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Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep
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Recently spin textures called skyrmions have been discovered in certain chiral magnetic materials without
spatial inversion symmetry, and they have attracted enormous attention due to their promising application in
spintronics since only a low applied current is necessary to drive their motion. When a conduction electron moves
around the skyrmion, its spin is fully polarized by the spin texture and acquires a quantized phase; thus, the
skyrmion yields an emergent electrodynamics that in turn determines skyrmion motion and gives rise to a finite
Hall angle. As topological excitations, skyrmions behave as particles. In this paper we derive the equation of
motion for skyrmions as rigid point particles from a microscopic continuum model and obtain the short-range
interaction between skyrmions and the interaction between skyrmions and defects. Skyrmions also experience a
Magnus force perpendicular to their velocity due to the underlying emergent electromagnetic field. We validate
the equation of motion by studying the depinning transition using both the particle and the continuum models.
By using the particle description, we explain the recent experimental observations of the rotation of a skyrmion
lattice in the presence of a temperature gradient. We also predict quantum and thermal creep motion of skyrmions
in the pinning potential.
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I. INTRODUCTION

Spin texture called skyrmion was predicted to exist in
certain magnetic materials.1–3 Skyrmion crystals have been re-
cently observed in MnSi, Fe0.5Co0.5Si, and other B20 transition
metal compounds with small angle neutron scattering, Lorentz
force microscopy, and spin-polarized scanning tunneling
microscopy.4–10 These spin textures become more stable in
thin films,8,9,11,12 and they crystallize into a triangular lattice
similar to that found for vortices in type II superconductors.
The typical size of a skyrmion is about 10 nm, and the
corresponding lattice constant is about 100 nm. As more
skyrmion crystals are discovered in new materials, it is
expected that this state of matter will turn out to be a general
form of magnetic ordering, existing ubiquitously in magnets
without inversion symmetry.

A promising set of spintronics applications arises from the
fact that skyrmions can be driven by a spin-polarized current as
a result of the spin-transfer torque. The weak current required
to move a skyrmion from the pinning center is 4–5 orders of
magnitude smaller than the current required to move the well-
studied magnetic domain walls.13–15 Therefore, skyrmions can
be manipulated with much less energy dissipation. A theoret-
ical framework for understanding skyrmion dynamics is then
crucial for applications. Current descriptions are mostly based
on continuum models that are difficult to solve analytically and
can be computationally intensive. Because skyrmions appear
to have particlelike properties, the derivation of a particle-
based equation of motion provides a functional form for
interactions between skyrmions, skyrmion-defect interactions,
and the role of terms such as the Magnus force. Such a model
would have tremendous impact on understanding skyrmion
dynamics by theoretical analysis and computational modeling.
The derivation of effective equations of motion for other
systems, such as vortices in type-II superconductors,16 has
been crucial for understanding pinning and vortex dynamics
in the flux-flow regime. We note that the equation of motion
for a single skyrmion has been reported recently.17–22 However

the full equation of motion including the interaction between
skyrmions, and interaction between skyrmions and defects, is
not available. The purpose of the present work is to fill this gap
and also to show several applications of the derived equation
of motion.

In this paper we derive a concise particlelike equation
of motion for skyrmions using the Thiele’s approach.23 The
emergent electromagnetism induced by the Berry phase leads
to an additional Magnus force that strongly suppresses the
depinning current by deflecting skyrmions away from the
pinning centers. By applying the derived equation of motion
to the study of skyrmion lattice rotation in the presence of
a temperature gradient, we reproduce recent experimental
results. We use the same equation of motion to investigate the
quantum and thermal creep motion of a skyrmion in a pinning
potential. Finally, we validate the particle model by computing
depinning transitions and comparing against results obtained
with the original continuum model.

II. EQUATION OF MOTION

We consider a thin film of a chiral magnet with
Dzyaloshinskii-Moriya (DM) interaction which supports
skyrmions.1–3,24,25 The magnetic moments are described by
a unit vector n(r). The corresponding action for the magnetic
moments n can be written as

S = SB − dαg

γ

∫
dtdt ′d2r

[
n(t) − n(t ′)

t − t ′

]2

−
∫

dtH, (1)

SB = d

∫
d2rdtz†i

(
1

γ
∂t − h̄

2e
J · ∇

)
z, (2)

where z ≡ |z〉 is the spin coherent state defined as n · σ |z〉 =
|z〉. σ is the vector of Pauli matrices, and d is the film thickness.
Here, γ = a3/(h̄s) with a the lattice constant and s the total
spin. The first term in SB describes the Berry phase for the
precession of a spin at r = (x, y). In the presence of conducting
electrons, the electrons become fully polarized by the local
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FIG. 1. (Color online) Schematic view of an electron (yellow
sphere with arrow) passing through a skyrmion (colored arrows). The
spin of the electron follows the spin texture of the skyrmion, giving
rise to an emergent magnetic field that couples the electronic orbital
motion. The black arrows (dots) are the spin projection in the x − y

plane and the spins in the ferromagnetic state are along the z axis.

moments n in the large Hund’s coupling limit, as depicted in
Fig. 1. The second term in SB is responsible for the Berry phase
that the electron picks up when it moves around the skyrmion.
The term proportional to αg accounts for the Gilbert damping.
The spin Hamiltonian is

H = d

∫
dr2

[
Jex

2
(∇n)2 + Dn · ∇ × n − Ha · n

]
. (3)

The first term is the exchange interaction, the second term is
the DM interaction, which breaks spatial inversion symmetry,
and the last term is the Zeeman energy. The external magnetic
field is perpendicular to the film. Systems governed by Eq. (3)
support a skyrmion phase in an intermediate magnetic field
0.2D2/Jex < Ha < 0.8D2/Jex.25 The skyrmion is character-
ized by the topological charge density Q(r) = ∫

dr2n · (∂xn ×
∂yn)/(4π ) = ±1.

According to Eqs. (1) and (2), the spin dynamics is governed
by the Landau-Lifshitz-Gilbert equation26–28

∂tn = h̄γ

2e
(J · ∇)n − γ n × Heff + αg∂tn × n, (4)

with the effective magnetic field Heff ≡ δH/δn. In metallic
chiral magnets, the motion of skyrmions generates electric
fields, hence induces a dissipative current Jdiss = σh̄[n ·
(∇n × ∂tn)]/(2e), where σ is the conductivity.17 In insulating
magnets, such a dissipative current is absent because σ = 0.
The current density in Eq. (4) thus is the sum of the external
current JB and the dissipative current Jdiss, J = JB + Jdiss.

Equations (1)–(4) describe the skyrmion dynamics as well
as its deformations. Skyrmions can be treated as particles as
long as deformations of their internal structure remain small. In
other words, a particlelike description assumes that skyrmions
have a rigid internal structure. Such rigidity is determined
by the frequency of the normal modes associated with small
fluctuations of the spin texture around the stationary state.
Here it is important to note that the Zeeman and the DM terms
remove any continuous symmetry except for translations.
Therefore, the only Goldstone mode arises from translations

of the rigid skyrmion. Modes associated with the internal
skyrmion structure always have a finite frequency. This finite
frequency gap increases with magnetic field and provides a
natural justification for treating skyrmions as particles. To
treat skyrmions as point particles, we make the following two
approximations. We assume a skyrmion density such that the
overlap between different skyrmions is small. We also assume
that the structure of moving skyrmions is the same as that in
the static case. The internal structure of skyrmions becomes
irrelevant under these conditions, which are satisfied in the low
velocity region for certain magnetic fields.29 We first derive
the equation of motion for a skyrmion in the particle-level
description based on the Thiele’s approach:23

4πα

γ
vi = FM + FL +

∑
j

Fd (rj − ri) +
∑

j

Fss(rj − ri),

(5)

where vi is the skyrmion velocity. Equation (5) is the main
result of the present work. The term on the left-hand side
accounts for the damping of skyrmion motion, which is
produced by the underlying damping of the spin precession
and damping due to the conduction electrons localized in the
skyrmions. Thus α = αgη + αση′ with

ασ = 4π

(
h̄

2eξs

)2

γ σ, (6)

η = ημ = 1

4π

∫
skyrmion

dr2(∂μn)2, (7)

η′ = ξ 2
s

16π2

∫
skyrmion

dr2[n · (∂xn × ∂yn)]2, (8)

where the integration in Eqs. (7) and (8) is performed around
the skyrmions and ξs ∼ Jex/D is the size of skyrmions. Here
μ = x, y in Eq. (7). η ≈ 1 and η′ ≈ 1 depends weakly on
Jex/D for Jex/D � a. For typical parameters, ασ � αg .17

In Eq. (5), FM = 4πγ −1ẑ × vi is the Magnus force per
unit length, which is perpendicular to the velocity. FL =
2πh̄e−1ẑ × JB is the Lorentz force due to the external current
that arises from the emergent quantized magnetic flux 
0 =
hc/e carried by the skyrmion in the presence of a finite current.
Fss is the pairwise interaction between two skyrmions, and Fd

is the interaction between skyrmions and quenched disorder.
It is clear from Eq. (5) that the rigid skyrmion does not have
an intrinsic mass. For thin films, the skyrmions are straight
in the direction perpendicular to the film, and the forces in
Eq. (5) are defined per unit length. A similar equation of
motion was considered before in the context of vortices of type
II superconductors.16 However, the Magnus force is negligibly
small for superconducting vortices in most cases.16

The equation of motion for a single skyrmion [without the
terms Fd and Fss in Eq. (5)] can be derived heuristically. In the
stationary state, the skyrmion and conduction electrons form
a composite object and move together. Let us focus on the
conduction electrons inside the skyrmion. The electric current
density inside the skyrmion is

Je = σ‖E + σ⊥ẑ × E, (9)
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where σ‖ and σ⊥ is the longitudinal and Hall conductivity.
Using the Drude model, we have

σ‖ = e2ρeτe

m

1

1 + (ωcτe)2
, σ⊥ = e2ρeτe

m

ωcτe

1 + (ωcτe)2
, (10)

where τe is the electron relaxation time, ρe ∼ 1/a3 is the elec-
tron density, and ωc = eBe/(mec) is the cyclotron frequency
with the electron mass me, because the electrons experience
the emergent magnetic field Be ≈ 
0/(ξ 2

s ). The electric field
is E = Be × v/c. Substituting E into Eq. (9) and taking the
cross product ×
0ẑ/c at both sides of Eq. (9), we obtain the
equation of motion for conduction electrons:

πρe

ωcτe

1 + (ωcτe)2
v = πρe

(ωcτe)2

1 + (ωcτe)2
ẑ × v + ẑ × Je
0/c,

(11)

which is also the equation of motion for the skyrmion.
For a strong internal field, ωcτ � 1 and the Magnus force
dominates. The derivation based on the Landau-Lifshitz-
Gilbert equation is present in Sec. II A.

The action for the particle model of Eq. (5) can be written
as

Sp

d
= SB,p − U (r) − 4πα

γ

∫
dtdt ′

[
r(t) − r(t ′)

t − t ′

]2

, (12)

SB,p = 4π

γ

[
x

(
1

2
∂ty − h̄γ

2e
Jy

)
− y

(
1

2
∂tx − h̄γ

2e
Jx

)]
,

(13)

where U (r) is the potential per unit length produced by other
skyrmions and pinning sites. A unique feature is that x and
y are conjugate variables, which is a hallmark of the Berry
phase, as given by SB in Eq. (2).

One can treat the Magnus force FM as originating from
an effective transverse magnetic field Bz = 4πcd/(γ q) that
couples to a charged moving particle with charge q. This
emergent magnetic field originates from the Berry phase.
The Magnus force does not produce work, but it affects the
skyrmion trajectory. As we will see later, skyrmions are easily
deflected by pinning centers because of the Magnus force. This
effect explains the very weak pinning that has been observed
in different experiments.

In the present work, we focus on the adiabatic spin
transfer torque described by the term h̄γ (J · ∇)n/(2e) in
Eq. (4). Generally, there will be also nonadiabatic spin transfer
torque given by the expression, −ζh̄γ n × (J · ∇)n/(2e).28

Our derivation is readily generalized to the nonadiabatic spin
transfer torque, which yields additional force at the right-hand
side of Eq. (5), Fnon = 2πh̄ζηe−1JB

4πα

γ
vi = FM + FL + Fnon +

∑
j

Fd (rj − ri)

+
∑

j

Fss(rj − ri). (14)

The effects of the nonadiabatic spin transfer torque on
skyrmion dynamics was studied recently in Ref. 20.

We remark that Eq. (5) can be readily generalized to the case
with skyrmions in insulating magnets. In this case, the damping
due to the conduction electrons is absent and α = αgη. Both

the Lorentz force FL and the force due to the non-adiabatic
spin transfer torque Fnon are absent.

We estimate the force using the typical parameters for
MnSi,17 a ≈ 2.9 Å, Jex ≈ 3 meV/a, D ≈ 0.3 meV/a2, α ≈
0.1, and s ≈ 1. At a velocity v = 1 m/s, we estimate the
dissipative force per unit length to be Fdiss ≡ 4παv/(γ ) ≈
5 × 10−6 N/m; the Magnus force per unit length is FM ≈
5 × 10−5 N/m. Thus FM � Fdiss. The repulsive force per unit
length between skyrmions for d ≈ 20 nm is Fss ≈ 10−5 N/m
at a separation rd = 10 nm (see Fig. 3 below). The Lorentz
force per unit length at a current density JB = 106 A/m2

is FL ≈ 4 × 10−9 N/m. Since the depinning current for
skyrmion lattice is of the order of 106 A/m2,13–15 we thus esti-
mate the pinning force per unit length as Fd ≈ 4 × 10−9 N/m.

A. Derivations

Spins precess collectively when a rigid skyrmion moves
with velocity v, ns(r − vt), and their evolution is governed by
the equation of motion

∂tns = h̄γ

2e
(J · ∇)ns − γ ns × Hi + αgns × ∂tns , (15)

where Hi = Hs + Hd . Hs is the magnetic field produced by
other skyrmions and Hd is the field produced by defects. The
effective field H0 ≡ δH/δns due to the skyrmion ns does not
contribute to Hi because ns × H0 = 0 for a rigid skyrmion. If
we first multiply both sides of Eq. (15) by ×ns (cross product)
and then by ·∂μns (dot product), we obtain

αv = γ

4π

[
FM + FL +

∫
dr2H⊥(r′ − r) · ∇rns(r)

]
, (16)

after integrating over the area around the skyrmion. Here H⊥
is the field component perpendicular to ns and we have used∫

dr2∂xns · ∂yns = 0 for a rigid skyrmion. The interaction
potential between a skyrmion at r and another skyrmion at
r′ is Uss(r′ − r) = − ∫

dr ′′2ns(r − r′′) · Hs(r′ − r′′), and the
corresponding force is Fss = ∫

dr ′′2∇rns(r − r′′) · Hs,⊥(r′ −
r′′). The self-energy of the skyrmion in the presence of de-
fects is Es(r − r′) = − ∫

dr ′′2ns(r − r′′) · Hd (r′ − r′′), where
Hd (r) = Jex(r)∇2ns/2 − D(r)∇ × ns + B. The pinning force
is then given by Fd = ∫

dr ′′2∇ns(r − r′′) · Hd,⊥(r′ − r′′).
Thus, Eq. (16) reduces to Eq. (4) if we replace the integral
by the interaction force.

To calculate the interaction between skyrmions and the
interaction between skyrmions and defects, we need to know
the structure of a single skyrmion. An isolated skyrmion is
described by ns(r,φ) = sin θφ̂ + cos θ ẑ in the polar coordi-
nates (r,φ) with φ̂ and ẑ being the unit vectors along the
corresponding axes. θ (r) is determined by minimizing H in
Eq. (3),

−r∂2
r θ − ∂rθ + cos(2θ ) + sin(2θ )

2r
+ β

2
r sin(θ ) − 1 = 0,

(17)

with the boundary condition θ (r = 0) = π and θ (r →
+∞) = 0, where we have renormalized the distance r as
r → r/(Jex/D), and β = 2HaJex/D

2. The profile of θ (r)
for different β is shown in Fig. 2. There are two length
scales associated with a skyrmion. θ decreases linearly in

214419-3



LIN, REICHHARDT, BATISTA, AND SAXENA PHYSICAL REVIEW B 87, 214419 (2013)

0 10 20 30
10-3

10-2

10-1

100

(r
)

r [Jex/D]

=0.2
=0.4
=0.8
=1.0
=1.5
=2.0
=2.5
=5.0

FIG. 2. (Color online) Profile of θ (r) obtained from a numerical
solution of Eq. (17) for different values of the magnetic field.

r for r  1, while the asymptotic solution far away from
the center of the skyrmion, r → ∞, is θ ∼ K0(r/ξ ) with a
healing length ξ = √

2/β. Here K0 and K1 below are the
modified Bessel functions. The spin recovers exponentially to
the fully polarized state due to the finite energy gap in the
spectrum of the spin wave excitations that is induced by the
external field. One may define the core region of the skyrmion
as θ (r < Rc) < π/2.

Since the interaction between two skyrmions is induced by
the overlap between both spin textures, it must depend on the
length ξ . To calculate the interaction between two skyrmions
numerically (see Appendix A), we initially pinned the two
skyrmions at a fixed separation rd by freezing the spins within a
radius r � Jex/D during the time evolution dictated by Eq. (4)
and calculated the energy as a function rd . The results shown
in Fig. 3 indicate that the interaction decays exponentially, and
this is well described by Fss ∼ K1(rd/ξ ).

We next proceed to study the interaction between skyrmions
and defects. The electronic density is not homogeneous in real
systems leading to an inhomogeneous exchange interaction
Jex produced by the double-exchange mechanism. We model
the defects by the following profile of Jex:

Jex(r) = J0

(
1 +

∑
i

Jd exp[−|r − rd,i |/ξd ]

)
, (18)

where Jd characterizes the strength of the defects and rd,i is
the pinning center. The characteristic size of the defects ξd is
comparable to the interatomic separation. For weak pinning,
we can still use the rigid approximation for skyrmions. In
this case the interaction energy is just the self-energy of the
skyrmion given by using Jex(r) in Eq. (18). We first obtain the
structure of the skyrmion from Eq. (17) and then calculate
its self-energy with Eq. (3). We also do a full numerical
relaxation by holding the spin at the center of the skyrmion
unchanged in order to pin the skyrmion at a desired position.
Both methods yield consistent results, as shown in Fig. 4.
Several observations are as follows: (i) The length scale of the
exponentially decaying force at a large distance is given by the

FIG. 3. (Color online) Force between two skyrmions as a function
of the separation rd in two different magnetic fields. Symbols are
obtained from a numerical solution of Eq. (4) and lines are fits to
K1(rd/ξ ), with ξ = D/

√
HaJex. Inset: stationary configuration of

two skyrmions at rd = 3.6Jex/D. The vectors denote the nx and ny

components, and the nz component is represented by the color scale.

size of defects ξd . Because the main contribution to the self-
energy comes from the core of the skyrmion, the exponential
tail does not contribute significantly and the interaction range
is determined by ξd . (ii) The force is maximized when the
separation becomes close to the skyrmion radius rd ≈ Rc, and
it drops when the skyrmion gets even closer to the defect and
finally vanishes when the core coincides with the center of the
defect. (iii) Because the amplitude of the force is proportional
to the strength of the defects, the force can be expressed
as Fd ∼ Jdexp (−rd/ξd ) for large separations. (iv) The force
is attractive for Jd < 0 and it is repulsive for Jd > 0, so
skyrmions prefer to stay in the Jd < 0 region to minimize their
self-energy. (v) The nonuniformity of electron density in real

0 4 8 12

10-5

10-4

10-3

10-2

10-1

Jd/Jex=0.1, d D/Jex=0.5
Jd/Jex=0.1, d D/Jex=1.0
Jd/Jex=0.1, d D/Jex=2.0
Jd/Jex=0.3, d D/Jex=0.5
Jd/Jex=0.3, d D/Jex=1.0
Jd/Jex=0.3, d D/Jex=2.0

F d
[J
ex
/d
]

rd [Jex/D]

FIG. 4. (Color online) Interaction force between a skyrmion and
a defect for different strength and size of defect. Lines are results
obtained from full numerical calculations, and symbols are results
obtained by assuming a rigid skyrmion structure.
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solids (size of defects) is of the order of the interatomic length,
ξd ∼ 0.1 nm, that is much smaller than the typical skyrmion
size. Thus, the interaction between defects and skyrmions is
extremely weak. This is one of the reasons why the pinning of
skyrmions is very weak.

III. APPLICATIONS

We apply the particle model of skyrmions to study the
rotation of the skyrmion lattice in the presence of a temperature
gradient, as well as the creep motion. We also compare the
particle and continuum models by considering the depinning
transition.

A. Rotation of skyrmion lattice

Recent neutron scattering experiments have shown that
the skyrmion lattice rotates in the presence of a temperature
gradient.13 The rotation was explained in Refs. 18 and 19 by
using a continuum model. Here we show that the rotation can
also be explained by using our particle model in Eq. (5).

Fss = Fd = 0 in the crystal phase without defects. The
Hall angle of the skyrmion trajectory is tan θH = vy/vx = −α

when the current is along the x direction. The damping
coefficient α has two contributions: the Gilbert damping
and the dissipation due to the electric field induced by the
skyrmion motion.17 The latter contribution is dominant. Thus,
α ∼ σ , where σ (T ) is the temperature-dependent conductivity.
The temperature gradient leads to a spatial variation of
the Hall angle that exerts a finite torque on the skyrmion
lattice. In the absence of pinning, the lattice keeps rotating
with a finite angular velocity. However, pinning is always
present in real systems due to the underlying atomic crystal
structure that favors one particular orientation of the skyrmion
crystal. An additional pinning arises from the geometric
confinement of finite samples. The competition between torque
and crystal pinning thus yields to a stationary state in which the
skyrmion lattice is rotated by a finite angle. The lattice keeps
rotating with finite angular velocity for a sufficiently large
torque induced by large enough currents and/or temperature
gradients.

We perform numerical simulations of Eq. (5) by mod-
eling the temperature gradient with α(x) = 0.6 − 0.5(2x −
Lx)2/L2

x , where Lx is the length along the x direction.
The current is also parallel to the x direction, and we use
a simulation box with aspect ratio Lx : Ly = 2 :

√
3 and

periodic boundary conditions. These boundary conditions
favor a particular orientation of the principal axis of the
skyrmion lattice, which is parallel to the x direction. In the
stationary state, we find that the skyrmion lattice is rotated by
a finite angle relative to the case of zero temperature gradient
α0 = 0.1 [see Fig. 5]. In addition to the rotation, there is a
small distortion of the skyrmion lattice. Thus the experimental
observation can be explained with the particle model in Eq. (5).

B. Creep motion of skyrmions

The skyrmions can easily leave the pinning potential either
by quantum and/or thermal fluctuations because pinning is
weak. This phenomenon leads to creep motion. We consider
the dynamics of a single skyrmion in a pinning potential U (r).

FIG. 5. (Color online) (a) and (b) Real-space configuration of the
skyrmion lattice in the absence of temperature gradient (a) and in
the presence of temperature gradient (b). For clarity, only part of the
configuration is shown. (c) Bragg peaks (green dots and lines) of the
skyrmion configurations with a temperature gradient. The triangular
skyrmion lattice is rotated and distorted. The Bragg peaks for a perfect
triangular lattice without a temperature gradient (orange lines and
dots) are shown for comparison.

Because α  1 for real materials, such as MnSi, we will
neglect the damping for simplicity. The quantum creep rate for
Eq. (5) was calculated in Refs. 16 and 30 for superconducting
vortices. To be specific, we will consider a pinning potential
per unit length

U (x,y) = Ud

(
y2

λ2
+ x2

λ2
− x3

λ3

)
. (19)

The action of Eq. (12) becomes

Sp

d
=

∫
dτ

[
4π

γ
y∂τx − y2Ud

λ2
+ Ud

(
x2

λ2
− x3

λ3

)]
, (20)

in the imaginary time representation t → −iτ . Here y plays
the role of momentum; thus, if the potential is separable,
i.e., U (x,y) = U1(x) + U2(y), the y dependent potential is not
inverted in the imaginary time representation. Equation (20)
is the same as the one for a particle with mass m̃ = λ2/(2Ud )
moving in a one dimensional potential U (x)/Ud = x2/λ2 −
x3/λ3. The skyrmion does not have an intrinsic mass according
to Eq. (5). However, it gains an extrinsic mass in the presence
of a pinning potential. The quantum rate �q ∼ exp(−Sq/h̄),
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with

Sq

h̄
= 32πλ2d

15γh̄
, (21)

is independent of the height of the pinning potential, but it
depends on the width. The quantum tunneling of skyrmions
between pins is weak because Sq/h̄ ∼ λ2d/a3 � 1.

We now consider the escape rate due to thermal fluctuations.
For this purpose we add a noise force Fn in Eq. (5) which
satisfies

〈Fn〉 = 0, 〈Fn(t)Fn(t ′)〉 = 2kBT
4πα

γ
δ(t − t ′), (22)

according to the fluctuation-dissipation theorem. The thermal
rate �T = � exp(−�U/kBT ) is dominated by the exponential
factor exp(−�U/kBT ), where �U = 4Udd/27 is the height
of the pinning potential. This factor reflects the Boltzmann
distribution of the skyrmion in the potential U and is thus
independent of the dynamics (see Appendix B). In contrast,
the attempt frequency � does depend on the dynamics and the
Magnus force.

Thermal escape becomes dominant at high temperatures,
while quantum creep is dominant in the low temperature
region. The crossover temperature between quantum and ther-
mal tunneling is kBT ∗ = �Uh̄/Sq = 5γh̄Ud/(72πλ2), which
depends on the ratio of the width of the pinning potential and
its height. T ∗ can be increased for properly engineered pinning
potentials. Since the skyrmion carries a magnetization that is
opposite to the ferromagnetic background, the creep motion
manifests itself in experiments as a decay of the opposite
magnetization. Thus, like in the case of superconducting
vortices, the rate can be obtained by measuring the time
dependence of the magnetization.

C. Comparison between continuum and particle models

To validate the particle model, we perform numerical
simulations with both the particle and continuum models. We
calculate the velocity of skyrmions as a function of the driving
force when defects are present. The defects are modeled as
in Eq. (18). Skyrmions are pinned in a low driving current,
and they depin from the defects when the Lorentz force is high
enough. The particle model yields results that are in reasonable
agreement with the continuum model as shown in Fig. 6.
Near depinning, the electric field behaves as Eμ ∼ (J − Jc)βμ ,
where Jc is the depinning current. From the numerical data
we obtain βx ≈ 1.55 and βy ≈ 1.93. The exponent βμ > 1
indicates that the depinning is plastic, i.e., some skyrmions
escape from the pinning centers, while the others remain
pinned. Eventually, all skyrmions become depinned when the
current is further increased.

It is also interesting to discuss the effect of the Magnus force
on the pinning of skyrmions. The Magnus force dominates
over the dissipative force, FM � 4παv/γ , for α  1. When
a skyrmion moves around a pinning center or an obstacle, it
is easily scattered with a velocity perpendicular to the pinning
force or repulsive force. Thus, the skyrmion avoids passing
through the pinning center and its influence is minimized,
as shown in Figs. 7(a) and 7(b). When the dissipative force
is dominant, α � 1, the skyrmion has to pass through the
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FIG. 6. (Color online) (a) and (b): Schematic view of a skyrmion
passing through a pinning center (a) and obstacle (b) when the Magnus
force is dominant. When the Magnus force is dominant over the
dissipative force, the skyrmion is deflected by the pinning centers or
obstacles. (c) Same as (a) and (b) except that the dissipative force is
dominant. The skyrmion has to overcome the pinning site or obstacle
by passing through it. (d) Numerical results of current-velocity curves
with different α. The depinning current increases with α.

pinning center so the pinning becomes very strong, as shown
in Fig. 7(c). We performed numerical simulations for several
α ratios [see Fig. 7(d)]. The depinning current is weaker for
smaller values of α, i.e., when the Magnus force is dominant.

IV. DISCUSSION

The equation of motion for the center of mass of a rigid
skyrmion lattice has been derived in Ref. 19 by using an
approach proposed by Thiele.23 This equation is similar to
Eq. (5) for Fss = 0 and Fd = 0. The equation of motion for
the collective excitations in the skyrmion lattice was derived
in Ref. 17, and it also shares a similar structure with Eq. (5).
The equation of motion presented in this work is more general
because it also describes the dynamics of a single skyrmion
and its interaction with other skyrmions and defects.

The resulting equation of motion is similar to that of
vortices in type II superconductors. However, the pinning
of superconducting vortices is much stronger than that of
skyrmions because of the following reasons. The Magnus force
is negligibly small for vortices, except in the super clean region,
which has not yet been realized experimentally.16 In contrast,
the Magnus force of skyrmions is stronger than the dissipative
forces. Vortices have to pass through the pinning centers, which
leads to large critical currents, while skyrmions can be easily
deflected by the pinning center because of the dominant Mag-
nus force.20 In addition, defects suppress superconductivity
over a range that is equal to or larger than the superconducting
coherence length (linear size of the normal vortex core). This
matching of length scales makes the pinning rather strong.
In contrast, the characteristic length of defects (interatomic
spacing) is much smaller than the core size of the skyrmions.
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FIG. 7. (Color online) Comparison between the continuum and
particle models. The lines are obtained with the continuum model
while the symbols are obtained with the particle model. We convert
the velocity of skyrmions in the particle model to an electric field by
multiplying by an appropriate scaling factor. The inset is the scaling
of the electric field near the depinning transition with Jc = 0.007.
The lines in the inset are power-law fits.

V. CONCLUSION

We have derived an effective particle model for skyrmions,
which includes repulsive skyrmion-skyrmion interactions,
interaction with defects, and the role of the Magnus force.
The model successfully describes the rotation of the skyrmion
lattice in the presence of a temperature gradient and explains
the small depinning thresholds that have been experimentally
observed. It also provides clear predictions for quantum and
thermal creep. Finally the model has been validated by direct
comparisons of the results of depinning and transport curves
against the original continuum model. Our particle model
offers a convenient and transparent theoretical framework for
future computational and analytical studies of skyrmions.
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APPENDIX A: NUMERICAL DETAILS

In simulations, we introduce dimensionless units in Eqs. (3)
and (4). Length is in units of Jex/D, energy is in units of
J 2

ex/D, magnetic field is in units of D2/Jex, time is in units
of Jex/(γD2), and current is in units of 2De/h̄. We use the
periodic boundary condition in both directions. To find the
ground state, we anneal the system by adding a Gaussian
noisy magnetic field along the z direction in Heff . Equation (4)
is solved by an explicit numerical scheme developed in
Ref. 31. The current is along the x direction. In calculations
of the results in Fig. 3, we use a simulation box of size
Lx × Ly = 30 × 10. The system is discretized with a grid
size of 0.2. In calculations of the results in Fig. 7, the defects
are modeled by Eq. (18) with Jd = 1.0 and ξd = 1.0, where
the interaction between skyrmions and defects is repulsive. The
Nd = 500 defects are randomly distributed in a simulation box
of size Lx × Ly = 100 × 100. The I-V curves are obtained by
averaging over 20 realizations of random defects.

In the particle-level simulation, we take the interaction
between skyrmions as Fss = Fs0K1(rd/ξ )r̂d and the repul-
sive interaction between skyrmions and defects as Fd =
Fd0 exp(−rd/ξd )r̂d . Here r̂d is a unit vector along rd . In
dimensionless units, the equation of motion becomes

αvi =
N∑
j

Fss(ri − rj ) +
Nd∑
j

Fd (ri − rd,j ) + ẑ × J + ẑ × vi .

(A1)

In simulation ξd = 2ξ = 2.0, Fs0 = 1.0, and Fd0 = 0.6. The
number of skyrmions N and the number of defects Nd are
N = Nd = 225. The simulation box is Lx × Ly = 45 × 39.
We use the second-order Runge-Kutta method to integrate
Eq. (A1) with a time step �t = 0.05.

APPENDIX B: THERMAL ACTIVATION OF A SKYRMION
OVER A BARRIER

Here we calculate the thermal activation rate for a skyrmion
in a metastable potential U (x,y). The equation of motion for
the skyrmion in dimensionless units is

f̃ + [ẑ × v − ∇U ] = αv, (B1)

with a Gaussian noisy force 〈f̃μ(r,t)〉 = 0 and

〈f̃μ(r,t)f̃μ′(r′,t ′)〉 = 2αT δ(r − r′)δ(t − t ′)δμ,μ′ . (B2)

Using the nonequilibrium path integral approach,32 the proba-
bility of finding the skyrmion at r′ at t ′ starting from the initial
position r0 at t0 is

p(r′,t ′|r0,t0) =
∫

D[r,r̃] exp

(∫
dtL

)
, (B3)

L = ir̃ ·
[
∂tr −

(
− 1

α
∂rU + 1

α
ẑ × v

)]
− T̃

2
r̃2, (B4)
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with T̃ = 2T /α. It is more convenient to use the Hamiltonian
description

H = p · ∂tr − L

= −
[
Aα2

(
p2

x + p2
y

)
2(α2 + 1)

+ ∂xU (αpx + py)

α2 + 1

+ ∂yU (αpy − px)

α2 + 1

]
,

where the conjugate momentum p is defined as px = ∂L/∂vx

and py = ∂L/∂vy . For a weak noise T̃  1, the dominant
contribution to the path integral are those trajectories governed
by the standard Hamiltonian dynamics. For the Hamiltonian
dynamics, H is conserved. Initially for the skyrmion at the
well rw, the system has H = 0 since px = py = 0. We then
look for the trajectories with H = 0 and with minimal action
ST = − ∫

dtL. One obvious solution for H = 0 is px = py =
0 with ST = 0. This is a nonfluctuating trajectory, which does
not contribute to the thermal activation of skyrmions. There is
another trajectory with a minimal ST

pμ = − 2

T̃ α
∂μU, (B5)

with μ = x, y. The corresponding equation of motion is

[ẑ × v − ∇U ] = −αv. (B6)

Compared with Eq. (B1), the sign of damping is changed. Thus
Eq. (B6) describes the motion of a skyrmion in a potential with
a negative damping, which forces the skyrmion to leave the
well and contributes to the thermal activation. The action ST

for this trajectory is

ST =
∫

dtp · v = 2

αT̃

∫ rb

rw

[∇U · dr] = �U

T
, (B7)

where the integration is from the well rw to the barrier rb

of the potential U , and �U = U (rb) − U (rw) is the height
of the barrier. The action does not depend on the Magnus
force. The reasons are as follows: First, the dynamics of
skyrmions is irrelevant for the thermal activation of skyrmions
over the barrier. The probability distribution of skyrmion in
the potential only depends on the potential energy. Second,
the Magnus force does not produce work when skyrmions
move.
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