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Elastic constants of incommensurate solid 4He from diffusion Monte Carlo simulations
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We study the elastic properties of incommensurate solid 4He in the limit of zero temperature. Specifically, we
calculate the pressure dependence of the five elastic constants (C11, C12, C13, C33, and C44), longitudinal and
transversal speeds of sound, and the T = 0 Debye temperature of incommensurate and commensurate hcp 4He
using the diffusion Monte Carlo method. Our results show that under compression, the commensurate crystal is
globally stiffer than the incommensurate, however at pressures close to melting (i.e., P ∼ 25 bar) some of the
elastic constants accounting for strain deformations of the hcp basal plane (C12 and C13) are slightly larger in the
incommensurate solid. Also, we find that upon the introduction of tiny concentrations of point defects, the shear
modulus of 4He (C44) undergoes a small reduction.
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I. INTRODUCTION

An intriguing resemblance between the dependence of the
shear modulus (SM) and torsional oscillator (TO) frequency
changes on the temperature, amplitude, and concentration of
3He impurities has been experimentally observed in solid 4He
at low temperatures.1 Crystal defects are clearly involved
in both phenomena, however it remains a mystery how SM
and TO fluctuations are exactly related. Day and Beamish
identified the stiffening of solid helium with decreasing
temperature, i.e., an increase of its shear modulus, with the
pinning or unpinning of dislocations by isotopic impurities.
Subsequent experiments have confirmed the interpretations
of Day and Beamish,2 although recent elasticity measure-
ments on ultrapure single crystals seem to suggest that SM
variations cannot be uniquely understood in terms of mobile
dislocations.3,4

Torsional oscillator anomalies were first interpreted as the
mass decoupling of a certain supersolid fraction,5,6 a counterin-
tuitive physical phenomenon that Andreev and Lifshitz already
proposed in solid helium more than 40 years ago.7 Supporting
this view is the fact that TO anomalies appear to occur only
in bulk 4He.8 Nevertheless, the supersolid interpretation of
TO anomalies seems to leave open its connection to SM
fluctuations, and diverse theoretical arguments and hypotheses
have been put forward in an attempt to simultaneously
rationalize the origins of both anomalies. Anderson, for
example, proposes that supersolidity is an intrinsic property
of bosonic crystals, which is only enhanced by disorder,
and that the elastic anomaly is due to the generation of
vortices at temperatures close to the supersolid transition.9

From a diametrically opposite standpoint, Reppy has argued
that the TO behavior is caused by an increase of the 4He
shear modulus which mimics mass decoupling by stiffening
the TO setup.10 Other scenarios somewhat more reconciling
with the original TO and SM interpretations have also been
proposed in which, for instance, mass superflow is assumed
to occur in the core of dislocations only when these are
static.4,11

As can be appreciated, definitive conclusions on the roots
of SM and TO anomalies remain contentious. In a recent
paper, Chan et al.12 have shown that for solid 4He in vycor
the nonclassical rotational inertia (NCRI) disappears if the
TO setup is designed in such a way that it is completely free
from any shear modulus stiffening effect. This result seems
to show that NCRI can be totally attributed to elastic effects
and not to the existence of a supersolid fraction.13 On the
other hand, a recent experiment in which dc rotation was
superposed to both TO and SM measures suggested that the
cause of both anomalies below a critical temperature could
have different microscopic origins.14 Also, the source of a
small peak in the specific heat of 4He (Ref. 15) at temperatures
close to that at which TO and SM anomalies appear remains yet
unexplained.

In this work, we study the change in the elastic constants
of solid 4He caused by the presence of small point defect
concentrations, nv , of 0.5–2.0%. As it has been shown, the
presence of vacancies induces a finite superfluid fraction in
the crystal (incommensurate crystal, IC)16,17 so that we can
theoretically compare the elastic constants of a supersolid
with those of the perfect crystal (commensurate crystal, C). In
particular, we estimate the pressure dependence of the elastic
constants Cij ’s (C11, C12, C13, C33, and C44, where the last
one is also known as the shear modulus) and derived quantities
(the T = 0 Debye temperature and transverse or longitudinal
speeds of sound) of bulk IC and C hcp 4He. Our calculations
show that (i) under moderate and large compressions, the C
phase is globally stiffer than the IC solid, (ii) at pressures close
to melting (i.e., P ∼ 25 bar) some of the elastic constants
accounting for specific strain deformations of the hcp basal
plane (C12 and C13) are slightly larger in the IC crystal, and (iii)
the shear modulus difference between C and IC 4He crystals
is about 10 to 90 times smaller (in absolute value) than the
experimentally observed C44 variation caused by the pinning
or unpinning of dislocations.

The remainder of this article is organized as follows. In the
next section, we briefly describe the computational methods
employed and provide the details of our calculations. Next, we
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present and discuss the results obtained, and we summarize
the main conclusions in Sec. IV.

II. COMPUTATIONAL METHOD

In this study, we employ the diffusion Monte Carlo method
(DMC), an accurate ground-state approach in which the
Schrödinger equation of an N-particle interacting system is
solved stochastically by simulating branching and diffusion
processes in imaginary time.18,19 As is usual in DMC, we
introduce a guiding wave function (GWF) for importance
sampling that crucially reduces the variance of the statistical
estimations. Our GWF model is symmetric under the exchange
of atoms and correctly reproduces the experimental equation
of state of solid 4He and other quantum crystals.16,20,21 We
note that DMC energies are virtually exact, i.e., they are
only subjected to statistical bias, and ultimately they do not
depend on the particular choice of the guiding wave function
(as we have checked in the present study by conducting
additional path-integral ground-state calculations in which a
high-order short-time Green’s function expansion has been
used22). The value of all technical parameters, i.e., the size
of the simulation box, the population of walkers, and the
length of the imaginary time step, have been set in order to
ensure convergence of the total ground-state energy to less
than 0.01 K/at (i.e., this is our typical statistical uncertainty).
As in previous works, we modeled the 4He-4He interactions
with the Aziz II pairwise potential.23 Further technical details
of our elastic constant calculations can be found in Refs. 24
and 25.

It is important to stress that DMC Cij estimations essentially
rely on the computation of total energies (E) as a function of
the strain (ε), in particular on the value of second derivatives
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FIG. 1. (Color online) Effects of the size of the simulation box on
the calculation of the second derivative of the total energy per atom,
E, with respect to strain, ε (shear modulus case). The red solid, blue
dotted, and green dashed lines correspond to parabolic fits performed
on results obtained in 200-, 360-, and 96-atom simulation boxes, re-
spectively. For comparison purposes, all the curves have been shifted
to zero without any loss of generality (since we are mainly concerned
with their curvature). 200- and 360-atoms parabolic fits are coincident
within their statistical errors [i.e., ∂2E/∂2ε = 19.0(5) and 19.8(5) K,
respectively] in contrast to the 96-atom case [i.e., 17.0(5) K].

∂2E/∂2ε,24 and that numerical errors stemming from finite-
size effects can already be made negligible in computationally
affordable simulation boxes of 24.2 Å × 24.2 Å × 27.4 Å
containing 200 atoms (see Fig. 1, where the results of a finite-
size test performed in the commensurate phase are shown;
analogous tests were carried out also in the incommensurate
phase, and we arrived at the same conclusions).

Finally, the IC phase is built up by introducing small
vacancy concentrations of 0.5–2.0% in the crystal. Although it
is well known that the presence of point defects in solid 4He is
energetically penalized,26,27 this route allows for simulation of
supersolids under tight and controllable conditions.25,28–31 On
the technical side, superfluid fractions, ρs/ρ, were obtained
from the diffusion of the center of mass of crystals computed
at very long imaginary times.21,32 Small variations in our ρs/ρ

results would essentially not alter the conclusions that we
present next.

III. RESULTS AND DISCUSSION

In Fig. 2, we show the shear modulus of C and IC (with
ρs/ρ = 2%) hcp 4He expressed as a function of pressure. We
find that in both states, C44 behaves linearly with pressure
over the entire range of densities considered, i.e., 0.028 �
ρ � 0.033 Å−3. As one may also see, the shear modulus
of the C crystal is larger than that of the IC solid, and the
value of the �C44 ≡ CC

44 − CIC
44 difference increases under

compression. It must be noted that the numerical uncertainty
in our C44 calculations is 5 bar, thus the predicted �C44 values
are rigorously different from zero at pressures above 50 bar
(see Fig. 4).

In principle, one may expect that in addition to pres-
sure, �C44 variations are also dependent on the imposed
fraction of mass superflow, or conversely, the concentration
of point defects. However, as we show in Fig. 3, such
a dependence turns out to be rather weak. For instance,
in the 0 � ρs/ρ � 3% interval, C44 decreases in less than
5% of its ground-state value, and even when an excessive
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FIG. 2. Shear modulus results obtained for C and IC hcp 4He
expressed as a function of pressure. Experimental data from Refs. 36,
38, and 39 are shown for comparison. Solid lines represent linear fits
to DMC results (see text).
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FIG. 3. The shear modulus of IC solid hcp 4He expressed as a
function of the superfluid fraction at pressures close to melting. The
dashed line is a guide to the eyes.

ρs/ρ value of 7% is constrained the accompanying variation
of shear modulus is of just ∼ −11%. Concerning possible
temperature effects, it is well known that the contribution of
phonon excitations to the thermal energy of solids reduces
the speeds of sound by an amount that is proportional
to T 4, thus implying a ∝T 8 dependence in the elastic
constants.33 Our zero-temperature conclusions on �C44,
therefore, can be fairly generalized to the regime of ultralow
temperatures (that is, few mK). In fact, the ground-state
results reported in this study are in very good agreement
with those obtained by Ardila et al. for hcp 4He at T =
1 K using the path-integral Monte Carlo method,34 and by

−25

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 25  35  45  55  65  75  85

Δ 
C

ij 
=

 C
ijC

 −
 C

ijIC
 (

ba
r)

P (bar)

Δ C44 (+/− 5 bar)
Δ C12 (+/− 10 bar)
Δ C13 (+/− 5 bar)
Δ C11 (+/− 20 bar)
Δ C33 (+/−20 bar)

FIG. 4. (Color online) Elastic constant differences between C
and IC crystals (ρs/ρ = 2%) of hcp 4He expressed as a function of
pressure. The size of the error bars is indicated within the parentheses.
Positive �Cij values indicate softening of the corresponding elastic
constant in a hypothetical vacancy-induced normal-to-supersolid
phase transition.

Pessoa et al. at zero temperature using the variational Monte
Carlo approach.35

It must be stressed that our C44 results are obtained for
pure 4He single crystals, i.e., zero concentration of 3He
atoms and free-of-dislocations, hence direct comparisons to
Day and Beamish1,2,36 data obtained in polycrystals turn
out to be very complicated. In light of our results, how-
ever, one may notice that experimentally observed shear
modulus variations caused by the pinning or unpinning of
dislocations are of opposite sign and about one order of
magnitude larger (10–20% in polycrystals and ∼50–90%
in monocrystals37) than fluctuations reported here for hy-
pothetical superfluid mass flows of ∼1% (see Fig. 3).
Consequently, we may conclude that if a vacancy-induced
normal-to-supersolid phase transition occurred in solid he-
lium, then dislocation-mediated mechanical contributions to
C44 would totally overwhelm those stemming from mass
superflow. Interestingly, Rojas et al. have recently reported
an anomalous softening of high-quality ultrapure monocrys-
tals in the temperature region wherein supersolidity could
occur.4

We have also determined the �Cij (P ){ij = 11,12,13,33}
deviations describing the response of C and IC hcp crystals
to strain basal plane deformations.24 First, we note that all
these components also present a linear dependence on pressure
(see Fig. 4, where numerical uncertainties are indicated
within parentheses). Second, �Cij slopes are all positive,
thus implying that beyond a certain critical pressure, C hcp
4He is plainly stiffer than the IC crystal. According to our
calculations, this critical pressure is above 85 bar. Interestingly,
C12 and C13 are largest, by a small amount, in the IC
solid at pressures below 50 and 70 bar, respectively. This
outcome shows that in a hypothetical low-pressure normal-to-
supersolid phase transition, the final supersolid could behave
more rigidly than the initial normal state under certain strain
deformations. Nevertheless, we find that the C66 coefficient,
which is defined as 1

2 (C11 − C12) and can be directly measured
in acoustic experiments, is always smaller in the IC state.
This behavior is analogous to the tendency found for the
shear modulus, although C66 variations are in general larger
(e.g., at P = 25 bar, �C66 ≈ �C44, whereas at P = 85 bar,
�C66 ≈ 2�C44).

Finally, Fig. 5 shows the calculated longitudinal and
transversal speeds of sound (vL and vT ) of C and IC hcp
4He under pressure.24 As one can observe, vL velocities along
the hcp c axis and basal plane are slightly larger in the
IC crystal within approximately the same pressure range in
which �C12 and �C13 deviations are found to be negative.
Nevertheless, speeds of sound deviations near melting turn
out to be so small that in practice these could probably not
be detected with standard means. The same can be concluded
about the T = 0 Debye temperature for which, as we show
in Fig. 5, the corresponding C-to-IC variation is smaller than
the typical experimental precision. In view of these technical
limitations, it would be very interesting to perform new Cij

and vL,T measurements on 4He at large pressures (i.e., P � 60
bar) where larger C-to-IC differences develop. In this regard,
spectroscopic measurements of the E2g phonon mode (i.e.,
the shear mode corresponding to the beating of the two hcp
sublattices against each other in the two orthogonal directions
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FIG. 5. Top: Calculated longitudinal (L) and transverse (T )
speeds of sound along the basal plane (b) and c axis (c) of C and IC
(ρs/ρ = 2%) hcp 4He as a function of pressure. Bottom: Estimated
T = 0 Debye temperature of C and IC hcp 4He as a function of
pressure. Experimental data from Refs. 40 and 41 are shown for
comparison.

of the basal plane) would be particularly helpful since in this
type of experiment, (i) Cij values can be determined with
a very small imprecision of less than the 2%, (ii) tiny solid
samples are needed (i.e., of μm size), thus likely crystal quality
issues present in SM and TO experiments could be somehow
alleviated, and (iii) pressure conditions can be efficiently
tuned.42

IV. CONCLUSIONS

To summarize, we have studied the elastic properties
of hcp solid 4He in a metastable IC state and compared
them to those obtained for its C ground state. Our cal-
culations show that near melting elastic constants C11 and
C12 accounting for specific strain deformations of the hcp
basal plane are slightly larger in the IC crystal. At mod-
erate and high pressures, however, the C phase is always
stiffer than the IC. Also, we find that the appearance of a
finite superfluid fraction (e.g., ρs/ρ ∼ 1%) caused by the
introduction of vacancies unequivocally provokes a small
decrease of the 4He shear modulus (i.e., �C44 ∼ 1%). We
argue then that if a vacancy-induced normal-to-supersolid
phase transition occurred in helium crystals containing iso-
topic impurities and line defects, dislocation-mediated con-
tributions to C44 would totally overwhelm those stemming
from mass superflow. As an alternative to usual dynamic
experiments focused on the search of hypothetical supersolid
manifestations, we suggest to perform spectroscopic mea-
surements of the E2g mode of 4He at moderate and high
pressures.
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