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Temperature dependence of a vortex in a superfluid Fermi gas
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The temperature dependence of an isolated quantum vortex, embedded in an otherwise homogeneous fermionic
superfluid of infinite extent, is determined via the Bogoliubov–de Gennes (BdG) equations across the BCS-BEC
crossover. Emphasis is given to the BCS side of this crossover, where it is physically relevant to extend this study
up to the critical temperature for the loss of the superfluid phase, such that the size of the vortex increases without
bound. To this end, two techniques are introduced. The first one solves the BdG equations with “free boundary
conditions,” which allows one to determine with high accuracy how the vortex profile matches its asymptotic
value at a large distance from the center, thus avoiding a common practice of constraining the vortex in a cylinder
with infinite walls. The second one improves on the regularization procedure of the self-consistent gap equation
when the interparticle interaction is of the contact type, and permits us to considerably reduce the time needed for
its numerical integration by drawing elements from the derivation of the Gross-Pitaevskii equation for composite
bosons starting from the BdG equations.
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I. INTRODUCTION

Vortices are at the essence of superfluidity and of its
deep connection with Bose-Einstein condensation (BEC).1

They have thus received considerable interest with the rise
of ultracold dilute trapped Bose gases,2 where they can be
generated by setting the trap into rotation3 and have been
the subject of experimental investigation.4 In this context,
isolated vortices or even vortex arrays have mainly been
studied theoretically in terms of the Gross-Pitaevskii (GP)
equation for the wave function of the condensate,5,6 which
was specifically introduced to describe an isolated vortex in an
otherwise uniform dilute Bose-Einstein condensate.

Subsequent interest in ultracold dilute trapped Fermi gases
and in the associated BCS-BEC crossover7,8 (whereby a
continuous evolution is achieved from a BCS-like situation
with highly overlapping Cooper pairs, to a BEC-like situation
where composite bosons form out of fermion pairs and
condense at sufficiently low temperature) has raised the issue
of the description of vortices in Fermi systems, for which
the Pauli principle requires one to consider in general a
whole set of one-particle wave functions instead of a single-
condensate wave function. In this context, isolated vortices
(or even vortex arrays) have been studied theoretically in
terms of the Bogoliubov–de Gennes (BdG) equations,9 which
were introduced as an extension of the BCS approach10

to describe a nonuniform Fermi superfluid. Experimentally,
arrays of vortices have been detected throughout the BCS-BEC
crossover once trapped Fermi atoms were set into rotation.11

From the computational side, solution of the BdG equations
for the fermionic wave functions is much more involved
and time consuming than the solution of the GP equation
for the bosonic condensate wave function. For this reason,
consideration has essentially been limited to the study of an
isolated vortex [with the exception of arrays of vortices in
the weak-coupling (BCS) limit12,13]. In particular, an isolated
vortex was considered by solving the BdG equations in
Refs. 14 and 15 at zero temperature throughout the BCS-BEC
crossover, and in Ref. 16 at finite temperature but in the

weak-coupling (BCS) limit only. In these works, the superfluid
was enclosed in a cylinder of radius R.

The aim of this paper is to extend the calculation of the
fermionic BdG equations for a single vortex over the whole
temperature range from zero up to the critical temperature
Tc for the loss of the superfluid phase, while spanning at the
same time the entire BCS-BEC crossover. (For completeness,
extension of the BdG calculation up to Tc will be considered
also on the BEC side of the crossover, even though in this
case at finite temperature it would be physically relevant to
include pairing fluctuations beyond mean field.) In practice,
the crossover between the BCS and BEC regimes is essentially
exhausted within a range ≈1 about the unitary limit at
(kF aF )−1 = 0 where the scattering length aF of the two-
fermion problem diverges (kF being the Fermi wave vector
related to the bulk density n0 via n0 = k3

F /3π2).
This will require us to avoid constraining the superfluid

within a cylinder of radius R with rigid walls, but to let it be free
of expanding its size without bound when approaching Tc from
below. To this end, appropriate “free boundary conditions”
will have to be implemented for the BdG equations in order
to recover their correct asymptotic solution far away from
the center of the vortex when their size would exceed any
reasonable value one could take for R. The advantage of
avoiding the use of a finite value R can be perceived, in
practice, even somewhat away from Tc, as it can be seen
from the weak-coupling case reported in Fig. 1 for the sake
of example. In this way, we will be able to obtain the healing
length for an isolated vortex as a function of the temperature
T from T = 0 up to (quite close to) Tc and of the coupling
parameter (kF aF )−1 spanning the BCS-BEC crossover.

This information about the way the superfluid healing
length can be fine tuned in a Fermi gas, by varying not
only the temperature but also the interparticle coupling (or
both), may also be relevant for the emerging field of superfluid
interferometers17 in the case it could be possible to realize them
in practice by coupling systems of ultracold dilute trapped
Fermi atoms.
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FIG. 1. (Color online) Profile of the order parameter �(ρ)
(normalized to its asymptotic value �0 at the given temperature)
for an isolated vortex versus the distance ρ from the center. The
weak-coupling case with (kF aF )−1 = −1 is considered for three
different temperatures: (a) T = 0; (b) T = 0.6Tc; (c) T = 0.9Tc. In
the three cases, the calculation using “free boundary conditions” (full
line) is compared against that using a cylindrical box (dashed line),
with the value R = 25k−1

F for the radius as typically taken in previous
calculations (Ref. 14).

In the course of the present calculation, we shall also
improve on the regularization procedure of the self-consistent
gap equation which was used in the literature for similar
problems18–20 and is required when, as in the present context,
the interparticle interaction is of the contact type. This will
permit us to reduce considerably the computational time
needed for the numerical integration of the BdG equations,
while leaving unaltered the numerical accuracy. To this end,
elements will be drawn from the derivation of the GP equation
for composite bosons that was obtained in Ref. 21 on the BEC
side of the crossover starting from the BdG equations.

A second, yet not less important, purpose of this paper is
to obtain as accurate as possible numerical solutions of the
BdG equations for a nontrivial physical problem (like that of
an isolated vortex embedded in an infinite superfluid) under
a wide variety of circumstances. These numerical solutions
could, in fact, be used in the future as a “benchmark” for
the results obtained alternatively by solving approximate local
(differential) equations for the gap parameter, which could
take the place of the fermionic BdG equations at least in some
approximate sense. In turn, these local equations should be
better suited to deal with more complex problems like the
arrays of vortices and the moment of inertia of the superfluid,
which can be explored experimentally with ultracold trapped

Fermi atoms11,22 but remain too difficult to be approached
theoretically by solving directly the fermionic BdG equations.

As an example, the GP equation for composite bosons at low
temperature that was derived in Ref. 21 has already been tested
in the context of the Josephson effect23 to produce results quite
similar to those obtained by solving the BdG equations on the
BEC side of the crossover, albeit in a much more efficient way.
Similarly, the Ginzburg-Landau (GL) equation for Cooper
pairs, which was derived by Gorkov24 on the BCS side of the
crossover and close to Tc also starting from the fermionic BdG
equations, can be most readily applied to nonuniform super-
conductors under a variety of circumstances25 since its solution
is considerably simpler than that of the original BdG equations.

Along these lines, attempts have already been made in the
past to derive from the BdG equations extensions of the GL
equation, which would still apply to the weak-coupling (BCS)
regime but somewhat deeper in the superfluid phase away from
the vicinity to Tc.26–28 More recently, a systematic expansion of
the BdG equations in terms of the small parameter (Tc − T )/Tc

was considered in the weak-coupling regime, but was explicitly
tested for the spatially uniform case only.29 A satisfactory
test of the above (as well as other) proposal for differential
equations, which aims at extending the validity GL equation
deep in the superfluid region, is thus apparently still pending
and the accurate solution of the BdG equations we obtain in
this paper may provide the awaited ground for this comparison.

In this context, an additional important information that
can be obtained by the present approach comes from the
analysis of how alternative energy ranges in the solution of
the BdG equations (namely, bound states, and near and far
continuum) contribute to the different spatial regions in which
the profiles of physical quantities associated with a vortex
(like the gap parameter itself and the number and current
densities) can be partitioned. This kind of information is, in
fact, expected to be relevant in future work in order to assess
the validity of approximate local (differential) equations for
the gap parameter.

The paper is organized as follows. Section II considers the
solution of the BdG equations for an isolated vortex embedded
in an infinite superfluid, for which “free boundary conditions”
are introduced and the associated normalization of the wave
functions in the continuum is obtained. The spatial profiles of
the vortex obtained in this way under a variety of circumstances
are reported in Sec. III. Section IV discusses the procedure
through which the healing length of the vortex, as a function
of coupling and temperature, can be extracted from the above
profiles. Section V provides an analysis of the contribution of
the different energy ranges in the BdG equations to different
portions in the profiles of physical quantities. Section VI
gives our conclusions. The way the boundary conditions
are implemented is discussed in detail in Appendix A, the
improved regularization procedure for the gap equation is
derived in Appendix B, and the related expressions for the
number and current densities are reported in Appendix C.

II. SOLUTION OF THE BOGOLIUBOV–DE GENNES
EQUATIONS WITH FREE BOUNDARY CONDITIONS

In this section, we discuss in detail the solution of the
fermionic BdG equations in cylindrical coordinates for an
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isolated vortex embedded in an otherwise infinite superfluid.
To be able to deal with situations when the size of the vortex
grows without bound upon approaching Tc (in practice, when
it exceeds a few dozens times k−1

F ), an explicit numerical
integration of the BdG equations will be performed from the
center of the vortex outwards only in a limited radial range, at
the boundary of which connection with asymptotic solutions
will be sought in terms of known functions of mathematical
physics. Knowledge of these asymptotic solutions will also en-
able us to to determine the normalization of the eigensolutions
of the continuum part of the spectrum of the BdG equations.
This step is of particular importance since it turns out that the
continuum part of the spectrum exhausts in practice most parts
of the contribution to the relevant physical quantities.

A. BdG equations for an isolated vortex embedded
in an infinite medium

The fermionic BdG equations read as(
H(r) �(r)
�(r)∗ −H(r)

)(
uν(r)
vν(r)

)
= εν

(
uν(r)
vν(r)

)
, (1)

where H(r) = −∇2/2m − μ (m being the fermion mass, μ

the chemical potential, and h̄ = 1 throughout). The local gap
parameter �(r) is determined via the self-consistent condition

�(r) = −v0

∑
ν

uν(r)vν(r)∗ [1 − 2fF (εν)] , (2)

where fF (ε) = (eε/(kBT ) + 1)−1 is the Fermi function at
temperature T (kB being the Boltzmann constant) and v0

is the (bare) coupling constant of the contact interaction.
Only positive values of the eigenvalues εν can be explicitly
considered.9

We are specifically interested in a spatially dependent gap
parameter �(r) with cylindrical symmetry

�(r) = �(ρ,ϕ,z) = �(ρ)einϕ (3)

that corresponds to an isolated vortex directed along the z axis
with circulation quantum n (n integer). (We shall take n = 1
eventually.) The associated wave functions of Eqs. (1) have
the form

uν,	,kz
(r) = uν(ρ)ei	ϕeikzz,

(4)
vν,	,kz

(r) = vν(ρ)ei(	−n)ϕeikzz

(	 integer) where �(ρ), uν(ρ), and vν(ρ) are real functions.
The BdG equations (1) then become

O	uν(ρ) + �(ρ)vν(ρ) = ενuν(ρ),
(5)−O	−nvν(ρ) + �(ρ)uν(ρ) = ενvν(ρ)

involving the radial operator

O	 =
[
− 1

2mρ

d

dρ

(
ρ

d

dρ

)
+ 	2

2mρ2
− μ̃

]
, (6)

where μ̃ = μ − k2
z /2m is the reduced chemical potential.

Each of the two second-order differential equations (5)
admits a regular solution in ρ = 0, which behave respectively
as uν(ρ) ∼ ρ|	| and vν(ρ) ∼ ρ|	−n|. In particular, for n = 1
[whereby �(ρ) = ηρ for ρ → 0 with η constant], two

independent solutions of the coupled equations (5) can be
obtained by taking the indicial conditions

u(1)
ν (ρ) = ρ|	| + · · · ,

(7)
v(1)

ν (ρ) = βρ|	|+3 + · · · ,

where (4 + 3|	| + 	)β/m + η = 0, and

u(2)
ν (ρ) = γρ|	−1|+3 + · · · ,

(8)
v(2)

ν (ρ) = ρ|	−1| + · · · ,

where [	2 − (|	 − 1| + 3)2]γ /(2m) + η = 0.
The differential equations (5) are integrated numerically

from ρ = 0 up to an outer value Rout, and for several values
of 	 up to a maximum value 	max. Here, 	max and Rout can be
related to each other as follows:

(1) To begin with, one selects a cutoff energy Ec such that
only (positive) eigenvalues εν up to Ec − μ are explicitly
considered in the solution of Eqs. (5) (the remaining eigen-
values larger than Ec − μ will be dealt with separately by
the regularization procedure for the gap equation described in
Appendix B).

(2) One then chooses a value of Rout such that for ρ > Rout

the gap �(ρ) in Eqs. (5) has reached its asymptotic (bulk)
value �0, say, within 1% (values kF Rout � 60 ÷ 200 prove
sufficient for all practical purposes).

(3) Finally, one solves numerically Eqs. (5) for values
of 	 up to 	max such that 	2

max/(2mR2
out) ∼ Ec, that is to say,

	max ∼ kcRout with kc = √
2mEc (in practice, we have taken

	max not smaller than 200).
It is clear that a reasonable estimate of the value of Rout

entails knowledge of the profile of �(ρ), which in turn requires
the solution of the self-consistent condition (2). We defer to
Appendix B the solution of Eq. (2) together with a proper
treatment of the convergence of the sum over ν for large
values of εν . In this context, a regularization procedure for
the gap equation (2) will be introduced, which improves
on regularization procedures previously considered in the
literature18,20 (thereby effectively reducing the numerical value
of Ec).

B. Asymptotic behavior of the wave functions

For an isolated vortex embedded in an otherwise infinite
superfluid medium, the eigenvalues εν of the BdG equations (5)
belong to a continuous spectrum above the threshold �0

(apart from the Andreev–Saint James bound states that lie
below this threshold). For the wave functions belonging to this
continuum, in turn, the normalization is determined from their
“asymptotic” behavior for large values of ρ, which may be
identified only for ρ 	 Rout. For this reason, the asymptotic
behavior of uν(ρ) and vν(ρ) for ρ → ∞ has eventually to be
searched in terms of known functions of mathematical physics,
which is, however, not possible for the radial BdG equations (5)
as they stand.

To overcome this problem, we have adopted the follow-
ing strategy. If Rout is large enough, the centrifugal terms
	2/(2mρ2) and (	 − n)2/(2mρ2) in Eqs. (5) are important only
for large values of 	, in such a way that we may replace 	 and
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(	 − n) by their average value:

	′ = [	 + (	 − n)]

2
= 	 − n

2
−→ 	 − 1

2
. (9)

By this replacement, in the centrifugal terms for ρ > Rout we
make an error smaller than Ec/	max. Accordingly, for ρ � Rout

in the place of Eqs. (5) we consider the following “modified”
BdG equations with a common value of 	′:

O	′uν(ρ) + �0vν(ρ) = ενuν(ρ),
(10)−O	′vν(ρ) + �0uν(ρ) = ενvν(ρ).

These coupled equations can be solved analytically in terms
of known functions of mathematical physics by considering the
auxiliary equation[

− 1

2mρ

d

dρ

(
ρ

d

dρ

)
+ 	′2

2mρ2
− μ̃

]
fk(ρ)

=
(

k2

2m
− μ

)
fk(ρ), (11)

where k2 = k2
⊥ + k2

z . This equation is equivalent to the
canonical equation of the Bessel functions of index |	′|:

ζ 2 df (ζ )

dζ 2
+ ζ

df (ζ )

dζ
+ (ζ 2 − 	′2)f (ζ ) = 0 (12)

in the dimensionless variable ζ = k⊥ρ.30 The solutions to
Eqs. (10) are thus sought in the form

uν(ρ) = ukf (k⊥ρ), vν(ρ) = vkf (k⊥ρ), (13)

which reduce Eqs. (10) to the standard system of algebraic
equations9 (

k2

2m
− μ

)
uk + �0vk = εkuk,

(14)

−
(

k2

2m
− μ

)
vk + �0uk = εkvk,

yielding

u2
k = 1

2

(
1 +

k2

2m
− μ

εk

)
= 1 − v2

k , (15)

where

εk =
√(

k2

2m
− μ

)2

+ �2
0 =

√(
k2
⊥

2m
− μ̃

)2

+ �2
0. (16)

When dealing with the continuum spectrum, it is convenient
to use the energy eigenvalue ε as the independent variable. This
constrains k⊥ in Eq. (16) to the values

k⊥ = ±
√

2mμ̃ ± 2m

√
ε2 − �2

0 (17)

for given ε and kz. To comply with the notation originally
introduced in Ref. 31 to describe tunneling through a barrier
in a superconductor, wave vectors with the plus (minus) sign
inside the square root in Eq. (17) are referred to as electronlike
(holelike) wave vectors.

Depending on the value of ε and the sign of μ̃, there can be
alternatively four complex solutions, four real solutions, and
two real and two complex solutions of Eq. (17). Only complex

solutions resulting in decaying exponentials for ρ → ∞ can be
accepted. A discussion of the explicit solutions in the various
energy ranges, depending also on the sign of μ̃, is reported
in Appendix A, where the boundary conditions at ρ = Rout

between the numerical solutions of Eqs. (5) for ρ � Rout and
the analytical solutions of Eqs. (10) for ρ � Rout are also
reported.

What is relevant here is that, depending on the allowed
solutions k⊥ to Eq. (17), the solutions [uν(ρ),vν(ρ)] of the BdG
equations for ρ � Rout can be expressed as linear combinations
of Bessel Jα(ζ ), Neumann Yα(ζ ), and Hankel H±

α (ζ ) functions
of index α = |	′| and argument ζ = k⊥ρ. These functions, in
turn, have the following asymptotic behaviors (that hold for
ρ 	 Rout) (Ref. 30):

Jα(ζ ) ∼
√

2

πζ
cos

(
ζ − 1

2
πα − 1

4
π

)
,

Yα(ζ ) ∼
√

2

πζ
sin

(
ζ − 1

2
πα − 1

4
π

)
, (18)

H±
α (ζ ) ∼

√
2

πζ
exp

[
±i

(
ζ − 1

2
πα − 1

4
π

)]
.

The behaviors (18) are what is only needed to calculate the
normalization of the wave functions in the continuum part of
the spectrum, to be considered next.

C. Normalization in the continuum

The normalization of the (two-component) wave functions,
that are solutions of the BdG equations (5) for energy
eigenvalues lying in the continuum, can be obtained by
adapting to the present context the method discussed in Ref. 32
for the Schrödinger equation.

Let us consider the BdG equations (5) for two different
energies ε and ε′, both lying in the continuum. Multiplying
these equations from the left by the pair (uε′ ,vε′ ) and (uε,vε),
in the order, subtracting the resulting expressions side by side,
and integrating over the radial coordinate from ρ = 0 up to R̄,
we obtain∫ R̄

0
dρρ

[
uλ′

ε′ (ρ)uλ
ε (ρ) + vλ′

ε′ (ρ)vλ
ε (ρ)

]

= R̄

2m

P
(ε − ε′)

[
−uλ′

ε′ (ρ)
duλ

ε (ρ)

dρ
+ uλ

ε (ρ)
duλ′

ε′ (ρ)

dρ

+ vλ′
ε′ (ρ)

dvλ
ε (ρ)

dρ
− vλ

ε (ρ)
dvλ′

ε′ (ρ)

dρ

]
ρ=R̄

, (19)

where the index λ distinguishes degenerate independent
solutions (cf. Appendix A) and an integration by parts has
been performed. In the expression (19), the two limits R̄ → ∞
and ε → ε′ have been taken in this order. Note how the
division by (ε − ε′) is interpreted as a principal part value (P),
consistently with the “standing-wave boundary conditions”
we are adopting for the radial problem. Note further that the
(extreme) asymptotic form of the wave functions is what is
only needed to establish their normalization.

214507-4



TEMPERATURE DEPENDENCE OF A VORTEX IN A . . . PHYSICAL REVIEW B 87, 214507 (2013)

In particular, for an asymptotic form of the type (with real
values of k⊥)(

uλ
ε (ρ)

vλ
ε (ρ)

)
=

(
uk

vk

)
[cλJα(k⊥ρ) + dλYα(k⊥ρ)] , (20)

where cλ and dλ are real coefficients, in the appropriate limits
the expression (19) reduces to∫ ∞

0
dρρ

[
uλ′

ε′ (ρ)uλ
ε (ρ) + vλ′

ε′ (ρ)vλ
ε (ρ)

]
= [cλcλ′ + dλdλ′]

1

k⊥
δ(k⊥ − k′

⊥). (21)

To obtain this result, we have made use of the identity

1

ε

P
(ε − ε′)

= m( k2
⊥

2m
− μ̃

) 1

k⊥

P
(k⊥ − k′

⊥)
(22)

that holds in the limit ε → ε′. A simple generalization of the
expression (21) can be obtained when more than one wave
vector appears on the right-hand side of Eq. (20).

III. SPATIAL PROFILES OF A VORTEX FROM ZERO TO
THE CRITICAL TEMPERATURE

The solution of the BdG equations for an isolated vortex
embedded in an infinite superfluid, discussed in Sec. II, enables
us to obtain the spatial profile �(ρ) of the gap parameter
[via the regularized gap equation (B12) of Appendix B], as
well as of the number n(ρ) and current j (ρ) densities [whose
asymptotic contributions are given by Eqs. (C3) and (C4) of
Appendix C, respectively].

In the following, the chemical potential μ entering the
BdG equations is eliminated in favor of the asymptotic (bulk)
value n0 of the density via the standard BCS density equation
for a homogeneous system in the absence of the vortex,
namely,

n0 =
∫

dk
(2π )3

[
1 − ξk

Ek
[1 − 2fF (Ek)]

]
, (23)

where ξk = k2

2m
− μ and Ek =

√
ξ 2

k + �2
0 , since corrections to

μ due to the presence of an isolated vortex are negligible in the
thermodynamic limit. This procedure, in turn, fixes the value
of kF .

Figures 2–4 show our numerical results for the quantities
�(ρ), n(ρ), and j (ρ), in the order, for the four couplings
(kF aF )−1 = (−2.0,−1.0,0.0,+1.0) and the three tempera-
tures T = (0.0,0.5,0.9)Tc. These plots were generated using
a common cutoff energy Ec = 3EF which, thanks to our
regularization procedure (cf. Appendixes B and C), proves
sufficient to achieve maximum accuracy of the calculations to
the extent that using larger values of Ec provides essentially
the same results. A number of similar plots (not shown
here) have also been systematically generated over a finer
mesh of temperatures from T = 0 up to T = 0.95Tc, in
order to extract from them the temperature dependence of
the healing length associated with the vortex, as discussed in
Sec. IV.

Note from Figs. 2–4 that the size of the vortex increases
more rapidly with increasing temperature when approaching
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FIG. 2. (Color online) Gap parameter �(ρ) (normalized to its
asymptotic value �0 at the given temperature) of an isolated vortex
versus the distance ρ from the center, for the coupling (kF aF )−1:
(a) −2.0; (b) −1.0; (c) 0.0; (d) +1.0. For each coupling, three different
temperatures are considered: T = 0 (full lines); T = 0.5Tc (dashed
lines); T = 0.9Tc (dashed-dotted lines).

the BCS limit (kF aF )−1 � −1. Note also the presence of the
characteristic Friedel’s oscillations in all these quantities when
this limit is approached at low temperature. These oscillations,
however, fade away rather quickly as the temperature is
increased toward Tc.

As we have already mentioned, the reason why we have
invested much effort in determining the continuum part of the
spectrum of the BdG equations in an infinite medium is that
this part is expected to exhaust in practice most parts of the
contribution to physical quantities.

In support to this expectation, we show in Fig. 5 the
profiles of �(ρ), n(ρ), and j (ρ) obtained at zero temperature
for the coupling (kF aF )−1 = −1, alternatively by including
or omitting the contribution from the continuum part of the
spectrum in the calculation of these quantities. Drastic changes
in these profiles result indeed when the contribution from
the continuum is omitted from the calculation (with similar
conclusions drawn for different temperatures and couplings).
A more complete analysis of how different energy ranges in the
solutions of the BdG equations contribute to the spatial profiles
of these physical quantities will be presented in Sec. V. Note
that an appropriate absolute normalization is used in Fig. 5 for
each quantity, in order to obtain a meaningful comparison.

It is further relevant to compare the profiles of the order
parameter and the number current obtained by the present
accurate solution of the BdG equations on the BCS side of
the crossover close to Tc, with those obtained by the less
demanding numerical solution of the Ginzburg-Landau (GL)
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FIG. 3. (Color online) Number density n(ρ) (normalized to its
asymptotic value n0) for an isolated vortex versus the distance ρ

from the center, for the same couplings and temperatures of Fig. 2.
The inset shows the density at the center of the vortex vs (kF aF )−1,
where our results at T = (0,0.5,0.9)Tc from bottom to top (circles
with interpolating dashed lines) are compared with those at T = 0
from Ref. 14 (squares) and from Ref. 15 (triangles).
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FIG. 4. (Color online) Number current j (ρ) (normalized to its
maximum value jmax at the given temperature) of an isolated vortex
versus the distance ρ from the center, for the same couplings and
temperatures of Figs. 2 and 3. The maximum value of the current
conventionally identifies the vortex radius Rv.
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FIG. 5. (Color online) (a) Gap parameter �(ρ), (b) number
density n(ρ), and (c) number current j (ρ) of an isolated vortex
versus the distance ρ from the center, at zero temperature for the
coupling (kF aF )−1 = −1. The results of the complete calculation
(full lines) are contrasted with those of a calculation that excludes
the contribution from the continuum part of the spectrum in
Eqs. (B12), (C1), and (C2) (dashed lines).

differential equation for the order parameter �GL, namely,33

[
6π2(kBTc)2

7ζ (3)EF

(
1 − T

Tc

)
+ ∇2

4m

]
�GL(r)

− 3

4EF

|�GL(r)|2�GL(r) = 0, (24)

where ζ (3) � 1.202 is the Riemann zeta function of argument
3. In terms of this �GL(r), the GL current is then given by the
expression33

jGL(r) = 7ζ (3)n0

16im(πkBTc)2
[�GL(r)∗∇�GL(r)

−�GL(r)∇�GL(r)∗]. (25)

Since the equation (24) for �GL and the expression (25) for jGL

have been derived microscopically from the BdG equations in
the (extreme) BCS limit and close to the critical temperature,24

one expects the numerical comparison with the full solution of
the BdG equations to improve as these limiting conditions are
approached. That this is indeed the case is shown in Figs. 6
and 7, where already for the coupling (kF aF )−1 = −2 and
the temperature T = 0.95Tc the comparison between the two
(BdG and GL) calculations appears quite good.

The above example can be regarded as a prototype for what
was meant in the Introduction, about the fact that nontrivial
numerical solutions of the BdG equations can be used in
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FIG. 6. (Color online) (a) Gap parameter �(ρ) and (b) number
current j (ρ) of an isolated vortex versus the distance ρ from the center,
close to the critical temperature for the coupling (kF aF )−1 = −1.
The results of the calculation of the BdG equations (full lines) are
compared with those obtained by the Ginzburg-Landau (GL) theory
(dashed lines). The maximum values �0 for �(ρ) and jmax for j (ρ)
correspond to the BdG calculation.
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FIG. 7. (Color online) Same as Fig. 6 but for the coupling
(kF aF )−1 = −2 closer to the BCS limit.

practice to test the validity of local equations for the order
parameter under specific circumstances.

IV. EXTRACTING THE TEMPERATURE DEPENDENCE
OF THE COHERENCE LENGTH

From the spatial profiles �(ρ) of the gap parameter for
an isolated vortex that were obtained in Sec. III, we can
now extract the characteristic coherence (healing) length as
a function of temperature and coupling according to the
following procedure. We note at the outset that, for given
temperature, �(ρ) approaches its asymptotic (bulk) value �0

far away from the center of the vortex with the power-law
behavior �0(1 − ζ 2/2ρ2), where ζ is a characteristic length.
In particular, in the BCS limit close to Tc, this behavior can
be obtained directly from the GL equation (24) whereby ζ is
identified with the GL coherence length33

ξGL(T ) =
√

7ζ (3)EF

24m

1

πkBTc

(
1 − T

Tc

)−1/2

. (26)

Similarly, in the BEC limit close to zero temperature, one can
resort to the GP equation for composite bosons onto which the
BdG equations map in that limit21 and identify ζ with the GP
healing length ξGP = (8πaF n0)−1/2.

Quite generally, for any coupling and temperature smaller
than Tc, we have verified from the numerical solution of the
BdG equations that �(ρ) always approaches its asymptotic
value �0 like ρ−2. In practice, we have obtained the value of
ζ through a fit of the type

�(ρ) = c0

(
1 − ζ 2

2ρ2

)
when λRv � ρ � (50 ÷ 150)k−1

F

(27)

with λ ∼ 2 ÷ 6 depending on coupling and temperature. Here,
Rv is the vortex radius identified from the profile of the current
as in Fig. 4. For smaller values of ρ, however, we have found
that a separate exponential fit of the form

�(ρ) = b0(1 − b1e
−ρ/ξ ) when k−1

F � ρ � λRv (28)

is more appropriate. The need to exclude values of kF ρ smaller
than one (at least on the BCS side of the crossover), in order
to identify the length ξ as in Eq. (28), was pointed out in
Ref. 14 for an isolated vortex and in Ref. 23 in the context of
the Josephson effect.

The two independent fits (27) and (28) determine the two
length scales ζ and ξ which may, in principle, be different
from each other. We actually expect the ratio ξ/ζ not to
be appreciably different from unity for all couplings and
temperatures, in such a way that a single length scale can
be eventually identified also from the BdG equations. This
would be similar to what occurs both in the BCS limit close
to Tc and in the BEC limit close to zero temperature, where a
single length scale [ξGL(T ) and ξGP, in the order] is identified.

Figure 8 shows the typical quality of the fits (27) and (28)
in the two adjacent spatial regions, for a specific coupling
and three different temperatures. These fits have then been
repeated for several couplings about unitarity and for a rather
dense mesh of temperatures.
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FIG. 8. (Color online) Gap parameter �(ρ) (normalized to the
Fermi energy EF ) of an isolated vortex versus the distance ρ from
the center, for three different temperatures and (kF aF )−1 = −1. The
results of the fittings to extract the lengths ξ and ζ in the two different
intervals of ρ (broken lines) are compared with those of the the full
calculation (full lines). The value of the vortex radius Rv is marked
in each case.

The values of the healing length ξ extracted from these
fits, for several couplings and from T = 0 up to T = 0.99Tc,
are reported in Fig. 9 as black dots. Note again how ξ

increases faster with increasing temperature when the coupling
progresses toward the BCS limit. The dashed lines in Fig. 9
are then obtained by assuming a simple expression of the
form kF ξ (T ) = A(1 − T/Tc)−1/2 to hold for any coupling
over the whole temperature range from T = 0 up to (very
close to) Tc, in analogy to the GL expression kF ξGL(T ) =
AGL(1 − T/Tc)−1/2 [for which AGL = 0.47EF /�0(T = 0),
cf. Eq. (26)] that holds in principle only in the (extreme)
BCS limit quite close to Tc. From this kind of fit we obtain
the values A = (13.41,3.08,0.96,0.73) for the four couplings
(kF aF )−1 = (−2.0,−1.0,0.0,+1.0), respectively, which can
be compared with the GL values AGL = (10.12,2.26,0.68) for
the three couplings (kF aF )−1 = (−2.0,−1.0,0.0), values that
are determined only in terms of the corresponding values of
�0(T = 0).

Similar plots can be produced for the other length scale ζ

extracted from the fits (27) to the profiles of �(ρ). Figure 10
shows the ratio ξ/ζ between these two length scales as a
function of temperature for several couplings. It is rather
remarkable that this ratio remains quite close to unity in all
cases we have considered, thus justifying the statement that
a single length scale [say, the healing length ξ of Eq. (28)]
can meaningfully be extracted from the BdG equations for
all couplings and temperatures. This conclusion will also be
confirmed by a similar analysis about the temperature and
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FIG. 9. (Color online) The values of the healing length ξ , as
obtained from the fits (28) to the profiles of �(ρ) (dots) for four
different couplings across unitarity, are shown versus the temperature
T (in units of the respective critical temperature Tc). These values
are then fitted by the mean-field-like expression ξ (T ) ∝ (Tc − T )−1/2

over the whole temperature range down to T = 0 (dashed lines).
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FIG. 11. (Color online) Healing length ξ at zero temperature
versus the coupling (kF aF )−1, obtained from the present BdG
calculation and from the approach of Ref. 34 referred to as PS. For
comparison, the two expressions kF ξBCS = EF /(3�0) and kF ξBEC =√

3π/(8kF aF ) that hold, respectively, in the asymptotic BCS and BEC
limits are also reported. To account for their different definitions, the
curves labeled BdG and PS are made to coincide in the extreme
weak coupling by multiplying the BdG curve by a factor 1.257 (for
consistency, the BEC curve is also multiplied by the same factor).
In addition, the inset shows ξ vs (kF aF )−1 obtained from the BdG
calculation at the finite temperatures T = 0.2Tc and 0.5Tc across the
BCS-BEC crossover.

coupling dependence of the vortex radius Rv reported in
Appendix C.

Finally, it is interesting to compare the values of the
healing length ξ at zero temperature across the BCS-BEC
crossover, obtained by the present BdG analysis of the spatial
profile of the gap parameter for an isolated vortex, with
the alternative (and, in principle, unrelated) results for the
so-called “phase” coherence length ξphase, which were obtained
in Ref. 34 from the analysis of the spatial variation of the
longitudinal component of the correlation function of the
order parameter in an otherwise homogeneous system. This
comparison, presented in Fig. 11, shows a remarkable overall
agreement between the coupling dependence of these two
quantities, for which the minimum occurs at about unitarity
in both cases. In addition, the inset of Fig. 11 presents
similar curves obtained by the present BdG analysis at finite
temperatures. In this case, the minimum is seen to move for
increasing T progressively toward the BEC side of unitarity,
as it is expected from the slower increase of the healing length
ξ for increasing temperature when the coupling progresses
toward the BEC limit.

V. CONTRIBUTION TO THE SPATIAL PROFILES OF
PHYSICAL QUANTITIES FROM DIFFERENT BdG

ENERGY RANGES

We have already pointed out in Sec. III (see Fig. 5 therein)
that the continuum part of the spectrum of the BdG equations
contributes in a substantial way to the spatial profiles of the
gap parameter as well as to the number density and current.
In particular, we have obtained the result that the bound-state
part of the spectrum which lies below the continuum threshold
does not contribute to the density at the center of the vortex,
so that in this case the contribution of the continuum part
of the spectrum is overwhelming. On the other hand, from the

form of the analytic result (C3) for the asymptotic contribution
to the density that originates from the continuum levels at
high energy, one concludes that these levels, too, do not
contribute to the density at the center of the vortex since
|�(r)| vanishes therein. It thus appears interesting to determine
the way different energy ranges in the solutions of the BdG
equations contribute to the spatial profiles of the above physical
quantities.

To this end, we introduce an “upper limit” Eul for the
energy such that only eigenstates of the BdG equations with
εν < Eul − μ are retained in the calculation of the partial
gap parameter and of the partial number density and current.
We then increase Eul progressively starting from its value at
the continuum threshold, which corresponds to Eul − μ =
�0 when μ > 0 and to Eul − μ =

√
�2

0 + μ2 when μ < 0,
reaching large values of Eul to include eventually the high-
energy part of the continuum.

Accordingly, the partial value �<(r) of the gap parameter,
that includes only eigenstates up to Eul − μ, can be obtained
from Eq. (B12) by discarding the contribution of eigenstates
with energy above Eul − μ, thus writing in the place of
Eq. (B12) (

− m

4πaF

+ R(kc)

)
�<(r)

=
εν<Eul−μ∑

ν

uν(r)vν(r)∗ [1 − 2fF (εν)] , (29)

where R(kc) is defined by Eq. (B2). Correspondingly, the
partial values n<(r) for the density and j<(r) for the current
are obtained from the expressions (C1) and (C2) reported in
Appendix C, where now the

∑
ν is limited to energies εν <

Eul − μ. For internal consistency, however, the eigenstates
uν(r) and vν(r) utilized in these partial expressions are
calculated from the BdG equations with the correct self-
consistent value of �(r) which includes the contribution from
all eigenstates.

The result of this calculation at zero temperature is reported
in Fig. 12 for three characteristic couplings. Particularly
striking appears here the result for the density for the couplings
−1.0 and 0.0 [cf. Figs. 12(d) and 12(e)], for which the
finite value at the center of the vortex is mostly contributed
by continuum eigenstates quite close to threshold while no
contribution is provided by the bound states below threshold.
In particular, when (kF aF )−1 = −1.0, the value of n<(ρ = 0)

TABLE I. Correspondence between the values of Eul (in units
of EF ) and the types of lines used in Fig. 12 for the three different
couplings there considered. In all cases, the smallest value of Eul

corresponds to the continuum threshold.

(kF aF )−1 −1.0 0.0 +1.0

Long-dashed line 1.16 1.28 0.75
Dotted-dashed line 1.3 1.4 1.2
Short-dashed line 1.5 1.6 1.5
Double-dotted-dashed line 1.7 3.0 2.0
Dotted line 2.0 6.0 9.0
Full line +∞ +∞ +∞
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FIG. 12. (Color online) Partial radial profiles of the gap parameter
�<(ρ), density n<(ρ), and current j<(ρ) at zero temperature for three
couplings (kF aF )−1 = (−1.0,0.0,+1.0), obtained using different
values of the upper limit Eul for the energy. For convenience, the
correspondence between the various values of Eul and the types of
lines used in these plots for the three different couplings is reported
separately in Table I.

passes from 20% to 99% of its full value when Eul varies from
1.30EF to 2.0EF ; and when (kF aF )−1 = 0.0 from 40% to 95%
of its full value when Eul varies from 1.40EF to 3.0EF .

The above finding, that no contribution to n<(ρ = 0)
originates from the bound states, is related to the fact that
all bound states turn out to correspond to the second type of
solutions (8) with 	 � 0, such that all v(2)

ν (ρ) (and thus the
density) vanish when ρ = 0. At the same time, these bound
states contribute in a coherent fashion to the anticlockwise
circulation of the current [cf. Eq. (C2)], such that their
contribution to the current may even exceed the value of the
total current which includes also the contribution from the
continuum [cf. Figs. 12(g) and 12(h)]. That the contribution of
the (Andreev) bound states may sometimes exceed 100% of
the total current was already pointed out in the context of the
Josephson effect in Refs. 23 and 35.

VI. CONCLUDING REMARKS

In this paper, considerable efforts have been devoted to
obtain an accurate numerical solution of the fermionic BdG
equations for a nontrivial but still manageable problem of an
isolated vortex embedded in an otherwise infinite superfluid.
We have spanned the whole BCS-BEC crossover as a function
of temperature up to Tc, in such a way that the spatial extension
and the detailed shape of the vortex changes considerably as

a function of both coupling and temperature. To this end, we
have left the vortex free of expanding out in the bulk of the
superfluid not being constrained by walls, and implemented for
the purpose the use of free boundary conditions for the BdG
equations. We have also introduced a regularization procedure
for the gap equation that improves on previous proposals, so
as to reduce the computational time while leaving unaltered
the numerical accuracy.

In this way, we have obtained the healing length for the
vortex structure of the gap parameter as a function of both
the temperature (from T = 0 essentially up to T = Tc) and
the coupling parameter (kF aF )−1. This quantity shows an
interesting behavior across the BCS-BEC crossover, which
generalizes over the whole temperature versus coupling phase
diagram what is already known from (i) the GL approach in the
weak-coupling (BCS) limit close to Tc; (ii) the GP equation
in the strong-coupling (BEC) limit at zero temperature; and
(iii) the approach of Ref. 34 across the BCS-BEC crossover at
zero temperature.

In addition, by the present approach we have now at
our disposal an accurate numerical solution of the BdG
equations obtained for a nontrivial problem under a variety
of circumstances, against which one might be able to compare
the results of approximate differential equations that originate
from local approximation of the BdG equations themselves.
These local (differential) equations could be, for instance, of
the GL type in the weak-coupling (BCS) limit close to Tc,24

or of the GP type in the strong-coupling (BEC) limit at zero
temperature.21 In particular, still long awaited appears to be
the comparison with the results obtained in the weak-coupling
(BCS) limit away from Tc deep in the superfluid phase, where
generalizations of the GL equation have been attempted26–29

and deviations between the solutions of the BdG equations and
these local equations are expected at low enough temperature.

The practical advantage of these differential equations
stems from the fact that they are considerably simpler to solve
than the original BdG equations, in such a way that, once their
validity would have been explicitly tested against the results
of the BdG equations in a number of manageable problems,
they could be applied with confidence to the solution of more
complex physical problems for which the use of the BdG
equations remains prohibitive. Work along these lines is in
progress.36
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APPENDIX A: ENFORCING THE BOUNDARY
CONDITIONS AT Rout

In this Appendix, we describe in detail the solutions of the
form (13) that hold for ρ � Rout and are associated with the
alternative values of k⊥ obtained from Eq. (17), depending
on the value of the energy ε and the sign of μ̃. The solutions
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determined in this way for ρ � Rout will then be used to specify
completely the wave functions obtained numerically for ρ �
Rout, by enforcing the appropriate boundary conditions at ρ =
Rout.

The method we use here is similar to that discussed
in Ref. 23 for a one-dimensional geometry appropriate for
the study of the Josephson effect throughout the BCS-BEC
crossover, which extends the original approach of Ref. 31 that
was limited to the (extreme) BCS limit. A related approach
was also used in Ref. 37 for a gap parameter with spherical
symmetry, and then utilized in Ref. 38 to obtain the profile
of a single vortex without enclosing it in a cylinder, again in
the (extreme) BCS limit with a large coherence length at zero
temperature.

When the positive energy ε is increased from zero past the
value

√
μ̃2 + �2

0 , the four solutions for k⊥ given by Eq. (17)
move in the complex k⊥ plane. To follow their evolution versus
ε, it is convenient to label these four solutions separately by
adopting the convention

k
(1)
⊥ = +

√
2mμ̃ + 2m

√
ε2 − �2

0,

k
(2)
⊥ = −

√
2mμ̃ + 2m

√
ε2 − �2

0,

(A1)

k
(3)
⊥ = +

√
2mμ̃ − 2m

√
ε2 − �2

0,

k
(4)
⊥ = −

√
2mμ̃ − 2m

√
ε2 − �2

0.

For ρ � Rout, these wave vectors enter the arguments of the
Bessel Jα(k⊥ρ), Neumann Yα(k⊥ρ), and Hankel functions
H+

α (k⊥ρ) functions (where α = |	′|) with asymptotic behav-
ior (18), according to the following scheme.

For the six ranges that can be identified depending also on
the sign of μ̃ [as shown in Figs. 13(a) and 13(b), in the order],
we obtain by inspection of the expressions (A1) the following:

Range I: μ̃ > 0 and 0 < ε < �0. The k
(i)
⊥ (i = 1, . . . ,4) are

all complex, but only k
(1)
⊥ and k

(4)
⊥ have a positive imaginary

part. We then take alternatively k
(1)
⊥ and k

(4)
⊥ in the function

H+
α (k⊥ρ).
Range II: μ̃ > 0 and �0 < ε <

√
μ̃2 + �2

0 . In this case,
k

(i)
⊥ (i = 1, . . . ,4) are all real, and we take k

(1)
⊥ and k

(3)
⊥ in both

functions Jα(k⊥ρ) and Yα(k⊥ρ).
Range III: μ̃ > 0 and ε >

√
μ̃2 + �2

0 . Here, k(1)
⊥ and k

(2)
⊥ are

real, and k
(3)
⊥ and k

(4)
⊥ are purely imaginary with Im{k(3)

⊥ } > 0.
We thus take k

(1)
⊥ in both functions Jα(k⊥ρ) and Yα(k⊥ρ), and

k
(3)
⊥ in the function H+

α (k⊥ρ).
Range IV: μ̃ < 0 and 0 < ε < �0. Same as for range I. We

thus take alternatively k
(1)
⊥ and k

(4)
⊥ in the function H+

α (k⊥ρ).
Range V: μ̃ < 0 and �0 < ε <

√
μ̃2 + �2

0 . In this case, all
the k

(i)
⊥ (i = 1, . . . ,4) are purely imaginary but only Im{k(1)

⊥ }
and Im{k(4)

⊥ } are positive. Again, we take alternatively k
(1)
⊥ and

k
(4)
⊥ in the function H+

α (k⊥ρ).
Range VI: μ̃ < 0 and ε >

√
μ̃2 + �2

0 . Here, k(1)
⊥ and k

(2)
⊥ are

real and k
(3)
⊥ and k

(4)
⊥ are purely imaginary, but only Im{k(4)

⊥ } is

I

II

III

0

ε

k⊥

Δ0

(μ~2+Δ0
2)1/2

(2mμ~)1/2-(2mμ~)1/2

μ~> 0(a)

IV

V

VI

0

ε

k⊥

Δ0

(μ~2+Δ0
2)1/2

μ~< 0(b)

FIG. 13. (Color online) Dispersion relation ε vs k⊥ given by
Eq. (16), with (a) μ̃ > 0 and (b) μ̃ < 0. These plots identify the six
energy ranges I–VI, where proper selections of the wave vectors (A1)
have alternatively to be done.

positive. Accordingly, we take k
(1)
⊥ in both functions Jα(k⊥ρ)

and Yα(k⊥ρ), and k
(4)
⊥ in the function H+

α (k⊥ρ).
With these premises, we pass now to enforce the boundary

conditions at ρ = Rout between the numerical solutions of the
BdG equations (5) for ρ � Rout discussed in Sec. II A and
the analytic solutions of the modified BdG equations (10)
for ρ � Rout introduced in Sec. II B. Ranges I, IV, and V
as specified above can be dealt with in the same way, by
writing the boundary conditions in the form (in the following
equations, by 	′ we shall actually mean its absolute value |	′|)

a

(
u(1)

ε (Rout)

v(1)
ε (Rout)

)
+ b

(
u(2)

ε (Rout)
v(2)

ε (Rout)

)

= c

(
uk1

vk1

)
H+

	′ (k(1)
⊥ Rout) + d

(
uk4

vk4

)
H+

	′ (k(4)
⊥ Rout) (A2)

for the functions, and

a

⎛
⎝ du(1)

ε (ρ)
dρ

dv(1)
ε (ρ)
dρ

⎞
⎠

ρ=Rout

+ b

⎛
⎝ du(2)

ε (ρ)
dρ

dv(2)
ε (ρ)
dρ

⎞
⎠

ρ=Rout

= c

(
uk1

vk1

)
dH+

	′ (k(1)
⊥ ρ)

dρ

∣∣∣∣∣
Rout

+ d

(
uk4

vk4

)
dH+

	′ (k(4)
⊥ ρ)

dρ

∣∣∣∣∣
Rout

(A3)

for their first derivatives. Here, (u(1)
ε (ρ),v(1)

ε (ρ)) and
(u(2)

ε (ρ),v(2)
ε (ρ)) are the two independent solutions of the BdG

equations (5) identified by the indicial conditions (7) and (8),
in the order. The conditions (A2) and (A3) thus provide an
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algebraic homogeneous system of four equations in the four
unknowns (a,b,c,d), which admit nontrivial solutions only for
special values of ε, which correspond to the Andreev–Saint
James bound states associated with the spatial depression of
the gap �(ρ) about ρ = 0. In this case, the normalization of the
single-wave function (uε(ρ),vε(ρ)), as obtained by the linear
combination on the left-hand side of Eq. (A2) for ρ � Rout and

on the right-hand side of Eq. (A2) for ρ � Rout, is determined
by ∫ ∞

0
dρρ [uε(ρ)uε(ρ) + vε(ρ)vε(ρ)] = 1. (A4)

Ranges III and VI can as well be treated on the same footing,
by writing the boundary conditions in the form

a

(
u(1)

ε (Rout)

v(1)
ε (Rout)

)
+ b

(
u(2)

ε (Rout)

v(2)
ε (Rout)

)
=

(
uk1

vk1

)
[cJ	′ (k(1)

⊥ Rout) + dY	′(k(1)
⊥ Rout)] + e

(
uki

vki

)
H+

	′ (k(i)
⊥ Rout) (A5)

and

a

⎛
⎝ du(1)

ε (ρ)
dρ

dv(1)
ε (ρ)
dρ

⎞
⎠

ρ=Rout

+ b

⎛
⎝ du(2)

ε (ρ)
dρ

dv(2)
ε (ρ)
dρ

⎞
⎠

ρ=Rout

=
(

uk1

vk1

) [
c
dJ	′ (k(1)

⊥ ρ)

dρ

∣∣∣∣
Rout

+ d
dY	′(k(1)

⊥ ρ)

dρ

∣∣∣∣
Rout

]
+ e

(
uki

vki

)
dH+

	′ (k(i)
⊥ ρ)

dρ

∣∣∣∣
Rout

, (A6)

where i = 3 in range III and i = 4 in range VI. The conditions (A5) and (A6) correspond to four algebraic equations in the five
unknowns (a,b,c,d,e). The normalization condition (21) with λ = λ′ for ε in the continuum then provides a fifth condition for
the coefficients c and d, which permits us to determine all coefficients uniquely.

Finally, range II requires a slightly different handling because the electronlike and holelike wave vectors are both real. We
then apply the boundary conditions to the functions (u(1)

ε (ρ),v(1)
ε (ρ)) and (u(2)

ε (ρ),v(2)
ε (ρ)) separately and write(

u(1)
ε (Rout)

v(1)
ε (Rout)

)
=

(
uk1

vk1

)
[c11J	′(k(1)

⊥ Rout) + d11Y	′(k(1)
⊥ Rout)] +

(
uk3

vk3

)
[c13J	′(k(3)

⊥ Rout) + d13Y	′(k(3)
⊥ Rout)] (A7)

and ⎛
⎝ du(1)

ε (ρ)
dρ

dv(1)
ε (ρ)
dρ

⎞
⎠

ρ=Rout

=
(

uk1

vk1

)[
c11

dJ	′ (k(1)
⊥ ρ)

dρ

∣∣∣∣
Rout

+ d11
dY	′(k(1)

⊥ ρ)

dρ

∣∣∣∣
Rout

]

+
(

uk3

vk3

)[
c13

dJ	′ (k(3)
⊥ ρ)

dρ

∣∣∣∣
Rout

+ d13
dY	′(k(3)

⊥ ρ)

dρ

∣∣∣∣
Rout

]
. (A8)

Here, the four coefficients (c11,d11,c13,d13) can be uniquely
determined in terms of the known constants given by the
left-hand side of Eqs. (A7) and (A8). Similar conditions are
obtained for the second function (u(2)

ε (ρ),v(2)
ε (ρ)). However,

the two functions (uε(ρ),vε(ρ)) obtained in this way for all
values of ρ are not properly normalized in the continuum
and are not orthogonal to each other. In this case, the
orthonormalization condition (19) reads as∫ ∞

0
dρρ

[
uλ′

ε′ (ρ)uλ
ε (ρ) + vλ′

ε′ (ρ)vλ
ε (ρ)

]
= [cλ1cλ′1 + dλ1dλ′1]

1

k
(1)
⊥

δ(k(1)
⊥ − k

(1)′
⊥ )

+ [cλ3cλ′3 + dλ3dλ′3]
1

k
(3)
⊥

δ(k(3)
⊥ − k

(3)′
⊥ ),

where λ,λ′ = (1,2).

APPENDIX B: REGULARIZATION PROCEDURE FOR THE
SELF-CONSISTENT GAP EQUATION

It is well known that the self-consistent condition (2) for
the gap parameter �(r) diverges in the ultraviolet in the case

of a contact interparticle potential with coupling constant v0

and has to be regularized accordingly.
In the homogeneous case with a uniform gap parameter

�0, this regularization is readily achieved by expressing the
bare coupling constant v0 that enters Eq. (2) in terms of the
scattering length aF of the two-body problem, via the relation

− 1

v0
= − m

4πaF

+
∫ k0 dk

(2π )3

m

k2
. (B1)

Here, k0 is an ultraviolet cutoff which is eventually let → ∞
while v0 → 0 by keeping aF at the desired value.

This simple regularization, however, can not be exploited
when the gap parameter �(r) has a spatial dependence
occurring, for instance, in the presence of an isolated vortex as
considered in this paper, or, more generally, in the presence of
a scalar trapping potential Vext(r) or of an effective vector
potential A(r), the latter arising when the trap is set into
rotation11 or artificial gauge potentials are applied to neutral
atoms.39 In all these cases, a new strategy is required.

A number of procedures have already been devised to
implement a consistent regularization scheme for inhomoge-
neous situations, ranging from the simple introduction of an
energy cutoff, to relying on the pseudopotential method to
regularize the anomalous density in real space,40 and to a
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combination of an energy cutoff with a local-density
approximation18 (which has then been subject to
improvements20).

In this appendix, we introduce a procedure to regularize
the gap equation (2) under generic inhomogeneous situations,
which combines the introduction of an energy cutoff Ec as
done in Sec. II A for the explicit numerical solution of the BdG
equations for eigenvalues εν up to the value (Ec − μ), with
the derivation of the Gross-Pitaevskii equation for composite
bosons that was done in Ref. 21 in the BEC limit starting from
the BdG equations in terms of the small quantity �(r)/|μ|. Our
regularization procedure for the gap equation (2), however,
is not limited to the BEC limit but holds instead for any
coupling throughout the BCS-BEC crossover since in the
present context it is the ratio �(r)/(Ec − μ) to play the role
of the small quantity that allows for the identification of the
terms to be retained in the final expression.

Schematically, our regularization procedure of the gap
equation (2) is based on the following steps: (i) We consider
a wave-vector cutoff kc such that Ec = k2

c /(2m) is the energy
cutoff introduced in Sec. II A. We take Ec 	 EF where EF =
k2
F /(2m) is the Fermi energy associated with the mean density

n0 = k3
F /(3π2). While kc will be kept finite in the calculation,

the ultraviolet cutoff k0 	 kc entering Eq. (B1) will eventually
be taken to diverge. (ii) We split the

∑
ν in Eq. (2) in two parts,

with εν < Ec − μ and εν > Ec − μ, respectively. While in
the first part the wave functions (uν(r),vν(r)) are explicitly
calculated numerically, the second part is treated within a
local-density approximation as specified below. In addition,
the Fermi function fF (εν) can be dropped from this second part
for all practical purposes because Ec/(kBT ) 	 1 even when
kBT is of the order of EF . (iii) Following Ref. 18, we rewrite
the integral on the right-hand side of Eq. (B1) as follows:∫ k0 dk

(2π )3

m

k2
≡ R(kc) +

∫ k0

kc

dk
(2π )3

1

k2/m − 2μ
(B2)

that defines the quantity R(kc). A simple calculation then
yields

2π2

m
R(kc) =

⎧⎨
⎩

kc +
√

2mμ

2 ln
(

kc−
√

2mμ

kc+
√

2mμ

)
(μ> 0),

kc + √
2m|μ|[π

2 − arctan
(

kc√
2m|μ|

)]
(μ< 0).

(B3)

Through the above steps, the self-consistent condition (2)
for the gap parameter becomes[

− m

4πaF

+ R(kc) +
∫ k0

kc

dk
(2π )3

1

k2/m − 2μ

]
�(r)

=
εν<Ec−μ∑

ν

uν(r)vν(r)∗[1 − 2fF (εν)]

+
εν>Ec−μ∑

ν

uν(r)vν(r)∗. (B4)

Here, as in Ref. 18, the last term within brackets on the
left-hand side of Eq. (B4) can be used to regularize the

∑
ν

with εν > Ec − μ on the right-hand side. What is different
in the present approach, however, is the way this high-energy
sum is dealt with, by drawing connections with the derivation

of the Gross-Pitaevskii equation for composite bosons in the
BEC limit that was done in Ref. 21 starting from the full BdG
equations.

To this end, we refer directly to Eq. (13) of Ref. 21 and
write (by also keeping the same notation of Ref. 21)

εν>Ec−μ∑
ν

uν(r)vν(r)∗

∼=
∫

dr1Q(r,r1)∗�(r1)

+
∫

dr1dr2dr3R(r,r1,r2,r3)∗�(r1)�(r2)∗�(r3), (B5)

where Q(r,r1) and R(r,r1,r2,r3) are defined by Eqs. (14)
and (15) of Ref. 21, in the order, but are here considered with
the provision that all k integrals that enter those expressions
through the Fourier representation of the noninteracting
Green’s function G̃0 therein are restricted by |k| > kc. In
addition, the local-density condition μ → μ(r) = μ − Vext(r)
is adopted here as in Ref. 21, to take into account the possible
presence of a trapping potential.

Following further Eq. (16) of Ref. 21, we approximate for
a sufficiently slowly varying gap parameter �(r):

∫
dr1Q(r,r1)∗�(r1) ∼=

[
a0(r)∗ + 1

2
b0(r)∗∇2

]
�(r), (B6)

where now

a0(r) ∼=
∫

|k|>kc

dk
(2π )3

1

k2/m − 2μ + 2Vext(r)

∼=
∫

|k|>kc

dk
(2π )3

1

k2/m − 2μ

− 2Vext(r)
∫

|k|>kc

dk
(2π )3

1

(k2/m − 2μ)2
(B7)

and

b0(r) ∼=
∫

|k|>kc

dk
(2π )3

[
1

4m

1( k2

2m
− μ

)2 − 1

6m

k2

2m( k2

2m
− μ

)3

]
.

(B8)

Note that, once these expressions are used in Eq. (B4), the first
term on the right-hand side of Eq. (B7) cancels the last term
within brackets on the left-hand side of Eq. (B4). By a similar
token we obtain∫

dr1dr2dr3R(r,r1,r2,r3) ∼= −1

4

∫
|k|>kc

dk
(2π )3

1( k2

2m
− μ

)3 .

(B9)

Introducing at this point the notation

Iij (kc) ≡
∫

|k|>kc

dk
(2π )3

( k2

2m

)i

( k2

2m
− μ

)j
, (B10)
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the expression (B5) can be written compactly as follows:

εν>Ec−μ∑
ν

uν(r)vν(r)∗

∼=
[∫

|k|>kc

dk
(2π )3

1

k2/m − 2μ
− 2Vext(r)

1

4
I02(kc)

]
�(r)

− 1

4
I03(kc)|�(r)|2�(r)

+
[

1

2
I02(kc) − 1

3
I13(kc)

] ∇2�(r)

4m
. (B11)

Here, the first term on the right-hand side which is linear in
�(r) was already introduced in Ref. 18, while the addition
of the second term on the right-hand side which is cubic in
�(r) was already considered in Ref. 20. What comes naturally
from the present derivation is the further introduction of the
third term on the right-hand side which emphasizes the spatial
variations of �(r).

Entering the approximate expression (B11) into the right-
hand side of Eq. (B4) yields eventually the regularized gap
equation we were looking for:{

− m

4πaF

+ R(kc) −
[

1

2
I02(kc) − 1

3
I13(kc)

] ∇2

4m

+ 2Vext(r)
1

4
I02(kc) + 1

4
I03(kc)|�(r)|2

}
�(r)

=
εν<Ec−μ∑

ν

uν(r)vν(r)∗ [1 − 2fF (εν)] . (B12)

Note that the expression on the right-hand side, which results
from an explicit numerical integration of the BdG equations,
acts as a source termon the nonlinear differential equation for
�(r) given by the left-hand side.

But, for the source term on its right-hand side, Eq. (B12)
resembles the Gross-Pitaevskii equation with suitable coeffi-
cients, and actually reduces to it in the BEC limit when μ(< 0)
is the largest energy scale in the problem, such that Ec (and
thus kc) can be taken to vanish for all practical purposes. In
particular, in this limit one obtains for the integrals entering
Eq. (B12) the values

R(kc) → m

4πaF

− m2aF

8π
μB, I02(kc) → m2aF

2π
,

(B13)

I13(kc) → 3m2aF

8π
, I03(kc) → m3a3

F

4π
,

where μB = 2μ + (ma2
F )−1 is the chemical potential for

composite bosons. With the rescaling given in Ref. 21, between
the gap function �(r) and the condensate wave function for
composite bosons, one recovers in this way from Eq. (B12)
the Gross-Pitaevskii equation given by Eq. (20) of Ref. 21.

In practice, the inclusion of successively more terms on
the right-hand side of Eq. (B11) [from the linear (�) term, to
the linear plus cubic (� + �3) terms, and finally to the linear
plus cubic plus Laplacian (� + �3 + ∇2) terms] enables one
to decrease the total computational time at any coupling
by decreasing the value of the cutoff Ec up to which the
eigenfunctions of the BdG equations have to be explicitly
calculated. This can be achieved without losing accuracy in

 0
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kFρ
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 0

 0.2

 0.4

 0.6

Δ(
ρ)

/E
F

(b)

Δ
Δ+Δ3
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Δ
Δ+Δ3

Δ+Δ3+∇2
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FIG. 14. (Color online) �(ρ) (in units of EF ) vs ρ (in units of
k−1

F ) obtained by various approximations at zero temperature for
(a) (kF aF )−1 = −1; (b) (kF aF )−1 = 0; (c) (kF aF )−1 = +1. Compar-
ison is made between the “best” calculation with a large value of Ec

[that equals 9EF in panels (a) and (b), and 18EF in panel (c)], and less
sophisticated calculations all with the smaller value Ec = 3EF which
include, respectively, the linear, the linear plus cubic, and the linear
plus cubic plus Laplacian terms on the right-hand side of Eq. (B11).

the shape of �(r) as well as of other physical quantities (see
also Appendix C).

As an example, we consider again the problem of an isolated
vortex in an otherwise infinite superfluid, which is the main
concern of this paper. For this case, the profile of �(ρ) vs ρ at
zero temperature for three different couplings across the BCS-
BEC crossover is shown in Fig. 14, where alternative numerical
approximations (including the linear, linear plus cubic, and
linear plus cubic plus Laplacian terms), which all adopt a
common and rather small value of the cutoff Ec, are compared
with the full calculation of the BdG equations where the value
of the cutoff Ec is taken considerably larger. In this case, the
smaller value Ec = 3EF of the cutoff with respect to the value
Ec = 9EF (or Ec = 18EF , depending on the coupling) needed
to the full calculation for achieving a stable configuration,
yields a reduction of the total computational time by a factor
of 5 or more.

Specifically, one sees from Fig. 14 that inclusion of all
terms on the right-hand side of Eq. (B11) [namely, the linear
plus cubic plus Laplacian (� + �3 + ∇2) terms] leads for all
couplings to quite a good agreement with the full calculation,
and not only in the asymptotic (bulk) region but also near
the center of the vortex where �(ρ) is strongly depressed. In
contrast, the approximation that includes only the first two
terms on the right-hand side of Eq. (B11) [namely, the linear
plus cubic (� + �3) terms] reproduces the bulk value �0 but
leads to (even sizable) deviations from the full calculation
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near the center of the vortex. Finally, the approximation that
includes only the first term on the right-hand side of Eq. (B11)
[namely, the linear (�) term] progressively deviates for all
values of ρ from the full calculation when approaching the
BEC limit, where it is not able to recover the correct bulk
value �0 with the required accuracy.41

APPENDIX C: ASYMPTOTIC FORM OF THE NUMBER
AND CURRENT DENSITIES

Aside from the gap �(r), other relevant physical quantities
obtained by solving the BdG equations (1) are the number n(r)
and current j(r) densities. They are given, respectively, by the
expressions

n(r) = 2
∑

ν

{fF (εν)|uν(r)|2 + [1 − fF (εν)] |vν(r)|2}, (C1)

j(r) = 1

im

∑
ν

(fF (εν){uν(r)∗∇uν(r) − [∇uν(r)∗]uν(r)}

+ [1 − fF (εν)][vν(r)∇vν(r)∗ − [∇vν(r)]vν(r)∗]).

(C2)

Only positive eigenvalues can be considered for the sums in
Eqs. (C1) and (C2).

In order to calculate the expressions (C1) and (C2) in an
efficient way, and consistently with what was done in
Appendix B for the gap equation (2), also the

∑
ν in Eqs. (C1)

and (C2) is split into two parts, with εν < Ec − μ and
εν > Ec − μ. While in the first part with εν < Ec − μ one
uses explicitly the wave functions (uν(r),vν(r)) obtained by
solving the BdG equations, for both quantities n(r) and j(r)
the second (asymptotic) part with εν > Ec − μ is treated again
within a local-density approximation as follows.

Similarly to what was done in Appendix B, we adapt to
the present situation the treatment made in Ref. 21, where
expressions for n(r) and j(r) consistent with the Gross-
Pitaevskii equation were recovered in the BEC limit. We thus
obtain for the asymptotic parts

nasym(r) ∼=
εν>Ec−μ∑

ν

|vν(r)|2 ∼= 1

2
I02(kc)|�(r)|2 (C3)

and

jasym(r) ∼= 1

im

εν>Ec−μ∑
ν

{vν(r)∇vν(r)∗ − [∇vν(r)]vν(r)∗}

∼= 1

2im

(
1

2
I02(kc) − 1

3
I03(kc)

)
× [�(r)∗∇�(r) − �(r)∇�(r)∗] (C4)

with the definition (B10) for the integrals over the wave vector
k with |k| > kc.

The above expressions hold for any coupling. In particular,
in the BEC limit, whereby the integrals I02(kc) and I03(kc)
reduce to the values (B13), the expressions (C3) and (C4)
reduce to Eqs. (21) and (22) of Ref. 21, in the order, once the
proper rescaling �(r) =

√
m2aF /(8π )�(r) between the gap
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FIG. 15. (Color online) (a) Number density n(ρ) (normalized to
its bulk value n0) and (b) current density j (ρ) (normalized to its max-
imum value at Rv) vs ρ (in units of k−1

F ) obtained at zero temperature
and unitarity for an isolated vortex. Calculations corresponding to
two values of the cutoff Ec are compared with each other.

 0
 2
 4
 6
 8

 0  0.2  0.4  0.6  0.8  1

T/Tc

(d) (kFaF)-1=1
 0
 2
 4
 6
 8

 10 (c) (kFaF)-1=0
 0

 10
 20
 30
 40

k F
R

v

(kFaF)-1=-1(b)
 0

 50

 100

 150 (kFaF)-1=-2(a)

FIG. 16. (Color online) The values of the radius Rv of the
vortex (dots) are shown versus the temperature T (in units of
the respective critical temperature Tc) for four different couplings
across unitarity. These values are then fitted by the mean-field-like
expression Rv(T ) ∝ (Tc − T )−1/2 over the whole temperature range
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function and the condensate wave function �(r) for composite
bosons is performed.

The above expressions can again be applied to the problem
of an isolated vortex in an otherwise infinite superfluid. In
particular, in Fig. 15 we show the results of our calculation for
the number density n(ρ) and the current density j (ρ) at a dis-
tance ρ from the center of the vortex, when different values of
the cutoff Ec are used. The calculation is done at zero tempera-
ture and unitarity. Once again, we verify that, with the complete
regularization procedure for the gap equation introduced in
Appendix B and here extended to the density and current,
rather small values of Ec are sufficient in practice to obtain re-
sults in quite good agreement with our “best” calculation where
a large value of Ec is used. In addition, the results of Fig. 15
may serve also implicitly to verify that the approximate expres-
sions (C3) and (C4), respectively, for the asymptotic density
and current, were obtained in a physically sound manner.

Note finally that, by these kinds of plots, the radius Rv of
the vortex can be identified as corresponding to the maximum

value of the current. In turn, the value of Rv fixes a length
scale which is relevant to reckon the value of Rout, that was
introduced in Sec. II A and used in Appendix A to enforce
the boundary conditions on the radial wave functions (typical
values of the ratio Rout/Rv taken in the calculations range
from about 50 at low temperature to about 10 close to Tc for
the couplings we have explored).

The values of Rv obtained in this way are reported in Fig. 16
for four couplings across unitarity versus the temperature T (in
units of the respective critical temperature Tc). These values are
then fitted by the mean-field-like expression kF Rv = B(1 −
T/Tc)−1/2, obtaining the values B = (17.72,4.26,1.41,1.08)
for the couplings (kF aF )−1 = (−2.0,−1.0,0.0,+1.0), in the
order. On the average, these values for the prefactor B are
larger by

√
2 than the values for the prefactor A entering

the corresponding expression kF ξ (T ) = A(1 − T/Tc)−1/2 that
were reported in Sec. IV, thus confirming our conclusion made
also in Sec. IV that a single length scale can be extracted from
the BdG equations.
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