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Majorana fermions, strange particles that are their own antiparticles, were predicted in 1937 and have been
sought after ever since. In condensed matter they are predicted to exist as vortex core or edge excitations in certain
exotic superconductors. These are topological superconductors whose order parameter phase winds nontrivially
in momentum space. In recent years, a new and promising route for realizing topological superconductors has
opened due to advances in the field of topological insulators. Current proposals are based on semiconductor
heterostructures, where spin-orbit-coupled bands are split by a band gap or Zeeman field and superconductivity
is induced by proximity to a conventional superconductor. Topological superconductivity is obtained in the
interface layer. The proposed heterostructures typically include two or three layers of different materials. In the
current work we propose a device based on materials with inherent spin-orbit coupling and an intrinsic tendency
for superconductivity, eliminating the need for a separate superconducting layer. We study a lattice model that
includes spin-orbit coupling as well as on-site and nearest-neighbor interaction. Within this model we show
that topological superconductivity is possible in certain regions of parameter space. These regions of nontrivial
topology can be understood as a nodeless superconductor with d-wave symmetry which, due to the spin-orbit
coupling, acquires an extra phase twist of 2π .
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I. INTRODUCTION

Back in 1937, Majorana found particles that arise as
real solutions to the Dirac equation. These solutions, called
Majorana fermions, partially obey fermionic statistics. While
different Majorana fermions anticommute, each Majorana
fermion is its own antiparticle. The creation operator of a
Majorana fermion is also its annihilation operator; in other
words, it is an equal superposition of regular fermionic creation
and annihilation operators. This exceptional property captured
the imagination of many and the quest to find the Majorana
fermion began.

In the context of high-energy physics it is speculated that
the neutrino might in fact be a Majorana fermion. The testing
of this claim, which originated from Majorana himself, has not
been possible in the past as it requires a large collider like the
Large Hadron Collider and is still an open question at the time
of writing.

Regardless of the nature of the neutrino and other possible
elementary particles of the Majorana type, Majorana fermions
may be realized in condensed-matter systems. In condensed
matter, excitations are not limited to elementary particles
since they may be emergent particles that are dressed by the
medium and interactions in the many-body state. As such, it
is conceivable that emergent excitations could be their own
antiparticles. Furthermore, in condensed matter antiparticles
are provided by holes in energy bands and the superposition
of particles and holes is possible. Such a superposition occurs
as an excitation in any superconductor, and the number of
particles is not conserved due to the presence of a pair
condensate.

To realize Majorana fermions, a system should exhibit
pairing between two particles of the same spin. This requires
triplet pairing and in particular a complex p-wave order
parameter is desirable. It has been shown1 that topological,
spin-triplet, px + ipy superconductors will support Majorana
fermions in their vortex cores.2,3 Some materials have been

found to have triplet p-wave pairing; however, their topology
has yet to be proven to be nontrivial.4 Therefore, current
efforts to realize Majorana fermions have had to focus on
devices which lead to quantum states that are either topological
superconductors or analogous to them.1,5–8 An interesting
analog of a topological superconductor was proposed to
describe the fractional quantum Hall state in some fractions1

and some progress in this direction has been made.9–11 In
that state, Chern-Simons-dressed particles minimize their
interaction energy by creating a condensate whose symmetry
is px + ipy . Proving beyond doubt the existence of this state
as well as the detection of Majorana fermions therein still
remains a challenge.

Recently, inspired by advances in topological insulators,
another route to topological superconductivity has opened. Fu
and Kane5 have shown that a three-dimensional topological
insulator layer placed in proximity to a conventional s-wave
superconductor develops topological superconductivity. The
pairing in the system is induced by a proximity effect while
the topology is inherited from the topological insulator. This
occurs since the pairing function is projected to one of the
spin-orbit-coupled bands. To accommodate the unique spin
structure (and Chern number) of the topological insulator,
the induced order parameter must wind its phase by 2π in
momentum space.

The idea of Fu and Kane was further developed by
Tanaka et al.,12 who proposed placing junctions containing
superconductors on a three-dimensional topological insulator.
Sau et al.6 eliminated the need for a topological insulator
and envisioned a semiconductor quantum well with intrinsic
Rashba spin-orbit coupling (SOC) where the Fermi surface
lies in the band. The required gap between the two spin-orbit-
coupled bands is provided by an out-of-plane Zeeman field of
an attached ferromagnetic (FM) insulator layer. Meanwhile,
superconductivity is induced by proximity to a superconduct-
ing layer attached to the other side of the quantum well.
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Recently, Alicea7 explored the possibility of eliminating the
ferromagnetic insulator layer of the Sau et al. model. Instead
of the ferromagnetic insulating layer, Alicea suggested using
a quantum well with both Dresselhaus and Rashba SOC while
applying an in-plane magnetic field. The Dresselhaus SOC tilts
the plane in which the electron spins tend to align so that the
applied magnetic field can open a gap, eliminating the need
for the FM insulator and thereby reducing the complexity of
the device.

Other suggestions for the realization of Majorana fermions
were made in the context of quasi-one-dimensional structures
such as nanowires and nanotubes. Typically these proposals
contain strong spin-orbit coupling and proximity-induced
superconductivity.8,13–15

A general argument relating the type of superconducting
order parameter and symmetries of the model was explored by
Fu and Berg.16

The key aspects of realizing an effective p + ip state in
these previous devices has been the proper combination of
SOC, band gap or Zeeman splitting, and proximity-induced
pairing. The spin-orbit coupling is responsible for the nontriv-
ial spin texture, whereas the Zeeman field (or an intrinsic mass
term) splits the bands such that only one of them is relevant
at low energy. Meanwhile, the superconductor responsible for
inducing pairing through proximity is of a simple singlet type.

In this paper we use these key ingredients to address
the question of whether a topological superconductor can be
achieved without a proximity effect. In place of proximity-
induced pairing we consider pairing driven by interactions.
A general proof of principle that interactions can indeed lead
to a topological superconducting state has been provided in
Ref. 17. Using a variational mean-field approach, both phases
of trivial and topological superconductivity are found in the
model studied. The topological state we find can be described
by a superconductor with a 6π phase winding which is a result
of the l = 2 d-wave phase winding and a p + ip projection
function.

II. MODEL AND METHODS

To test whether interactions may lead to superconductivity
in spin-orbit-coupled materials we consider a two-dimensional
square lattice model. The Hamiltonian of the system reads

H = HKE + HSO + V, (1)

where the kinetic energy term HKE is given by hopping on
nearest neighbors:

HKE = −t
∑

〈i,j〉,σ
(c†iσ cjσ + c

†
jσ ciσ ). (2)

Here t is the hopping amplitude, 〈i,j 〉 are nearest-neighbor
lattice sites, and σ is a spin index. The spin-orbit-coupling
part of the Hamiltonian is given by

HSO =
∑

k

ψ
†
kHkψk, Hk = σ · dk, (3)

where ψk = (ck↑,ck↓)T , σ is a three-vector of Pauli ma-
trices, and dk = (A sin kx,A sin ky,2B(cos kx + cos ky − 2) +
M) with A, B, and M material parameters. In the above we
have assumed units where the lattice constant a = 1. This term

can be viewed as the lattice version of the continuum model
introduced by previous authors5–7 while its form resembles one
of the sectors of the model introduced by Bernevig, Hughes,
and Zhang (BHZ) to describe HgTe quantum wells.18

The three parameters in the spin-orbit-coupling model
above may originate from a variety of different sources. For
example, the parameters A,B may be traditional spin-orbit-
coupling terms like the Rashba and Dresselhaus terms in
Refs. 6 and 7 or may be parameters such as those used in
the BHZ model.19–21 Similarly, the “mass” term M may be the
result of a band gap,18 an external magnetic field, or a magnetic
field of a nearby ferromagnetic layer.6 As M may come from
a variety of sources, we ignore any orbital effects that could
arise in the specific case that it comes from a magnetic field.
If it does happen that M is from an applied field, we assume
orbital effects to be small. The issue of orbital effects when M

arises from a magnetic field is discussed in Ref. 22.
The reader should note that the versatility of our model

for hopping plus spin-orbit coupling, HKE + HSO, leads to
typical values of the parameters A,B,M stretching over a
rather large range. In the case where one is concerned with
A and B coming from Rashba-like contributions, A and B

will be small7 compared to t . There is also the case where HSO

is taken to mimic one sector of the BHZ model. To be more
explicit let us recall this model here:

HBHZ =
(
M(k) − D̃k2 Ãk−

Ãk+ −M(k) − D̃k2

)
, (4)

where M(k) = M̃ − B̃k2, k± = kx ± iky , k2 = k2
x + k2

y , and
we have used the tilde symbol to differentiate between our
model parameters and the ones in the model above. If one
discretizes the above model by sending ki → sin(kia)

a
and

k2
i → 2−2 cos(kia)

a2 (although we have set a = 1 in our work,
we include it here for the sake of being explicit), we obtain
exactly our model HKE + HSO under the condition that we
identify t = D̃/a2, B = B̃/a2, A = Ã/a, and M = M̃ . In
the Hamiltonian in Eq. (4) one can have19–21 B̃ ∼ D̃ which
translates to B ∼ t in terms of our parameters. We therefore
use the spin-orbit parameters in the range of Refs. 21 and 23 to
obtain our results. Additionally we have looked at smaller
parameters for some fixed interaction variables; these are
presented in the next section.

We choose to model the interactions with effective on-
site repulsion and nearest-neighbor attraction, such as in the
extended Hubbard model given by

V = U0

∑
i

ni↑ni↓ + V0

∑
〈i,j〉,σ,σ ′

niσ njσ ′ , (5)

with U0 > 0 (repulsion) and V0 < 0 (attraction). The motiva-
tion behind introducing an attractive V0 stems from studies of a
similar model without spin-orbit coupling in the context of the
cuprates.24,25 In those studies, it has been shown that a purely
repulsive model treated in the Eliashberg formalism leads to
effective off-site attraction and d-wave pairing on bonds. This
occurs since the pairing vertex function includes the fermionic
susceptibility which has a large component close to (π,π )
which translates into near-neighbor attraction. To mimic this
effect in mean field we have included an attractive interaction
on nearest-neighbor sites.
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To map the phase diagram of the model in Eq. (1) we adopt
a variational mean-field theory. Our method involves obtaining
a variational wave function that is a solution to an auxiliary
quadratic Hamiltonian. This auxiliary Hamiltonian contains
the kinetic and spin-orbit-coupling parts of the Hamiltonian
in Eq. (1). In addition, the auxiliary Hamiltonian contains a
series of quadratic terms which represent different possible
orders with the order parameters as variational parameters.
These order parameters represent all possible mean-field states
such as density waves, magnetism, superconductivity, etc. We
have used a variety of order parameters that have appeared in
similar models. The most common density waves double the
unit cell and superconductivity can occur in simple s-wave,
extended s-wave, and d-wave channels. Here we present only
the parameters which where found to be nonzero at some
region of the phase diagram.

The mean-field ground state is found by minimizing the
expectation value of the interacting Hamiltonian [i.e., Eq. (1)]
with respect to the parameters of the variational wave function.
These parameters are essentially the magnitudes of the various
order parameters of the model. The advantage of this method
over the usual self-consistent mean-field theory is that it does
not assume a priori the dominance of any order parameter.
More on its application can be found in Ref. 26.

To this end, we use the following auxiliary Hamiltonian,

HAUX = 1

4

∑
k

�
†
k�k�k, (6)

where we have defined the eight-spinor �k =
(ck↑,ck↓,ck+Q↑,ck+Q↓,c

†
−k↑,c

†
−k↓,c

†
−k−Q↑,c

†
−k−Q↓)T [here

Q = (π,π )] and the matrix

�k =
(

h(k) �̂(k)

�̂(k)† −h(−k)∗

)
(7)

represents the Nambu space of particles and holes. Its entries
are 4 × 4 matrices:

h(k) =
(
Ĥ(k) −Sσz

−Sσz Ĥ(k + Q)

)
, Ĥ(k) = εk + Hk, (8)

and

�̂(k) =
(

i�kσy 0

0 −i�k+Qσy

)
, (9)

where εk = −2t(cos kx + cos ky) is the tight-binding spectrum
and Hk is as defined in Eq. (3).

In the above auxiliary Hamiltonian we have allowed for the
possibility of antiferromagnetism (AF) through the Neél order
parameter S, as well as several channels of superconductivity
through the order parameter �k = �(1)(cos kx − cos ky) +
i�(2) sin kx sin ky + �(3)(cos kx + cos ky) + �(4). We can now
find the variational energy numerically for a given set of
order parameters and then minimize with respect to these
parameters. This amounts to finding the mean-field ground-
state energy and wave function of the system. A representative
plot of these order parameters appears in Fig. 1.

As �(3) = �(4) = 0 throughout the plot in Fig. 1, we
conclude that this region of parameter space does not support
s-wave or extended s-wave superconductivity. We also see

FIG. 1. (Color online) Sample plot of order parameters. The
magnitude of the order parameters is in units of t and we
have fixed A = 0.25t , B = 0.5t , M = 0.1t , and U0 = 2t . Circles
(blue online) are �(1), squares (black online) are �(2), diamonds
(orange online) are �(3), x’s (red online) are �(4), and triangles (brown
online) represent S. This simulation was done on a 100 × 100 square
lattice. The graph shows the development of d + id order since both
�(1) and �(2) become nonzero at the critical coupling. For this figure
we have fixed μ = 0.

that S = 0 in Fig. 1 and so AF is also not a dominant order
in this region of parameter space. The lack of s-wave and
extended s-wave superconductivity is a general characteristic
of the phase diagram of this model; however, depending on
how we tune the SOC parameters it is possible to find a state
where AF (and not superconductivity) is the dominant ground
state.

III. MEAN-FIELD PHASE DIAGRAMS

Given their various possible origins, it is difficult to estimate
what the magnitude of the interaction and spin-orbit-coupling
parameters will be in a realistic system. These coupling can,
in principle, be determined in ab initio calculations; however,
they may vary greatly from one material to another. We
therefore explore a large portion of the U0–V0 parameter
space. In addition, other model parameters (A,B,M) are
chosen to match known materials such as the two-dimensional
topological insulators for which the BHZ18 model was
written.

To demonstrate the differing ground states of our model we
present four separate slices of the phase diagram. Figure 2 gives
four plots in a space of the interaction parameters V0 and U0; in
three of the slices, values of A, B, and M are chosen so that the
ground state is superconductivity, while the other has the SOC
parameters tuned so that we see a phase with an AF ground
state. The d + id phase in Fig. 2 is the most interesting for
our purposes as it is fully gapped and therefore its topological
invariant is well defined. It is obtained when both �(1) and
�(2) are nonzero. We view this state as having a projected
superconducting order parameter whose phase winds by 6π

in momentum space. 4π of the winding is due to its d-wave
nature and the remaining 2π is the result of the projection on
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FIG. 2. (Color online) Two-dimensional slices of the phase diagram. We choose a few regions of parameter space where different phases
can be observed. The interaction parameters are scanned up to 2t (half the bandwidth) while the spin-orbit-coupling parameters are set at
some values around the estimated values for HgTl quantum wells (Refs. 19,21). The chemical potential has been set to zero; however, since
the number of particles is not fixed and interactions are taken into account this does not imply half filling. (a) A = 0.25t , B = −0.45t , and
M = −0.1t , μ = 0; (b) A = 0.25t , B = −0.9t , and M = −0.05t , μ = 0; (c) A = 0.25t , B = 0.5t , and M = 0.1t , μ = 0; and (d) A = 0.25t ,
B = 0.5t , and M = 0.1t , μ = 0.1. The phases are labeled as follows: N, normal; AF, antiferromagnetic; d, d-wave superconductor; and d + id ,
a fully gapped superconductor with order parameter of the form dx2−y2 + idxy . The “d + id” phase in panels (a) and (c) are topologically trivial
(beige online) while that of panels (b) and (d) is nontrivial (green online).

one of the spin-orbit-coupled bands. We focus on this d + id

region of the phase diagram and investigate the topology of
this phase.

Having studied four phase diagrams with numerous dif-
ferent ground states (from d + id superconductivity to an
AF) by changing the interaction strengths, we now study
the dependance of various order parameters on the other
parameters of the model, A, B, and M . To do so we fix
the interaction strengths U0 and V0 to be large enough that
a phase other than the normal phase can be seen. With this
in mind, Fig. 3 explores the dependencies of the three order
parameters �(1),�(2), and S on changes in the spin-orbit-
coupling parameters A and B.

Before ending this section, we make a few remarks. First,
Fig. 2 showcases a phase that is purely d-wave in nature.
One might ask why we are not interested in the topology
of this phase; the reason is that this d-wave order parameter
has nodes and as a result it is difficult to properly define a
topological invariant in this case. Nevertheless, the topology
of this superconductor may be an interesting topic for further
studies and could be found to be nontrivial. On the other
hand, due to nodal excitations any Majorana fermions that
may be produced will not be protected against hybridizing
with the low-energy nodal quasiparticles. Second, in the
interest of performing an exhaustive search for competing
ground-state order in this model, we have checked that neither
spin nor charge density waves give a dominant ground-state

contribution to the model presented here in the studied
parameter regime.

IV. DISCUSSION OF RESULTS

Having presented several phase diagrams in the previous
section, in this section we focus on describing and providing
some physical motivation for our results. Let us begin with
Fig. 2(a), where we have the three phases labeled “N,” “d,”
and “d + id.” Let us first focus on the various phases observed
along a fixed value of U0, for example the dashed line in the
figure starting at point α and ending at point β. We begin
in the N (normal) phase. Upon increasing |V0| the system
undergoes a transition to a dx2−y2 superconductor, which we
have labeled “d.” This transition to a superconducting phase
can be understood by realizing that V0 represents off-site
attraction in our model. It is therefore understandable that
a significantly strong V0 should lead to pairing on nearest-
neighbor bonds, just the scenario in a dx2−y2 superconductor.
Continuing along our path we enter the d + id phase, a
dx2−y2 + idxy superconductor. This transition can also be
understood via the increase in V0; at first V0 is strong enough
to induce pairing on nearest neighbors as in the d phase but
as it is increased further it reaches a strength that is sufficient
to also induce pairing on next-nearest-neighbor bonds. This
pairing on next-nearest neighbors is then responsible for the
idxy term.
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FIG. 3. (Color online) Plot of relevant order parameters as B and A are changed. We have fixed V0 = −1.8t , U0 = t , and M = −.05t . In
all three plots the solid line (red online) corresponds to A = 0.05t , the dashed line (blue online) to A = .15t , and the dot-dashed line (green
online) to A = 0.25t . For convenience we have labeled these curves in the legend.

Increasing (decreasing) U0 in Fig. 2(a) causes our α → β

contour in U0–V0 space to shift to the right (left) and increases
(decreases) the strength V0 required to facilitate the types of su-
perconductivity in the d and d + id phases. This phenomenon
can be understood by recalling that U0 represents on-site
repulsion and therefore a larger U0 means the probability of
a site on the lattice being doubly occupied is reduced. Given
that the superconducting order parameters we are interested in
are proportional to 〈ci+δ,↓ci,↑〉 (δ being a vector to nearest
neighbors for dx2−y2 and next-nearest neighbors for idxy

superconductivity) then a reduced probability for a doubly
occupied lattice site should, quite roughly, lead to a decrease in
this quantity as it will be less likely that site i + δ is occupied by
a spin-down electron and site i occupied by a spin-up electron.
In response to this, a larger value of V0 is required in order to
realize the same superconducting phases as for smaller U0.

Moving on to Fig. 2(b) the same general pattern is observed
as in Fig. 2(a): small values of |V0| lead to no supercon-
ductivity and as |V0| is increased dx2−y2 and dx2−y2 + idxy

superconductivity is observed. Again in this phase diagram
a stronger value of U0 inhibits the superconductivity and a
larger value of |V0| is required to drive pairing on nearest and
next-nearest neighbors. As the general pattern is the same,
all of the arguments given above for Fig. 2(a) carry over to
describe the lower part of Fig. 2(b). Despite their similarities,
there are two main differences between the phase diagrams
in Figs. 2(a) and 2(b). First, the required critical values of
|V0| are much lower in Fig. 2(b), and second, there is an
antiferromagnetic (AFM) phase for large |V0| in Fig. 2(b).
The explanation of the first issue lies in the fact that we have
changed both B and M in moving from Fig. 2(a) to Fig. 2(b).
To understand why this leads to a decrease in the critical
value of V0 required to develop superconductivity we must
note that in these calculations we have fixed μ and so the
number of particles in the system is permitted to fluctuate.
For example, the phases shown in Figs. 2 and 3 have particle
numbers varying between 1.1 and 1.3 electrons per lattice site.
In general, the number of particles in the system will depend
on the band structure of the system and in particular on B. For
the phase diagram in Fig. 2(b) the system is actually closer to

half filling than the system in Fig. 2(a). Closer to half filling
both the tendency to develop antiferromagnetism and d-wave
superconductivity increase. First, antiferromagnetism is the
ground state of the Hubbard model close to half filling and
therefore this tendency is not surprising. Second, closer to half
filling the system has a larger fermionic susceptibility at (π,π )
(as discussed in Refs. 24 and 25) and therefore the pairing
vertex function in the nearest-neighbor channel is enhanced.
In our case, this translates to the lower phase boundary lines
in Fig. 2(b).

Figures 2(c) and 2(d) show slices of the phase diagram at
the same values of A, B, and M but different values of μ.
For small |V0| both systems start in the N phase and as |V0| is
increased transition to the d phase and the d + id phase. The
physical explanation of this behavior is the same as is given
above for Fig. 2(a). The difference between the two diagrams
is the critical values of |V0| as well as the “nature” of the
(d + id)-wave phase. First, the transition values in Fig. 2(c)
are much lower than those in Fig. 2(d), a fact that, like the
difference between Figs. 2(a) and 2(b), can be traced to the
system in Fig. 2(c) being closer to half filling. Second, as
discussed in the next section of this paper, the (d + id)-wave
phase in Fig. 2(c) is topologically trivial while that of Fig. 2(d)
is topologically nontrivial. This demonstrates that we can tune
μ in order to move the system across a topological phase
boundary as well as the fact that a topologically nontrivial
phase can be obtained for the smaller value of B, B/t = 0.5.

Let us now turn out attention to understanding Fig. 3. The
first striking feature of this figure is the relative insensitivity
of any of the order parameters (and therefore phases) to
changes in the value of the in-plane spin-orbit coupling A.
All three curves show small changes in the behavior of the
order parameters over the range of A values considered. Next,
the dependence of the superconducting order parameters on B

consists of a peak around B = 0, and then as B is increased
the order parameter drops to zero and superconductivity
disappears. As B is further increased we see two peaks in
�(1) and �(2) almost evenly distributed about B = 0. As
we continue away from B = 0 the superconducting order
parameters again drop suddenly to zero and at this point the
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system transitions to an AFM phase as signaled by a nonzero
value of S in the rightmost graph of Fig. 3. Recalling yet again
that we have held μ fixed, this crossover into an AFM phase
exactly coincides with the value of B for which the number
of electrons in the system begins to decrease as a function
of B.

V. TOPOLOGICAL CLASSIFICATION

To study the topology of the d + id region we calculate the
TKNN number27(named for Thouless, Kohmoto, Nightingale,
and den Nijs, equivalent to the first Chern number) using our
optimized mean-field wave function. This involves selecting
a region in the d + id phase in Fig. 2 (or any other d + id

phase) and then calculating22

I = 1

2π

∫
d2kF(k), (10)

where the Berry curvature, F , is defined using the eigenstates
�k|φn(k)〉 = En(k)|φn(k)〉, viz.,28

F(k) = i

′∑
n

∑
m
=n

εij

[ 〈φn| ∂�k
∂ki

|φm〉〈φm| ∂�k
∂kj

|φn〉
(En − Em)2

]
, (11)

where, for the sake of brevity, we have dropped the functional
dependence on k, the primed sum is a sum over filled
bands, the εij tensor has the values ε1,2 = −ε2,1 = 1 and
εi,i = 0, and summation over the repeated indices i and j is
implied.

By calculating this invariant we can classify the topology of
the d + id region as either trivial (regions for which we find
I = 0) or nontrivial (regions for which I = 1). Our results
are summarized in Fig. 4. As the topology of the system is
intimately related to the number of Fermi surfaces before
interactions are turned on,16 Fig. 4 also shows a sample of
the Fermi surface in each topological region.

Figure 4 displays one of our main results; our model
has regions of d + id topological superconductivity. As an
example, Fig. 4 shows that the d + id state in Fig. 2(a) is
topologically trivial while the same in Fig. 2(b) is topological.
Furthermore, we see from the figure some devices might exist
in the topologically nontrivial region at some set value of M .
It may then be possible to move the system into a topological
phase by changing M via either an applied field or proximity to
a magnetic layer. In this way, our results suggest that properly
applying a Zeeman field (i.e., tuning M) to spin-orbit-coupled
superconductors may result in the transition of an ordinary
superconductor to a topological one.

The reader should also note the strengths of the parameters
B and M required to obtain nontrivial topology. We see
that, for the range of parameters shown in Fig. 4, a value
of B � ±0.5t is required for nontrivial topology. To find a
nontrivial topological state for B � 0.0, a very large value of
|M| > 4t is required (not shown in Fig. 4). This might suggest
that a quantum-well-type system may be the most suitable for
realizing the topological superconductor as for these systems
the typical values of B are large.

In a real material, it is not possible to tune the interac-
tion. However, this is routinely done in cold atoms. It has
been demonstrated recently that spin-orbit coupling may be

FIG. 4. (Color online) Topology of the d + id ground-state phase.
In this figure we have set A = 0.25t and μ = 0. The topologically
trivial phase is labeled T (beige online) while the nontrivial phase
is labeled N (teal online). The insets show an example of the Fermi
surface (in the first Brillouin zone) for each phase before interactions
are turned on. The lower inset, corresponding to the d + id state of
Fig. 2(b), shows a single Fermi surface for the topologically nontrivial
phase while the upper inset [the d + id state in Fig. 2(a)] shows two
Fermi surfaces in the topologically trivial region. Note that as we
tune μ this diagram maintains this same general behavior, the only
difference being that the absolute value of the B intercept of the two
boundary lines increases (decreases) for decreasing (increasing) μ.

simulated in cold atoms.29 This may lead the way for simulat-
ing topological insulators.30–32 Our work suggests that if the
spin-orbit coupling and the interactions are tuned correctly, a
topological superconductor may be simulated as well.

VI. CONCLUSIONS

In summary, we have proposed a model of interacting,
spin-orbit-coupled, Zeeman-split electrons on a square lattice.
We have shown that in some regions of the parameter space
the ground state of the proposed model is either a d + id

superconductor or an antiferromagnet. Narrowing our focus
to the d + id region we have shown that our system supports
phases of nontrivial topology. The topological regions in our
phase diagrams exhibit superconductivity with 6π winding
of its order parameter phase in the Brillouin zone. In the
same way that a p + ip superconductor may support the
existence of Majorana fermions in vortex cores or on edges,
this superconductor will support their existence as well. As
our model considers superconductivity driven by interactions
rather than the proximity effect, it may serve as a possible
simplification for device design. Finally, our work supplies
strong evidence that Majorana fermions might be realized in
certain spin-orbit-coupled superconductors under the proper
application of a Zeeman field. The work presented here
provides an initial study of a model that is very rich in the sense
that it could be used to describe various different scenarios.
Future work in the direction of the results presented here would
focus on finding a specific material that falls in the topological
superconducting phase we have found.
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