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Three-dimensional artificial spin ice in nanostructured Co on an inverse opal-like lattice
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The evolution of the magnetic structure for an inverse opal-like structure under an applied magnetic field is
studied by small-angle neutron scattering. The samples were produced by filling the voids of an artificial opal
film with Co. It is shown that the local configuration of magnetization is inhomogeneous over the basic element
of the inverse opal-like lattice structure (IOLS) but follows its periodicity. Applying the “ice-rule” concept to the
structure, we describe the local magnetization of this ferromagnetic three-dimensional lattice. We have developed
a model of the remagnetization process predicting the occurrence of an unusual perpendicular component of the
magnetization in the IOLS which is defined only by the direction and strength of the applied magnetic field.
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The concept of frustrated magnetism has become very
popular for complex crystal structures, where the competition
between exchange interaction and crystal anisotropy results in
the inability of the moment on a certain site to find an energy
minimum. This description has originally been developed
for triangular two-dimensional antiferromagnets.1 Recently,
the concept of magnetic frustration has expanded to three-
dimensional (3D) systems, including the so-called “spin-ice”
systems, where the Ising-like magnetic moments of rare-earth
ions [Ho3+ (Ref. 2), Dy3+ (Ref. 3)] occupy lattice sites of
corner-shared tetrahedrons and are magnetically frustrated
due to anisotropy and ferromagnetic interactions.4–7 The
characteristic energies which govern the magnetic behavior
of these systems are of the order of 0.1 meV (about 1 K on the
temperature scale).

In the search for a way to increase the energy scale and,
thus, the corresponding temperatures in frustrated systems, one
comes across the magnetic nanomaterials.8–13 The magnetic
properties of a two-dimensional square lattice of isolated
magnetic rods on a length scale of 1 μm have recently been
studied.8,9 The crossing of the magnetic rods was considered
as a structural element of an “artificial spin ice,” which is
frustrated at room temperature.10–12 Another artificial spin
ice based on a continuous cobalt honeycomb network has
even more complex phenomena, such as magnetic chirality
in the spin ice giving rise to an anomalous or topological
Hall effect.13 Thus, the artificial spin ice can be a playground
for physicists to study various phenomena associated with
magnetic frustration. However, the majority of the artificial
spin ices, being produced by lithography, are two dimensional.

In this Rapid Communication we focus on the magnetic
properties of a three-dimensional network constructed by
magnetic elements of size 400–500 nm, which form a
face-centered-cubic (fcc) lattice defining an inverse opal-
like structure (IOLS). Small-angle neutron-scattering (SANS)
experiments have shown that the local configuration of the
magnetization coincides with the spatial network of IOLS

following the directions determined by the symmetry of the
structure. Since, in analogy to the “spin-ice rule,” the magnetic
flux conservation law for the elements of the structure must
be fulfilled, we have developed a model for the distribution
of the magnetic moments within the IOLS. The scattering
intensity predicted by the model is in qualitative agreement
with the experimental data. Thus, we show that the magnetism
in IOLS follows the ice-rule model, which predicts the occur-
rence of a magnetic component perpendicular to the applied
magnetic field.

An inverse opal-like Co film has been prepared using
the following templating technique:14–17 First, polystyrene
spheres with mean diameter of 540 nm form a colloidal
crystalline face-centered-cubic template on top of a conductive
substrate (polished Si single crystal, covered by the 10 nm Au
layer) covering an area of 1 cm2 with a thickness of 14 μm.
Subsequently, the voids between the spheres are filled with
Co via an electrochemical crystallization process. Finally, the
microspheres are dissolved in toluene. It has been shown that
the ferromagnetic behavior of such a structure is governed by
the geometry of the network.18–21 However, neither a detailed
analysis of the magnetic properties has been done yet, nor has
an appropriate model been suggested for this system so far.

Microradian x-ray diffraction has shown that the sample
possesses fcc symmetry with a periodicity of 760 ± 10 nm.20

A scanning electron microscopy (SEM) image of the sample
surface is presented in Fig. 1, and a wider view of the (111)
plane is shown in the inset of Fig. 1. The inverse OLS is built
of unit elements consisting of three parts: two quasitetrahedra
separated by a quasicube. They are connected by vertices
along one of the four [111]-type axes. The surfaces of the
cube and tetrahedra are concave resembling the voids between
spheres. The projection of the unit element on the (111) plane
is displayed in Fig. 1(b). The tetrahedra on the left and right
sides of the cube are positioned at different depths in Fig. 1(a).
They are denoted as TU (upper tetrahedron) and TD (lower
tetrahedron). For an IOLS with the period of 760 nm one
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(a) (b)

FIG. 1. Top view of the Co IOLS sample representing the (111)
plane of the fcc structure (a). The unit element of IOLS consists of
two tetrahedra connected by a cube (b).

can estimate that the cube has a volume of ≈2203 nm3 and
the tetrahedra have a volume of ≈1203 nm3. The connecting
“legs” have a length of ≈160 nm.

Neglecting the magnetocrystalline anisotropy of the ma-
terial, we suppose that due to the shape anisotropy of the
connecting “legs” the magnetic moments are aligned along the
axes of the legs and, thus, considered as Ising-like spins. These
connections define the easy axes of the local magnetization of
the IOLS sample being along the four 〈111〉 directions.

The tetrahedra can be viewed as the point where the
four vertices/legs of four different cubes are connected. To
minimize the magnetic energy of the structure the magnetic
flux is conserved in each tetrahedron following the so-called
“ice rule”, which is formulated for spin ice,2,3 i.e., two
moments point into and two moments point out of the
tetrahedron. Such an ice rule should also hold for the cubes
surrounded by eight tetrahedra in the IOLS. The ice rule
acquires for IOLS a more generalized form: The net magnetic
flux inside a tetrahedron or cube equals zero.

In the fully demagnetized state the IOLS is intrinsically
frustrated similar to the model of the artificial spin ice.8–12 We
focus on the IOLS under an applied magnetic field when the
frustration and degeneracy is lifted for certain directions of the
field by favoring energetically local magnetic moments with a
positive projection to the field direction.

Using the ice rule model one can estimate both the total
magnetic energy of the IOLS and its average magnetization.
Twelve of the 14 vertices present in one unit element are shared
with the neighboring elements and, thus, doubly counted and
labeled by the same symbols in Fig. 1(b). Therefore, for
the magnetic structure based on IOLS the unit element is a
combination of the four moments of the lower tetrahedron
(TD) and the four moments of the upper tetrahedron (TU).
The average magnetization is the sum of all eight moments of
the unit element and corresponding magnetic energy given by

M = M0

∑

h,k,l=−1,1

m[hkl] and E = −MH + Eice rule,

(1)

where M0 is the magnetic moment of one vertex, H is
the magnetic field, and m is the magnetic moment. Eice rule

denotes the energy of the magnetic flux inside the element,
which is minimal, when the ice rule is fulfilled for both
tetrahedra. The situation when three moments are directed
towards each other opposite to the fourth moment at the
tetrahedron “crossroads,” or vice versa, is less favorable and the
energy Eice rule increases. The most unfavorable configuration

(a) (b) (c)

(d) (e) (f)

FIG. 2. (Color online) Magnetization distribution in IOLS for
different stages of the remagnetization process: at H ∼ −Hc2 (a), at
H = 0 (b), at H = Hc (c), at H = Hc1 (d), at H = Hc2 (e), and at
H > Hc3 (f). The Ising-like magnetic moments (labled with arrows)
are oriented along the 〈111〉 axes. Moments in the upper plane are
light-colored.

arises when all four moments point towards or away from each
other at the crossroads.

In order to gain insight into the remagnetization process the
magnetic states of the IOLS at different magnetic fields have
to be considered. These states in the magnetic field applied
along the [12̄1] axis are presented in Fig. 2.

It is convenient to consider one layer of the (111) plane of
the structure. Each layer is connected to the neighboring ones
only via “legs” in the [111] direction perpendicular to the layer
plane and the magnetic field. The moments along the 〈111〉
axes can be divided into four magnetic subsystems, which
are represented by arrows in Fig. 2, and connect the central
cube via eight vertices with the neighboring tetrahedra. When
the magnetic field is applied in the (111) plane, the out-of-plane
moments along [111] seem to be degenerate. However, as will
be shown below, due to the ice rule this degeneracy is lifted.

The remagnetization scenario starts in a relatively large
field H ∼ −Hc2 [Fig. 2(a)]. The magnetic moments have
positive projections with respect to the field direction and
are oriented along the three [1̄11], [11̄1], and [111̄] axes. In
such a configuration, one magnetic moment points towards
the upper tetrahedron, whereas two moments point away
from the tetrahedron. According to the ice rule the fourth
moment perpendicular to the plane should also point towards
the upper tetrahedron (downwards). For the lower tetrahe-
dron the situation is opposite, i.e., two magnetic moments
point towards and one moment points away from the
tetrahedron. The fourth moment is expected to point away
(downwards) similar to the upper tetrahedron. Therefore, the
sample has an additional magnetization component, which is
perpendicular to the (111) plane pointing downwards and, thus,
perpendicular to the negative applied field.

In zero magnetic field the sample is remanently magnetized.
In a small and negative field |H | < |Hc| the moment along
either the [1̄11] or [111̄] axis will most likely reorient,
since it has the largest angle (62◦) with respect to the field
[Fig. 2(b)]. In order to satisfy the ice rule this flip takes place
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TABLE I. Values of the magnetization components parallel and
perpendicular to the field at different stages of the reorientation
process which correspond to the panels of Fig. 2.

Stage M‖ M⊥

a −2M0(cos 19◦ + 2 cos 62◦) −2M0(1 + cos 70◦)
b −2M0(cos 19◦ + cos 62◦) 0
c 0 0
d 2M0(cos 19◦ + cos 62◦) 0
e 2M0(cos 19◦ + 2 cos 62◦) 2M0(1 + cos 70◦)
f 8M0 0

in combination with the reorientation of the moment along the
[111] direction. In a second step the other two local moments
flip. In a small but positive field H < Hc the moment along the
[11̄1] axis will most likely reorient, since it has the smallest
angle (19◦) with respect to the field. Herewith, each magnetic
subsystem reorientates at different critical fields Hc(i). At
H = Hc half of the moments are reoriented and the sample
becomes demagnetized, i.e., M is equal to zero [Fig. 2(c)].
Most likely the process is driven by an avalanche effect.

In the field range H > Hc the pairwise reorientation of
the local moments continues. This reorientation process of
the local moments is completed at H = Hc2, where all local
moments in the tetrahedra are pointing opposite to the situation
at the starting field H = −Hc2. The perpendicular component
of the magnetization is pointing up [Fig. 2(e)].

This magnetization state is stable over a large field range up
to H = Hc3, above which the magnetic moments tend to rotate
towards the magnetic field direction [Fig. 2(f)]. In this state
the magnetic field dominates the anisotropy of IOLS, and the
ice rule is not satisfied anymore. The process of reorientation
covers a large field range and is completed at a high magnetic
field H > 1.2 T.

The average magnetization parallel and perpendicular to
the field direction (M‖ and M⊥) can be calculated for each
magnetization stage by using Eqs. (1) and Fig. 2. However, it
is necessary to take into account, that states (b), (c), and (d)
in Fig. 2 are frustrated and all variants of the magnetization
distribution should be considered and averaged. Calculated
values of the magnetization components are presented in
Table I.

To prove the model, we performed SANS experiments
at the SANS-2 in Geesthacht (Germany). A neutron beam
with a wavelength λ = 1.2 nm, a bandwidth �λ/λ = 0.1,
and a divergence η = 1.5 mrad was used. The scattered
neutrons were detected by a position sensitive detector with a
resolution of 256 × 256 pixels, each of 2.2 × 2.2 mm2 size.
The detector-to-sample distance was set at 21.5 meters such
that the Q range covers 5–70 μm−1 with a step of 0.5 μm−1.
Accounting for the small sample thickness and highest possible
resolution required the experiment was carried out at the
limit of abilities of the modern SANS instruments. The cobalt
IOLS films were oriented perpendicular to the incident neutron
beam. An external magnetic field H up to 1.2 T was applied
in the plane of the film which was decisive for this experiment
since it has revealed a magnetized state of the sample that was
not reached in the previous work.20 The neutron diffraction
patterns recorded in the experiments consisted of several

(b)(a)

FIG. 3. (Color online) (a) Projection of an idealized basic element
of the IOLS on the (111) plane with attached tetrahedra of four
neighboring elements. (b) Neutron diffraction patterns for Co IOLS
with the magnetic field H = 294 mT along the [12̄1] axis. The Miller
indices of the reflections correspond to the fcc structure with the
lattice constant of a0 = 760 ± 10 nm.

clearly resolved sets of hexagonally arranged reflexes (Fig. 3).
The measurements were performed at 300 K.

All reflections of the 202 type visible in Fig. 3(b) were
divided into subgroups: 202̄ and 2̄02 reflections with an angle α

of 90◦ between Q and H; and 022̄, 02̄2, 22̄0, and 2̄20 reflections
with an angle α of 30◦ between Q and H. The intensities of
these magnetic reflections were averaged over the subgroups
in order to improve the statistics.

The intensity IM of nonpolarized neutron scattering for
magnetic structures with a large period can be described by
the equations

IM (Q) ∼ |Amm⊥qS(Q)F (Q)|2, m⊥q = m − (qm)q (2)

with the unit vectors m and q of the magnetization M and the
momentum transfer Q. Am is the amplitude of the magnetic
scattering, S(q) is the structure factor, and F (q) is the form
factor. The magnetic field dependence of IM for the Co IOLS
is presented in Figs. 4(a) and 4(b) and is accompanied by
the magnetization curve taken from the sample in the same
field-to-sample geometry [Fig. 4(c)].

In the model described above the experimental data can
be easily interpreted. The magnetic intensity IM is propor-
tional to the volume of the scattering element magnetized
in the direction [hkl] (V[hkl]), which is considered equal
for the four directions along the 〈111〉 axes. It is proportional
to the squared magnetization |m⊥q|2 projected to the plane
normal to the scattering vector Q [Eq. (2)]. We also introduce
the proportionality factor ai(Hc(i)), which is equal to 0, when
the subsystem is nonmagnetized, and equal to 1, when it is
magnetized. Hc(i) is the threshold field of these subsystems,
where the magnetization changes from 0 to 1.

IM (Q) ∼
∑

i

ai(Hci)m
2
i cos2( 	 m⊥q,i,mi). (3)

For example, intensity IM (202̄) is dominated by contributions
from the subsystems aligned along [1̄11̄] and [111], and
contributions from the other two subsystems along the [1̄11]
and [111̄] are reduced by a factor of cos2 55◦ ≈ 0.328.

The fact that all four moment subsystems are magnetized
differently and saturate at different values of the applied
magnetic field Hc(1,2,3,4) is observed in the field dependence of
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(a)

(b)

(c)

FIG. 4. (Color online) Field dependence of the magnetic intensity
IM of neutron scattering on Co IOLS with H ‖ [1̄21̄] (a) at Q202̄ ⊥ H,
(b) at Q022̄ inclined at 30◦ with respect to the field H, and (c) of the
total magnetization.

the Bragg intensity of the reflections IM (202̄) and IM (022̄) in
Figs. 4(a) and 4(b), respectively. The corresponding theoretical
points are also presented. One can distinguish three specific
fields in the range from 0 to 1.2 T. The coercive field Hc =
24 mT is clearly established as the minimum of the intensity
in both dependencies IM (202̄)(H ) and IM (022̄)(H ). At Hc1 =
40 mT a steep increase of IM (202̄)(H ) and IM (022̄)(H ) is
observed. The critical field Hc2 = 140 mT, where the intensity
IM (202̄) changes slightly but abruptly, coincides with the
field where the intensity IM (022̄) reaches its maximum and
saturates. Hc3 = 400 mT is a further critical field, where the

intensity IM (202̄) undergoes another small but abrupt change,
while the intensity IM (022̄) starts to decrease smoothly.
This decrease of IM (022̄) is observed up to the highest
measured field H = 1.2 T. The intensity IM (202̄) remains
unchanged in the range from Hc3 to 1.2 T. The magnetization
measurements performed using a superconducting quantum
interference device magnetometer confirmed the presence of
these characteristic fields: Hc, Hc1, Hc2, and Hc3 [see Fig. 4(c)].

Obviously the theoretical points are in good qualitative
agreement with the experimental data, but some differences
should be noted. First, the calculated point at Hc1 is lower
than both intensities in the experiment. This is due to the fact
that our calculations describe only the consequent flipping
of two types of magnetic moment pairs, while it can occur
contemporaneously. Secondly, the last theoretical point is too
high for IM (202̄) (out of plot). This can be explained by the
demagnetization occurring inside structural nanoelements in
high magnetic fields.

We note that the value of the perpendicular component of
the magnetization depends strongly on the orientation of the
film in the magnetic field. When the field is applied along
the 〈112̄〉 axes, the strong perpendicular component of the
magnetization points down. It decreases to zero, when the
field is along 〈101̄〉, and points up, when the field is along
the 〈21̄1̄〉 axis. It changes with the period of 120◦, which is
determined by the threefold symmetry of the IOLS in the (111)
plane. Obviously even more complex and interesting situations
may occur when the magnetic field is applied out of the (111)
plane.

It is interesting to refer to the similar phenomenology in
spin-ice systems.22–24 For example, highly featured hysteresis
loops and avalanchelike jumps of the magnetization are
reported in Refs. 22 and 23, and a perpendicular magnetic
moment controlled by a longitudinal field applied along [112]
is observed in Ref. 24. These comparisons and analogies give
additional credibility to the model proposed in this Rapid
Communication. In conclusion, we note that the applicability
of the ice-rule concept to this nanoscale system results
first in the change of the macroscopic properties of the
magnetic network of the IOLS: A magnetization component
perpendicular to the applied magnetic field should appear,
which is comparable to the component parallel to the field. In
addition, our concept introduces the magnetic network of IOLS
as a 3D frustrated magnetic system at room temperature and,
more generally, as a fascinating object for both fundamental
studies and applications.
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