at one of the
interstitial sites, using the same labeling as in Fig. 2. As expected from the results of Fig. 1 and seen also in the data in Fig. 2 only the γ -Fe
with octahedral carbon have reasonably low heats of formation.

that the diffusion path of C in γ -Fe is not as one might suppose
mediated by a “double” hop via a neighboring tetrahedral
site as for H in γ -Fe, but the carbon atom actually takes
a direct route forcing itself through the bond center of two
nearest neighbor Fe atoms at the 〈110〉 (d) saddle point.
This is surprising in view of the high energy of the γ -d
crystal structures in Figs. 3 and 4. However this tight binding
prediction agrees with LSDA-GGA results.37

TABLE VI. Calculated lattice parameters of hexagonal ε Fe3C
and orthorhombic θ Fe3C (cementite), compared to LSDA-GGA cal-
culations and experimental measurements reported by Jang et al.34,35

Lattice parameters a, b, and c are in Å. The last column shows the
predicted equilibrium volume compared to experiment.

a b c b/a c/a V/Vexp

θ -Fe3C TB 4.95 6.79 4.42 1.37 0.89 0.96
LSDA-GGA 5.13 6.65 4.46 1.30 0.86 0.98

Expt. 5.09 6.74 4.52 1.32 0.89

ε-Fe3C TB 4.63 8.64 1.87 0.93
LSDA-GGA 4.74 8.63 1.82 0.98

Expt. 4.77 8.71 1.83

C. The carbon dimer at the vacancy

Several authors have made LSDA-GGA calculations for
a carbon dimer bound to a vacancy in α-Fe and described a
number of possible atomic structures.9,11,14 We consider four
here. If the dimer is orientated along a 〈100〉 direction, then
if the carbon atoms remain close to their original octahedral
sites at opposite faces of the cube bounding the vacancy, this
configuration is designated “j” by Becquart et al.11 or “OO”

TABLE VII. Properties of C in Fe in the dilute limit. H
Mα

C is
the migration energy of the C atom, equal to the energy difference
between C in tetrahedral and octahedral interstices in bcc α-Fe. EB (1)
and EB (2k) are the binding energies of one and two C atoms to
a vacancy (see Ref. 11, Table V). The final two columns are data
for C in fcc γ -Fe and show the migration energies H

Mγ

C (tet) and

H
Mγ

C (d) of C between two octahedral sites via a tetrahedral site and
the “d-saddle” site respectively. All energies are in eV. The first line
shows LSDA-GGA data taken from Refs. 8, 27, and 14. The second
line shows results from our TB model.

H
Mα

C EB (1) EB (2k) H
Mγ

C (tet) H
Mγ

C (d)

LSDA-GGA 0.87 0.47 1.50 1.48 1.00
TB 0.81 0.35 1.55 2.11 0.63
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TABLE VIII. Comparative energies and bond lengths of four
possible configurations of two carbon atoms bound to one vacancy in
bcc α-Fe. We use the designations of Refs. 8 and 14. The structures
relaxed using TB are illustrated in Fig. 5. The first and second
rows show results from LSDA-GGA calculations and the third and
fourth those from the TB model. The latter correctly predicts the
ordering in energy (these are shown relative to the “k” ground state
energy) and the bond length. The “〈110〉” configuration has the
dimer centered at the vacant Fe site and orientated along a 〈110〉
direction. Energy differences �E are in eV and bond lengths d in Å.
The numbers in parentheses are energy differences calculated using
the Fe atom positions of the relaxed equivalent structure, with both
C atoms removed; these numbers allow a comparison of the host
lattice distortions accompanying the formation of the dimer-vacancy
complex.

“j” “〈100〉” “k” “〈110〉”
�E d �E d �E d �E d

LSDA-GGA 0.37 2.57 0.11 1.46 0 1.43 0.06 1.43
(0.07) (−0.05) (0) (0.04)

TB 1.10 2.70 0.13 1.46 0 1.44 1.23 1.40
(0.49) (0.16) (0) (0.66)

by Lau et al.14 This is a local minimum in the energy, and in
our TB model the two carbon atoms are outside their range
of interaction in the Hamiltonian (see Sec. II B). The energy
is lowered if the two carbon atoms approach each other along
the 〈100〉 direction and form a dimer bond, having a bond
length of 1.46 Å which is very close to that in diamond and the
C-C single bond in molecules. This configuration is denoted
“〈100〉” by Lau et al.14 but was not considered in earlier
work.9,11 This is not yet the global minimum energy for the
dimer which is achieved by orientating the dimer along a 〈011〉
direction with the two C atoms close to octahedral positions, a
situation denoted “k” by Becquart et al.11 or “AO” by Lau
et al.14 The latter authors describe a further configuration
“〈011〉” in which the dimer bond is centered at the vacant site
and orientated parallel to “k.” This is of slightly higher energy
than “k.” The four configurations are illustrated in Fig. 5. In
Table VIII we compare predictions of the TB model with our
own LSDA-GGA results.38 The only serious discrepancy is
that the TB model overestimates the energies of the “j” and
“〈011〉” configurations with respect to LSDA-GGA.

IV. DISCUSSION

Först et al.10 made a very thorough study using LSDA-GGA
of point defect complex energetics and found the remarkable
result that under the conditions normally encountered in a
steel, effectively all Fe vacancies have a C2 dimer bound
to them as illustrated in Fig. 5. Moreover, by just a few
hundredths of an eV, the dimer prefers to be orientated along
a 〈110〉 direction. It would be of great interest to determine
whether this phenomenon can be confirmed experimentally,
possibly by internal friction measurements. It is notable
that a similar prediction was made using DFT concerning
dimerization of boron in copper, a prediction that is consistent
with thermodynamic assessment.41

One can interpret the competition between the four con-
figurations illustrated in Fig. 5 in terms of certain notional

(a) (b)

(c) (d)

FIG. 5. (Color online) Atomic structures of four configurations
for a carbon dimer bound to a monovacancy in α-Fe. Structures
shown are (a) “j” (Ref. 11), or “OO” (Ref. 14); (b) “〈100〉” (Ref. 14);
(c) “〈110〉” (Ref. 14); (d) “k” (Ref. 11) or “AO” (Ref. 14), the global
minimum for this configuration (Ref. 14). The relaxed structures
displayed here are obtained with our TB model; Fe-C bond lengths
shown are 3.73 Å in “〈100〉” and 3.65 Å in “k.”

contributions to the total energy. These are (i) the formation of a
C-C covalent bond, (ii) the coordination of the carbon atoms to
neighboring Fe atoms, and (iii) the accompanying distortion of
the host Fe lattice containing a vacancy. (i) It is surprising that
a C-C bond having the same length as in pure carbon is formed
in view of the metallic electron gas destroying the single bond
order; the bond length inside the metal is the same as in the pure
carbon or hydrocarbon, but the bond energy is about ten times
smaller. (ii) The Fe-C coordination goes a long way to explain
the stability of the most stable configuration “k” in which the
carbon dimer makes three bonds of equal length (3.65 Å) to
Fe atoms, thus forming an “ethane” molecule in which the Fe
atoms take the part of H atoms [see Fig. 5(d)]. With the dimer
orientated along 〈100〉 each carbon atom makes four bonds
(3.73 Å long) to neighboring Fe atoms [Fig. 5(b)]. We take it
that this is less favorable owing to carbon preferring a fourfold
coordination. Configurations “j” and “〈110〉” both display a
planar configuration of Fe-C bonds; in “j” the carbon is bonded
to four Fe atoms in the plane of a cube face of the bcc lattice,
in “〈110〉” each carbon is bonded to two Fe atoms. (iii) In
Table VIII we give in parentheses values of the calculated
total energies of the four configurations, having removed the
two carbon atoms and leaving the Fe atoms in their positions.
This is intended to examine the elastic distortion energy
accompanying the introduction of the dimer into the vacancy.
In the LSDA-GGA these distortion energies are rather small
and in fact “〈100〉” has a slightly lower value than “k.” However
the preferred fourfold coordination of the carbon atoms in
“k” is able to compensate for the increased distortion energy.
Whereas the TB model correctly predicts “k” to be the global
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minimum, the quantitative comparison with LSDA-GGA is
rather poor. We suppose that this is a consequence of the small
basis set of TB and more limited self-consistency. Thus TB
overestimates effects based on covalent bonding and lattice
distortions because the Hamiltonian does not have the degrees
of freedom of LSDA-GGA to find a lower energy in the
case of an unfavorable structure. This is well illustrated in
the case of “〈110〉” in Fig. 5(c). Clearly there is a large
distortion of the bcc cubic unit cell surrounding the vacancy.
The LSDA-GGA given the constraint of this distortion in the
atomic structure is yet able to find a low energy electronic
structure that can accommodate the constraint. The TB finds
this much more difficult.

V. CONCLUSIONS

The TB model presented here is intended as a physically
better motivated and more transferable scheme as compared
to the recently published orthogonal pd model15 or to existing
classical interatomic potentials. Its transferability has been
demonstrated using tests in both concentrated and dilute
limits, for example successfully predicting the structure and
energetics of cementite (Sec. III A) and the migration path of
C in γ -Fe (Sec. III B). It may be thought that this migration
path particularly would expose the need for environment
dependence in an empirical model.42,43 Our model, using only
two-center parameters, is able to deal with this through the
use of an overlap matrix between nonorthogonal Fe and C
orbitals.20,44

Our model also correctly describes the structure and
energetics of the carbon dimer bound to a vacancy in α-
Fe—a defect that is expected to take a central importance
following the predictions of Först et al.10 Apart from a large
overestimation of the energy of the “〈011〉” dimer, our TB
model properly orders the structures and predicts “k” to have
the lowest energy although we were forced to modify an
existing simple model for carbon in order to achieve the correct
C2 bond length (see Sec. II B). It is notable that published
classical potentials11 and the minimal basis TB model15 cannot
reproduce the stability of the carbon dimer. An exception is the
recent classical potential of Lau et al.14 although this model
greatly overestimates the binding energy of the 〈011〉 dimer.

In view of the apparent significance of carbon dimers
existing in the microstructure of steel and their possible
interactions with hydrogen,12 it is now a matter of importance
that plausible and efficient quantum mechanical models are
produced. From this point of view the present work assumes a
particular significance.
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