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Upper limit of metastability of the vortex-free state of a two-dimensional
superconductor in a nonuniform magnetic field
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We calculate the magnetic field above which vortices necessarily appear in a two-dimensional superconducting
film in a nonuniform magnetic field applied near its center, as in two-coil measurements of superfluid density.
Experiments suggest that free vortices appear when the Meissner screening current density is large enough that
the free-energy barrier for separating tightly-bound vortex-antivortex (V-aV) pairs into free vortices is comparable
to kBT , not at the much lower thermodynamic critical field. Specifically, we calculate the applied magnetic field
above which there exists no metastable state without vortices. There is a simple analogy with the appearance of
phase-slip centers in a one-dimensional superconducting wire.
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I. INTRODUCTION

We calculate the applied magnetic field above which
vortices necessarily appear in a two-dimensional (2D) su-
perconductor exposed to a nonuniform magnetic field. This
field is orders of magnitude larger than the thermodynamic
applied field where vortices would appear if not for the
high free-energy barrier for breaking nascent vortex-antivortex
(V-aV) pairs.1,2 The calculation is useful for the determination
of the in-plane Ginzburg-Landau coherence length ξ from the
onset of strong nonlinear effects in two-coil experiments3–9

measuring the magnetic penetration depth λ.
Some years ago, Scharnhorst9 found that vortices appeared

in thin quench-condensed films of Sn and In when the induced
screening supercurrent due to the magnetic field from a small
coil located near the films was near the critical current density.
Recent measurements on thin Nb and amorphous MoGe
films agree.10 Since the thermodynamic lower critical field
is orders of magnitude smaller than the measured external
critical field,1,2 there must be a high free-energy barrier for
creation of vortices. The applied field at which this barrier
vanishes has been calculated, e.g., Ref. 11, for films that are
at least several coherence lengths thick, which means they are
thick enough to sustain vortices lying in the plane of the film.
Calculation of the free-energy barrier to unbind V-aV pairs in
2D films, d < ξ , is difficult because it involves calculating the
free energy of a V-aV pair for center-to-center separations less
than ξ .

We calculate the highest external magnetic field at which
there exists a metastable vortex-free superconducting state.
The experimental critical field is necessarily somewhat
smaller.10 There is an instructive analogy to the physics
of a 1D superconducting wire.12 In 1D, there is no stable
thermodynamic superconducting state; the zero-resistance
state is only metastable because it is interrupted by occasional,
short-lived, thermal or quantum phase-slip centers (PSC),
which are the 1D analog of bound V-aV pairs.13,14 If the wire
is current-biased by connection to an external current supply,
then the zero-resistance state is metastable up to a current
where the Cooper-pair momentum ps reaches h̄/

√
3ξ . PSC’s

may occur before that point is reached, but at that point, PSC’s
necessarily appear regularly. If the wire is a circular loop
and the supercurrent within it is established by a magnetic

flux passing through the loop’s center, then it is effectively
voltage-biased. In principle, the PSC-free state can survive up
to ps = h̄/ξ , at which point superconductivity is extinguished
throughout the wire. It is likely that PSC’s actually appear a
bit before that point.

In a 2D superconducting film in a nonuniform field applied
near its center, there is a stable vortex-free thermodynamic
state only for applied fields below a very small thermodynamic
critical field.1,2 Thus, as a practical matter, the vortex-free
state is always metastable just like a 1D wire. We will see
that if the superconducting film screens the magnetic field
strongly, vortices appear when the peak induced Cooper-
pair momentum is pmax

s = h̄/
√

3ξ ; if screening is weak,
vortices necessarily appear when pmax

s = h̄/ξ . These results
are reminiscent of the current-biased and voltage-biased 1D
superconducting wire.

On the experimental side, we are interested in determining
ξ from two-coil measurements in the nonlinear regime. This
approach appeals because the field in the superconductor at the
onset of vortices is typically less than 10 G, and the applied
field less than 100 G. Technically, applying 100 G is simpler
than applying the tens of teslas that are often necessary to reach
the upper critical field, Bc2. Physically, a 10-G internal field
has a much smaller effect on the underlying normal state than
tens of teslas and therefore produces a complementary value.

II. CALCULATION

Our computer program, based on that of Turneaure et al.,5

calculates the diamagnetic sheet supercurrent density Ks(ρ) as
a function of radial distance from the center of the film, ρ, in a
2D superconducting film exposed to a nonuniform external
field. We take into account the suppression of superfluid
density associated with the Cooper-pair momentum ps(ρ).
Figure 1 shows the experimental configuration for the two
cases explored in this paper: (1) a point-dipole drive coil
a distance h below the film, for which ρ0 = √

2h, and (2)
a loop of radius R located a distance R below the film,
for which ρ0 = 1.7R. Here, ρ0 is the radial distance along
the film’s surface at which the applied perpendicular field
changes sign. The program does not include vortices, just
the diamagnetic screening supercurrents. When the maximum
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FIG. 1. (Color online) Setup modeled in the MATLAB program.
The external magnetic field is produced by the red sphere below
the film, which represents one of two cases: a point-dipole drive
coil or a loop of radius R. The pick-up coil is represented by the
single-turn loop above the film. The film is represented as a collection
of concentric rings, which is how it is modeled numerically. The
drive coil, pick-up coil, and film are coaxial, and the film is midway
between drive and pick-up coils. Arrows represent the magnetic field
from the drive coil at an instant in time. The green arrow pointing to
the left shows where the applied field is parallel to the film, i.e., the
perpendicular component vanishes. The radius at which this occurs
is defined as ρ0. The setup is not drawn to scale.

applied perpendicular field exceeds a certain threshold, the
program fails to converge, indicating that there is no metastable
nonvortex state at that applied field.

There are two regimes to consider: strong and weak
screening, defined by the relationship between the microscopic
scale, �, and the experimental length scale, ρ0. � is the 2D
penetration depth,15 � ≡ 2λ2/d, (λ is the bulk penetration

FIG. 2. (Color online) Bcrit
0 ξρ0/�0 vs �/ρ0 for a point dipole

drive coil (uppermost square points), a single-turn drive coil of radius
R located a distance R below the film (middle round points), and the
critical field calculated assuming that vortices appear when the peak
Cooper-pair momentum pmax

s reaches h̄/
√

3ξ , (bottom star points).
The solid curve is Bcrit

0 ξρ0/�0 = (3
√

6 + ρ0/�)/2π , and it fits the
point-dipole drive coil calculation well. (Inset) Applied perpendicular
magnetic field for point-dipole and single-turn drive coils.

depth). The strong screening regime is ρ0 >> �, wherein
the magnetic field above the film is much smaller than the
field applied below the film. In the weak-screening regime,
ρ0 << �, the field above the film is only slightly smaller than
the applied field.

The strategy of the numerical calculation is the following.
First, we calculate the linear-response sheet supercurrent
density, Ks(ρ), and Cooper-pair momentum, ps(ρ), for a given
applied field at the center of the film, B0, with the assumption of
a uniform superfluid density, ns(ρ) = ns0, i.e., for a particular
value of ρ0/� ∝ ns0. Second, we adjust ns(ρ) according to12

ns(ρ)/ns0 = 1 − p2
s (ρ)ξ 2/h̄2. Then we recalculate Ks(ρ) and

ps(ρ) with the adjusted ns(ρ). This process is repeated until
it converges. Then we increase B0 and repeat the calculation.
For a given ρ0/�, eventually B0 reaches a value above which

FIG. 3. (Color online) Normalized (top) screening sheet super-
current density Ks/Kc0 and (bottom) superfluid density ns/ns0 vs
ρ/ρ0 at B0 = Bcrit

0 , for different �/ρ0, for a point-dipole drive
coil. Kc0 ≡ dns0eh̄/2mξ = �0/π�ξ , where ns0 is the unperturbed
density of superconducting electrons, and 2m is the mass of a Cooper
pair. (Top) The horizontal dotted line represents the Ginzburg-Landau
critical sheet current density (2Kc0/3

√
3) and is shown as an upper

bound on Ks for all levels of screening. (Bottom) The dip in ns/ns0

reaches zero at �/ρ0 = 1/2.
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the program no longer converges. We define this critical field
as Bcrit

0 (ρ0/�). We also record the value of B0 at which the
peak superfluid momentum pmax

s in the film reaches h̄/
√

3ξ ,
because this field may be closer to the experimentally observed
critical field.

III. RESULTS

Figure 2 shows the main result of this paper: the relationship
between Bcrit

0 and ξ for different values of the “screening
parameter” �/ρ0. The weak-screening regime is most likely
to be encountered for T near Tc, where � diverges. For a
point-dipole drive coil, a good fit is provided by Bcrit

0 ξρ0/�0 =
(3

√
6 + ρ0/�)/2π . The constant term, 3

√
6/2π , can be

obtained analytically in the weak-screening regime where
the vector potential inside the film is essentially equal to the
applied vector potential. The other term, ρ0/2π�, is empirical.
For the single-turn drive coil, the calculated Bcrit

0 is smaller
by a factor of about 2.5 in the weak-screening regime. The
lowest curve is calculated assuming that vortices appear when
the peak Cooper-pair momentum, pmax

s , reaches h̄/
√

3ξ . The
inset shows the perpendicular applied field for both drive coils.

Figures 3 and 4 show normalized sheet supercurrent
density, Ks(ρ/ρ0), superfluid density, ns(ρ/ρ0), and Cooper
pair momentum, ps(ρ/ρ0), at B0 = Bcrit

0 for several values
of �/ρ0, for a point-dipole drive coil. From Fig. 4, we see
that when �/ρ0 << 1, application of the critical field results
in a peak superfluid momentum, pmax

s , that is slightly larger
than h̄/

√
3ξ . Thus ns(ρ) has a minimum (see Fig. 3), but is

nonzero everywhere. At �/ρ0 = 1/2, the peak Cooper-pair
momentum at the critical field reaches h̄/ξ , so ns = 0 on a
circle. For �/ρ0 > 1/2, we define the critical applied field to
be the field where ns is first suppressed to zero along a circle.
This is important to say because in this regime the program
converges for any applied field B0. At fields higher than Bcrit

0 ,
the program converges to states where ns = 0 over a circular
band of nonzero width, rather than on a circular line.

FIG. 4. (Color online) Normalized Cooper pair momentum psξ/h̄

vs ρ/ρ0. For � << ρ0, psξ/h̄ has a peak value slightly greater than
1/

√
3. For � > ρ0/2, the peak is at unity.

FIG. 5. (Color online) Flux in the pick-up coil, normalized to
its linear-response value, when the applied field from a point-dipole
drive coil increases from B0 = 0 to B0 = Bcrit

0 . Practically speaking,
at liquid He temperatures, we expect most superconducting films
to lie within Log10(�/R) ∈ [−3,0]. Thus we expect a 10% to 30%
change in coupling before strong nonlinear effects appear.

Figure 5 shows the flux in the pick-up coil at an applied
field of Bcrit

0 as a function of screening, Log10(�/ρ0), for a
point-dipole drive coil. The pick-up flux is normalized to its
linear-response value. The discontinuity in slope at �/ρ0 =
1/2 occurs because, as mentioned above, for �/ρ0 � 1/2, the
first vortex-bearing state has ns = 0 along a circle, whereas for
�/ρ0 < 1/2, vortices appear before ns is suppressed to zero
anywhere.

Another way to view the nonlinear behavior that precedes
the appearance of vortices is to consider the flux in the

FIG. 6. (Color online) Magnetic flux in the pick-up coil vs
dimensionless time, ωt , for �/ρ0 = 0.35. The peak applied field
from a point-dipole drive coil is Bcrit

0 at ωt = π/2. The lower curve is
linear response. The upper curve (through circular calculated points)
is the calculated nonlinear response.

214505-3



THOMAS R. LEMBERGER AND ADAM AHMED PHYSICAL REVIEW B 87, 214505 (2013)

pick-up coil as a function of time for a sinusoidal applied field.
Figure 6 shows the magnetic flux linked to the pick-up coil for
one-half cycle for the case �/ρ0 = 0.35. The lower sinusoidal
curve represents linear response; the upper triangular curve
illustrates the nonlinear response from our calculations. The
peak applied field is Bcrit

0 , where the pickup flux is 30% higher
than for linear response. A lock-in amplifier measuring the
flux pickup at the fundamental frequency would detect a signal
about 7% higher than for linear response.

IV. CONCLUSION

We have calculated the external magnetic field above which
vortices must appear in a two-dimensional superconducting
film exposed to the nonuniform magnetic field of a point
dipole or from a single-turn drive coil. For a point-dipole,

we find Bcrit
0 ξρ0/�0 ≈ (3

√
6 + ρ0/�)/2π , where B0 is the

dipole’s field at the center of the film. For typical solenoidal
coils, Bcrit

0 ξρ0/�0 is about 2.5× smaller in the weak-screening
regime. In principle, a low-field measurement of �(T ) and
a “high-field” measurement of Bcrit

0 (T ) together suffice to
determine the coherence length ξ (T ). In practice, “high-field”
means ten gauss or less, as opposed to the tens of teslas often
needed to determine ξ from measurements of the upper critical
field, Bc2.
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