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Rutgers relation for the analysis of superfluid density in superconductors
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It is shown that the thermodynamic Rutgers relation for the second-order phase transitions can be used
for the analysis of the superfluid density data irrespective of complexities of the Fermi surface, structure of the
superconducting gap, pairing strength, or scattering. The only limitation is that critical fluctuations should be weak
so that the mean-field theory of the second-order phase transitions is applicable. By using the Rutgers relation,
the zero-temperature value of the London penetration depth λ(0) is related to the specific heat jump �C and the
slope of upper critical field dHc2/dT at the transition temperature Tc, provided the data on �λ = λ(T ) − λ(0)
are available in a broad temperature domain. We then provide a way to determine λ(0), the quantity difficult to
determine within many techniques.
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I. INTRODUCTION

The London penetration depth λ is one of the most
important characteristic length scales of superconductors. The
temperature dependent λ(T ) is the subject of many studies
as it provides information on the symmetry of the order
parameter.1,2 It is used to calculate the superfluid density
ρ(T ) ≡ λ2(0)/λ2(T ). Determination of λ(0) is critical because
the shape of ρ(T ), extracted from the data on �λ(T ), depends
sensitively on the value of λ(0) adopted, and a wrong λ(0)
could lead to incorrect conclusions on the superconducting
order parameter.

A tunnel diode resonator (TDR) technique provides, per-
haps, the most precise measurements of the variation in λ

with temperature �λ = λ(T ) − λ(0). With additional sample
manipulation by coating it with a lower-Tc superconductor, the
absolute value of λ(0) can be determined as well but with much
lower precision compared to �λ.3 Other techniques which
are used to measure λ(0) include muon spin rotation (μSR),4

infrared spectroscopy,5 the microwave cavity perturbation
technique,6 and local probes.7,8 However, each of these
techniques has its own limitations. μSR measures averaged
λ(T ,H ) in the mixed state, and the extrapolated to H = 0
value is used to estimate λ(0). In infrared spectroscopy, λ(0)
is deduced from the measured plasma frequency, which is
not a precisely determined quantity.5 Local probes, such as a
scanning superconducting quantum interference device7 and
magnetic force microscopy8 magnetometry, infer λ(0) from
the analysis of magnetic interactions between a relevant probe
and a magnetic moment induced in a superconductor.9

In this paper, we show that the thermodynamic relation
between the specific heat jump �C and the slope of thermody-
namic critical field ∂Hc/∂T at the superconducting transition
temperature Tc, first proposed by Rutgers,10 can be rewritten
in terms of measurable quantities—the slopes of the upper
critical field and of the superfluid density in addition to
specific heat jump. As a general thermodynamic relation, valid
at the second-order transition (excluding critical fluctuation
region), it is applicable for any superconductor irrespective
of the pairing symmetry, scattering, or multiband nature
of superconductivity as we verified on several well-known
systems. Such general applicability of the Rutgers relation

offers a method of estimating λ(0) if �C and dHc2/dT at Tc

are known. This idea is checked on Nb and MgB2 and is applied
to several unconventional superconductors. In all cases, we
use �λ(T ) measured by the TDR technique and the literature
data for the other two quantities, except for YBa2Cu3O7−δ

(YBCO), where its ρ(T ) was taken from Ref. 6. In all studied
cases, the method works well, and determined values of λ(0)
are in agreement with the literature.

A. Thermodynamic Rutgers relation

The specific heat jump at Tc in materials where the critical
fluctuations are weak is expressed through the free-energy
difference Fn − Fs = H 2

c /8π ,10,11

�C = Tc

∂2

∂T 2

H 2
c

8π

∣∣∣∣
Tc

= Tc

4π

(
∂Hc

∂T

)2

Tc

. (1)

Here, C is measured in erg cm−3 K
−1

, and T is measured in
Kelvins. Within the mean-field Ginzburg-Landau (GL) theory,
near Tc, the thermodynamic critical field Hc = φ0/2

√
2πξλ

with

(ξ,λ) = (ξGL,λGL)√
1 − t

, t = T

Tc

. (2)

Here, ξ and λ are the coherence length and the penetration
depth, and the constants ξGL,λGL are of the same order but not
the same as the T = 0 values ξ (0) and λ(0). Hence, we have

�C = φ2
0

32π3ξ 2
GLλ2

GLTc

, (3)

where ξGL is related to the slope of Hc2(T ) at Tc,

Tc

∂Hc2

∂T

∣∣∣∣
Tc

= ∂Hc2

∂t
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= − φ0

2πξ 2
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. (4)

It is common to introduce the dimensionless superfluid density
ρ = λ2(0)/λ2 with the slope at Tc given by

Tc

∂ρ

∂T

∣∣∣∣
Tc

= ∂ρ

∂t

∣∣∣∣
t=1

= −λ2(0)

λ2
GL

. (5)
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FIG. 1. (Color online) Superfluid density ρ(t) calculated from
Eq. (7) using the TDR data on �λ(T ) and assuming λ(0) = 15, 25,
and 35 nm. Straight lines have the slope ρ ′ estimated from Eq. (6) for
each λ(0).

We then obtain

�C = φ0

16π2λ2(0)Tc

(H ′
c2ρ

′)t=1, (6)

where the primes denote derivatives with respect to t .
It should be stressed that being a thermodynamic relation

that holds at a second-order phase transition, applicability of a
Rutgers formula is restricted only by the possible presence
of critical fluctuations. In particular, it can be applied for
zero-field phase transitions in materials with anisotropic order
parameters and Fermi surfaces, multibands, etc., which makes
it a valuable tool in studying a great majority of new materials.

For anisotropic materials, Eq. (1) is, of course, valid since
the condensation energy and Hc do not depend on direction.
However, already in Eq. (3), the field direction should be
specified. In the following, we discuss situations with H
parallel to the c axis of uniaxial crystals. Hence, the quantities
in Eq. (6) should have subscripts: ρab, λab(0) and Hc2,c. We
omit these subscripts for brevity. A general case of anisotropic
material with an arbitrary field orientation requires separate
analysis.

II. DETERMINATION OF λ(0)

The superfluid density needed for the analysis of the ex-
perimental data and comparison with theoretical calculations
depends on the choice of λ(0),

ρ(t) = λ2(0)

[λ(0) + �λ(t)]2
. (7)

Figure 1 shows an example of this dependence of ρ(t) on
λ(0) for Nb. Symbols represent ρ(t) calculated from measured
�λ(t) with λ(0) chosen as 15, 25, and 35 nm. Clearly,
the calculated ρ(t) is sensitive to the choice of λ(0). The
straight solid lines have the slope ρ ′(1) calculated by using
Eq. (6) for each λ(0). We used �C = 137.2 mJ mol−1 K−1 =
126 450 erg cm−3 K−1 (Ref. 12) since, in the formulas
used here, the specific heat is per unit volume.13 Using

H ′
c2|Tc

= 440 Oe/K (Ref. 14), we obtain −ρ ′(1) = 0.49, 1.4,
and 2.7 for 15, 25, and 35 nm, respectively. Although the choice
of λ(0) = 25 nm shows reasonable agreement, for the choices
of 15 and 35 nm, the slopes calculated using the data and
Eq. (7) are determined by Eq. (6) under- and overestimates,
respectively. Note that, with λ(0) = 15 nm, the temperature
dependence of ρ is pronouncedly concave near t = 1 and
−ρ ′(1) is smaller than 1. The idea of our method is to utilize
the Rutgers relation (6) and to choose such a λ(0) that would
not contradict the thermodynamics near Tc.

To this end, we rewrite Eq. (6) in the form

ρ ′(1)

λ2(0)
= 16π2Tc�C

φ0H
′
c2(1)

. (8)

Here, the right-hand side is determined from independent
measurements of �C and Hc2. Thus, by taking a few test
values of λ(0), calculating ρ(t) and its slope at t = 1, we can
decide which λ(0) and ρ[t,λ(0)] obey the Rutgers relation.

We first apply this method to two well-studied
superconductors—conventional Nb and two-band MgB2. For
Nb, we obtain |ρ ′|/λ2(0) ≈ 2240 μm−2 using the same ther-
modynamic quantities as for Fig. 1.12,14 We now take a set
of values for λ(0) shown in top left panel of Fig. 2 and plot
|ρ ′|/λ2(0) vs λ(0). The value of λ(0) = 28 ± 2 nm satisfying
the Rutgers relation is obtained from the intersection of
the calculated curve with the value expected from Eq. (8)
(shown by a gray band that takes into account experimental
uncertainties in determining �C and H ′

c2). It is consistent with
the literature values varying between 26 and 39 nm.12,15 The
final calculated superfluid density with the choice of λ(0) =
30 nm is shown in Fig. 2(b). The solid line is determined
with the calculated slope |ρ ′(1)| = 2 as predicted for isotropic
s-wave superconductors (see the Appendix).

In addition to the aforementioned uncertainties, determi-
nation of the experimental |ρ ′(1)| is not trivial even if the
quality of measurement is excellent since ρ(t) near t = 1 is
often significantly curved due to several experimental artifacts,
most importantly, due to the influence of the normal skin
effect near Tc, which is more pronounced for higher-frequency
measurements on highly conducting materials. The TDR
technique typically uses ∼10 MHz, so this effect is weak
in most of the materials concerned. Analyzing the data for
different superconductors, we have found that the data in
the regime between t = 0.8 and 0.95 work well for the
determination of ρ ′(1). The experimental |ρ ′(1)| in this paper
is determined from the best linear fit of ρ(t) data in this range.

The same procedure can be employed for a well-known
multigap superconductor MgB2 (shown in the bottom row of
Fig. 2) where |ρ ′|/λ2(0) is estimated to be 130 ± 12 μm−2

by using �C = 133 mJ mol−1 K−1 (Ref. 16), |H ′
c2(1)| =

0.45 T/K (Ref. 17) within a ±5% error. The determined
λ(0) = 84 ± 10 nm is in good agreement with 100 nm es-
timated by the μSR technique.18,19 For λ(0) = 84 nm, the
calculated slope |ρ ′(1)| = 0.91 agrees with the expected
theoretical value of 0.92 (see the Appendix).

The method described has also been used for SrPd2Ge2
for which λ(0) was not clear. By using the determined
λ(0), we have shown that SrPd2Ge2 is a single-gap s-wave
superconductor.20
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FIG. 2. (Color online) Top row: Nb, Bottom row: MgB2. Left column: variation in |ρ ′|/λ2(0) as a function of λ(0) for Nb and MgB2. Shaded
horizontal bands are the estimated values of the right-hand side of Eq. (8) with literature values of �C and H ′

c2(1) including experimental
uncertainties. Right column: superfluid density for the best value of λ(0) that satisfies the Rutgers relation, Eq. (8).

A. Unconventional superconductors

Here, we examine the validity of our approach for some
superconductors for which the necessary experimental quan-
tities have been reported in the literature. Where possible, we
use Hc2(T ) determined from the specific heat jump because
resistive and magnetic measurements may actually determine
the irreversibility field, which may differ substantially from
the thermodynamic Hc2.38

We have selected LiFeAs, FeTe0.58Se0.42, YBa2Cu3O7−δ ,
and MgCNi3, representing a stoichiometric pnictide, a chalco-
genide, a d-wave high-Tc cuprate, and a close to magnetic in-
stability s-wave superconductor, respectively. �C, dHc2/dT ,
and λ(0), for the selected compounds, have been measured by
various techniques by different groups. The superfluid density
was calculated from the penetration depth measured by using
a TDR technique at Ames Laboratory, except for YBCO for
which anisotropic superfluid density was determined by the

TABLE I. Vc is the volume of the unit cell. �C is the specific heat jump at Tc in mJ mol−1 K−1. dHc2/dT is the slope of Hc2 at
Tc. ρ ′

Rut = (dρ/dt)Rut is the calculated slope using Eq. (6) where t = T/Tc. ρ ′
exp is an experimental slope with given λ(0).

Compound Vc (Å
3
) Tc (K) �C/Tc (mJ mol−1 K−2) |dHc2/dT |Tc

(T/K) λ(0) (nm) −ρ ′
Rut −ρ ′

exp

Nb 35.937 (Ref. 21) 9.3 (Ref. 12) 14.8 (Ref. 12) 0.044 (Ref. 14) 30a 2.0 1.8
MgB2 29.064 (Ref. 22) 39 (Ref. 16) 3.4 (Ref. 16) 0.45 (Ref. 17) 84b 0.91 0.83
LiFeAs 90.252 (Ref. 23) 15.4 (Ref. 24) 20 (Ref. 24) 3.46 (Ref. 25) 200 (Ref. 26) 1.2 1.1
FeTe0.58Se0.42 87.084 (Ref. 27) 14 (Ref. 28) 20 (Ref. 28) 13 (Ref. 29) 500c 1.4 1.5
YBa2Cu3O7−δ 173.57 (Ref. 32) 23 (Ref. 33) 61 (Ref. 34) 1.9 (Ref. 35) 120 (Ref. 3) 3.0 2.15–4.98 (Ref. 6)
MgCNi3 54.496 (Ref. 36) 7 (Ref. 36) 129 (Ref. 36) 2.6 (Ref. 32) 232 (Ref. 37) 1.8 2.0

aDetermined in this paper.
bDetermined in this paper.
cAn average value over 430–560 nm (Refs. 29–31).
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FIG. 3. (Color online) Experimental superfluid density ρ = λ2(0)/λ2(T ) in LiFeAs, FeTe0.58Se0.42, YBa2Cu3O7−δ , and MgCNi3 with
λ(0) = 500, 200, 120, and 232 nm, respectively. The straight lines in each panel were estimated with the Rutgers formula. Parameters used for
the calculation are summarized in Table I.

microwave cavity perturbation technique.6 Thermodynamic
parameters are discussed in a number of papers.27,39,40 In-depth
discussions of the specific heat are given in Refs. 33 and 40.
Table I summarizes parameters used in the calculations.
Figure 3 shows experimental superfluid density in LiFeAs,
FeTe0.58Se0.42, YBa2Cu3O7−δ , and MgCNi3 with λ(0) = 500,
200, 120, and 232 nm, respectively. The agreement between
ρ ′

Rut calculated with the Rutgers relation and ρ ′
exp extracted

from the data on �λ(t), given possible uncertainties in the
input experimental parameters, is rather remarkable.

III. SUMMARY

In conclusion, we have shown that the thermodynamic
relation based on the Rutgers formula can be used for the
analysis of the superfluid density. Based on this relation,
a method to estimate λ(0) is developed. As a test, it was
successfully applied to reproduce known λ(0) in Nb and MgB2.
We used this relation to verify reported literature values of λ(0)
for several unconventional superconductors of different band
structures, gap anisotropies, and pairing symmetries.
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APPENDIX: THEORETICAL RESULTS RELEVANT FOR
THE ANALYSIS OF THE SUPERFLUID DENSITY

1. Penetration depth in anisotropic materials

It is known41 that, in isotropic materials,

ρ ′(1) = λ2(0)/λ2
GL = −2. (A1)

It is easy to reproduce this result for the free-electron model
of the normal state; it is shown below, however, that this value
holds for any Fermi surface provided the order parameter is
isotropic.

Here, we are interested in relating λ(0) and λGL, the T

independent part of λ near Tc, for anisotropic Fermi surfaces
and order parameters. We start with a known relation,

(λ2)−1
ik = 16π2e2N (0)T

c2

∑
ω

〈
�2vivk

β3

〉
, (A2)

which holds at any temperature for clean materials with
arbitrary Fermi-surface and order parameter anisotropies.2,42

Here, N (0) is the density of states at the Fermi level per
spin, β2 = �2 + h̄2ω2 with h̄ω = πT (2n + 1), �(kF ,T ) =
�(T )
(kF ) is the zero-field order parameter, which, in
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general, depends on the position kF on the Fermi surface,
and 〈· · ·〉 stands for averaging over the Fermi surface. The
function 
(kF ), which describes the variation in � along the
Fermi surface, is normalized:

〈

2

〉 = 1.
Equation (A2) is obtained within the model of factoriz-

able effective coupling V (k,k′) = V0 
(k) 
(k′).43 The self-
consistency equation of the weak-coupling theory takes the
form

�(r,T ) = 2πT N (0)V0

ωD∑
ω>0

〈
(k)f (k,r,ω)〉, (A3)

where f is the Eilenberger Green’s function, which, for the
uniform current-free state, reads: f = �/β = �
/β. The
order parameter near Tc is now readily obtained

�2 = 8π2T 2
c (1 − t)

7ζ (3)〈
4〉 , (A4)

which reduces to the isotropic BCS form for 
 = 1. We
substitute this in Eq. (A2) to obtain, near Tc,

(λ2)−1
ik = 16πe2N (0)〈
2vivk〉

c2〈
4〉 (1 − t), (A5)

from which the constants λGL for any direction readily follow.
As T → 0, the sum over the Matsubara frequencies in

Eq. (A2) can be replaced with an integral according to
2πT

∑
ω → ∫ ∞

0 d(h̄ω),

(λ2)−1
ik (0) = 8πe2N (0)

c2
〈vivk〉. (A6)

For free electrons, this reduces to the London value λ2 =
mc2/4πe2n where n = 2mN (0)v2/3 is the electron density.

Hence, we get, for the slope of the in-plane superfluid
density,

ρ ′
ab(1) = −λ2

ab(0)

λ2
GL,ab

= −2

〈

2v2

a

〉
〈
v2

a

〉〈
4〉 . (A7)

Similarly, one can define ρ ′
c(1) for which va should be replaced

with vc in Eq. (A7). In particular, we have

ρ ′
c(1)

ρ ′
ab(1)

=
〈
v2

a

〉
〈
v2

c

〉
〈

2v2

c

〉
〈

2v2

a

〉 = γ 2
λ (0)

γ 2
λ (Tc)

. (A8)

E.g., for MgB2 with γλ(0) ≈ 1, γλ(Tc) ≈ 2.6, we estimate
ρ ′

c(1) ≈ 0.15 ρ ′
ab(1).

It is instructive to note that ρ ′(1) reduces to the isotropic
value of −2 for any Fermi surface provided the order parameter
is constant, 
 = 1.

2. MgB2

Consider a simple two-band model with the gap anisotropy
given by


(k) = 
1,2, k ∈ F1,2, (A9)

where F1,F2 are two sheets of the Fermi surface. 
1,2’s are
assumed to be constants, in other words, we model MgB2 as
having two different s-wave gaps. The normalization 〈
2〉 = 1
then gives


2
1ν1 + 
2

2ν2 = 1, ν1 + ν2 = 1, (A10)

where ν1,2 = N1,2/N(0) are the relative densities of states.

Based on the band-structure calculations,44,45 ν1 and ν2

of our model are ≈0.56 and 0.44. The ratio is �2/�1 =

2/
1 ≈ 3. Then, the normalization (A10) yields 
1 = 0.47
and 
2 = 1.41.

Furthermore, we use the averages over separate Fermi
sheets calculated in Ref. 44:

〈v2
a〉1 = 33.2, 〈v2

a〉2 = 23 cm2/s
2
. With this input, we

estimate

ρ ′
ab(1) = −0.92. (A11)

It should be noted that this number is sensitive to a number of
input parameters. The procedure described above, see Fig. 2,
gives ρ ′

ab(1) ≈ −0.91.
Since only even powers of 
 enter Eq. (A7), the same

analysis of the slope ρ ′(1) can, in fact, be exercised for
materials modeled by two bands with the ±s symmetry of
the order parameter for which 
’s have opposite signs. If the
bands relative densities of state ν1,2 and the averages 〈v2

a〉1,2

are comparable to each other and are similar to those of MgB2,
we expect a similar |ρ ′(1)| ≈ 1 for clean crystals.

3. d-wave

It can be shown that 
 = √
2 cos 2φ for closed Fermi

surfaces as rotational ellipsoids (in particular, spheres) or open
ones as rotational hyperboloids (in particular, cylinders).46 A
straightforward algebra gives

ρ ′
ab(1) = −4/3. (A12)

4. Scattering

In the limit of a strong nonmagnetic scattering for an
arbitrary Fermi surface but a constant s-wave order parameter
we have, see, e.g., Ref. 2,

(λ2)−1
ik = 8π2e2N (0)〈vivk〉τ

c2h̄
� tanh

�

2T
. (A13)

Here, τ is the average scattering time. It is worth noting that
the dirty limit does not make much sense for anisotropic gaps
because Tc is suppressed even by nonmagnetic scattering in
the limit τ → 0. At T = 0, we have

(λ2)−1
ik (0) = 8π2e2N (0)〈vivk〉τ

c2h̄
�(0), (A14)

whereas, near Tc,

(λ2)−1
ik = 8π2e2N (0)〈vivk〉τ

c2h̄

�2

2Tc

, (A15)

Since for nonmagnetic scattering, Tc and �(T ) are the same
as in the clean case, in particular, � = 8π2T 2

c (1 − t)/7ζ (3),
we obtain

ρ ′(1) = −4π2Tc

�(0)
= −4πeγ

7ζ (3)
= −2.66. (A16)

We, thus, conclude that scattering causes the slope ρ ′(1) to
increase.
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Evaluations of scattering effects on the slope ρ ′ near Tc

for anisotropic gaps and Fermi surfaces are more involved
because both Tc and � are affected even by nonmag-

netic scattering. The case of a strong pair breaking is an
exception: λ−2 = λ−2

0 (1 − t2) that immediately gives
ρ ′(1) = −2.
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