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Homes scaling and BCS
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It is argued on the basis of the BCS theory that the zero-T penetration depth satisfies λ−2(0) ∝ σTc (σ is the
normal state dc conductivity) not only in the extreme dirty limit ξ0/� � 1, but in a broad range of scattering
parameters down to ξ0/� ∼ 1 (ξ0 is the zero-T BCS coherence length and � is the mean free path). Hence, the
scaling λ−2(0) ∝ σTc, suggested as a new universal property of superconductors [Dordevic, Basov, and Homes,
Sci. Rep. 3, 1713 (2013)], finds a natural explanation within the BCS theory.
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It has recently been found that the zero-T penetration depth
in many superconductors satisfies a scaling relation λ−2(0) ∝
σTc (σ is the normal state dc conductivity) over many orders of
magnitude of σTc.1,2 A number of nontrivial theoretical ideas
were offered to explain this scaling.3–7 Here, standard isotropic
BCS superconductors are shown to satisfy this relation in a
broad domain of scattering parameters ξ0/� from the dirty
limit ξ0/� � 1 down to ξ0/� ∼ 1.

In isotropic BCS superconductors the penetration depth is
given by

λ−2 = 16π2e2T N (0)�2v2

3c2

∑
ω>0

1

β2β ′ . (1)

Here, h̄ω = πT (2n + 1) defines the Matsubara frequencies,
N (0) is the density of states for one spin, v is the Fermi velocity,
β2 = h̄2ω2 + �2, β ′ = β + h̄/2τ , and τ is the transport
scattering time. One can find this result on the last page of
the book by Abrikosov, Gor’kov, and Dzyaloshinskii.8 It can
be readily derived using Eilenberger quasiclassical version of
the BCS theory (see, e.g., Refs. 9 and 10).

At zero temperature, one can replace the sum with an
integral according to 2πT

∑
n → ∫ ∞

0 d(h̄ω) to obtain, after
straightforward algebra,

λ−2(0) = 4π2e2N (0)v2

3c2η

⎛
⎝1 +

4 tan−1 η−1√
1−η2

π
√

1 − η2

⎞
⎠ , (2)

where the scattering parameter

η = h̄

2τ�0
= π

2

ξ0

�
. (3)

Equation (2) works for any η > 0. For η > 1, it could be
written in explicitly real form by replacing tan−1 → − tanh−1

and
√

1 − η2 →
√

η2 − 1.
In the dirty limit, the scattering parameter η � 1 and one

obtains

λ−2
d (0) = 4π2e2N (0)v2

3c2η
= 4π2σ�0

h̄c2
, (4)

where σ = 2e2N (0)v2τ/3 is the normal state conductivity.
This also follows from the dirty limit expression

λ−2
d = 8π2e2N (0)v2τ

3c2h̄
� tanh

�

2T
(5)

which follows from Eq. (1).

Since �0 ∝ Tc, Eq. (4) prompted suggestions that the
scaling λ−2(0) ∝ σTc can be explained by strong scattering
present in many materials.4,11 This argument, however, was
criticized since the scaling in question seems to work not only
for dirty materials.1

The question remains, however, how strong the scattering
should be for the dirty limit scaling to work. To answer this
question one observes that the prefactor in Eq. (2) coincides
with Eq. (4) of the dirty limit, albeit with an arbitrary scattering
parameter η. We denote this prefactor as λ−2

d (0,η) to avoid
confusion with the dirty limit η → ∞. Equation (2) takes the
form

λ−2(0) = λ−2
d (0,η)

⎛
⎝1 +

4 tan−1 η−1√
1−η2

π
√

1 − η2

⎞
⎠ . (6)

Note that λ−2
d (0,η) = 4π2σ�0/h̄c2 ∝ σTc, the same scaling

as in the dirty limit. Hence, deviations from this scaling are
determined by the expression in parentheses. Figure 1 shows
that this expression varies only by a factor of 2 when the
scattering parameter η changes from 10 to 1, the latter value
corresponding to the quite clean situation with ξ0/� = 2/π =
0.64. This suggests that the dirty limit scaling may work quite
well in a broad domain of scattering parameters, even more so
visually if one employs log-log plots.

To show this, we express λ−2
d (0,η) and η in terms of the

product x = σTc in K/� cm since these units are preferred by
experimentalists:1

λ−2
d (0,η) cm−2 = 0.915 × 104 x,

(7)

η = 4π2e2N (0)v2

3c2λ−2
d (0)

= 6.1 × 106

x
.

Here, N (0)v2 = 3n/2m ≈ 1.65 × 1049 cgs for the free elec-
trons is taken as an estimate (n ≈ 1022 cm−3 and m is the free
electron mass). With these numbers Eq. (6) generates the curve
shown in Fig. 2.

The left part of this plot corresponds to large scattering
parameters η, whereas the right one represents the clean
situation. The boundary between these extremes is ξ0/� ≈ 1
or η ≈ π/2. With the numbers chosen, this corresponds to
σTc ≈ 3.9 × 106 K/� cm. Hence, the figure shows that in
a broad range of the variable σTc, the behavior of λ−2(0)
is in fact close to that of the dirty limit. The maximum
σTc = 107 K/� cm of the figure (and of the data collection

220507-11098-0121/2013/87(22)/220507(2) ©2013 American Physical Society

http://dx.doi.org/10.1038/srep01713
http://dx.doi.org/10.1103/PhysRevB.87.220507


RAPID COMMUNICATIONS

V. G. KOGAN PHYSICAL REVIEW B 87, 220507(R) (2013)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

FIG. 1. (Color online) Parentheses of Eq. (6) vs η for 0 < η < 10.

of Ref. 1) corresponds to ξ0/� ≈ 0.2, i.e., to clean materials.
When the material is in the clean limit η → 0, the curve of
Fig. 2 flattens to approach

λ−2
clean(0) = 8πe2N (0)v2

3c2
= 4πe2n

mc2
. (8)

This, however, happens at very large values of σTc out of the
range of available data.1 At the maximum available σTc =
107 K/� cm the deviation of the curve on the log-log plot of
Fig. 2 from the straight line is about 7%.

Thus, qualitatively, “Homes scaling,” shown in Fig. 2 of
Ref. 1, is well reproduced by the BCS theory and does not
necessarily call for exotic constructions for its justification.3,6,7
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FIG. 2. (Color online) The log-log plot of λ−2 cm−2 vs x = σTc

in K/� cm. The vertical line shows x corresponding to ξ0/� = 1.

The oversimplified scheme presented here, of course, can
be improved by taking into account anisotropies, variations
in densities of states, Fermi velocities, pair breaking, etc. It
strongly suggests, however, that the idea of the dirty limit
scaling is certainly viable and can be extended to a broad
range of scattering parameters. The extensive set of data
summarized by the Homes scaling can be considered as yet
another confirmation of the BCS theory, if any is still needed.
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