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Metal-insulator transitions in pyrochlore iridates (A2Ir2O7) are believed to occur due to subtle interplay of
spin-orbit coupling, geometric frustration, and electron-electron interactions. In particular, the nature of magnetic
ordering of iridium ions in the insulating phase is crucial for the understanding of several exotic phases recently
proposed for these materials. We study the spectrum of magnetic excitations in the intermediate-coupling regime
for the so-called all-in/all-out magnetic state in pyrochlore iridates with nonmagnetic A-site ions (A = Eu,Y).
This state was found to be preferred in previous theoretical studies. We find that the effect of charge fluctuations
on the magnetic excitations in the intermediate-coupling regime leads to a strong departure from the lowest-order
spin-wave calculations based on spin models obtained in the strong-coupling limit. We discuss the characteristic
features of the magnetic excitation spectrum that can lead to conclusive identification of the magnetic order in
future resonant inelastic x-ray (or neutron) scattering experiments. This knowledge about the nature of magnetic
order and its low-energy features may also provide useful information on the accompanying metal-insulator
transition.
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I. INTRODUCTION

Pyrochlore iridates (A2Ir2O7) have recently attracted much
attention as prominent examples of 5d transition-metal oxides
where interplay of spin-orbit (SO) coupling and electron inter-
actions can lead to a number of competing exotic phases.1–21

Interestingly, most of these materials are found either to exhibit
a finite-temperature metal-insulator (MI) transition10,11,20,22–26

or to lie naturally close to a zero-temperature MI quantum
phase transition (both pressure driven20,27 and/or chemical-
pressure driven via variation of A-site ions10,22). It is now
believed that the nature of the MI transitions in these systems
is related to the magnetic order of iridium ions in the
low-temperature insulating phase.10,24–26 Further, some of
the proposed novel phases like the Weyl semimetal depend
crucially on the details of such a magnetic ordering pattern.3,7

Therefore, the determination of the Ir magnetic configuration
is important, both to gauge the relevance of the proposed novel
phases and to shed light on the character of the MI transition
in pyrochlore iridates. However, even for the simpler case of
nonmagnetic A-site pyrochlore iridates (such as Eu2Ir2O7 and
Y2Ir2O7), there is no conclusive experimental evidence for the
nature of such magnetic order.11,12,19,22,23,25,28

Several important clues regarding the magnetic order have
been revealed by recent muon spin resonance/relaxation and
magnetization measurements on the low-temperature insulat-
ing phase of both Eu2Ir2O7

11,25 and Y2Ir2O7.19 These measure-
ments suggest that localized Ir moments exhibit long-range
magnetic order that may not break the symmetries of the py-
rochlore lattice. These results are consistent with the claim that
in the ground state, the Ir moments order in the noncollinear,
all-in/all-out (AIAO) fashion (see Fig. 1), as was found in pre-
vious calculations done in both the strong-29 and intermediate-
electron-correlation regimes.3,7 However, the above findings
cannot conclusively prove that Eu2Ir2O7/Y2Ir2O7 orders in
the AIAO fashion, and a study of the low-energy magnetic
excitations is required to identify the signatures unique to the

AIAO state. Indeed, recent resonant inelastic x-ray scattering
(RIXS) and inelastic neutron-scattering experiments have
revealed the magnetic excitation spectra of other iridates such
as Sr2IrO4,30 Sr3Ir2O7,31 and Na2IrO3,32 which suggests that
the magnetic excitation spectra of pyrochlore iridates can also
be probed using these techniques.

In this paper, we compute the magnetic excitation spec-
trum in both the intermediate- and strong-electron-correlation
regimes. Starting from an effective Hubbard model in the
Jeff = 1/2 basis appropriate for Ir electrons, we study the evo-
lution of the magnetic excitation spectrum in the intermediate-
U regime by computing the transverse magnetic dynami-
cal structure factor within the random-phase approximation
(RPA). The robust symmetry-protected degeneracies of the
magnetic excitation spectrum, the occurrence of Landau damp-
ing, and the characteristic dispersion along high-symmetry
directions are found to be the defining signatures of the AIAO
state in the intermediate-U regime. In the strong-correlation
limit, we derive an effective spin model and calculate the
corresponding spin-wave excitations. Through fitting of the
RPA dynamical structure factor with the strong-coupling spin-
wave results, we find that the magnetic excitation spectrum at
intermediate U shows strong departures from the lowest-order
spin-wave calculations. Since the charge gap estimated from
resistivity measurements is found to be small (∼10 meV),11

the intermediate-coupling regime may be more suitable for
describing pyrochlore iridates such as Eu2Ir2O7.

The rest of this paper is organized as follows. We begin
with a brief description of the Hubbard model relevant
to the pyrochlore iridates in Sec. II. We introduce a new
parametrization for the tight-binding parameters, which eluci-
dates the structure of the mean-field phase diagram presented
in Sec. III. Subsequently, we discuss the results obtained in
both the intermediate-U (Sec. IV A) and large-U (Sec. IV B)
regimes. We also discuss the unique signatures of the AIAO
phase and compare the results obtained in the two different
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FIG. 1. (Color online) The top left tetrahedron indicates the
sublattice indices used in our work. The red vector in the top right
tetrahedron shows the nearest-neighbor d32. The gold vectors p14 and
q14 are perpendicular to the C2 axis and span the plane in which
next-nearest-neighbor v〈〈14〉〉 must lie. The bottom right tetrahedron
with the green vectors shows the all-in/all-out configuration.

regimes. Implications of our results are summarized in Sec. V.
Further details regarding various calculations are given in the
appendices.

II. MICROSCOPIC HAMILTONIAN

In the pyrochlore iridates, Ir4+ ions are located at the
center of corner-sharing oxygen octahedra. This leads to
crystal-field splitting of the 5d Ir orbitals into upper eg

and lower t2g orbitals. The sixfold-degenerate t2g orbitals
(including spin degeneracy) are then split into an upper
Jeff = 1/2 doublet and a lower Jeff = 3/2 quadruplet by
the atomic SO coupling with energy separation of 3λ/2
(λ ≈ 500 meV for Ir). Therefore, in the atomic limit, the five
valence electrons will fully fill the Jeff = 3/2 states, half fill
the Jeff = 1/2 states, and leave the eg orbitals unoccupied.
This atomic picture suggests that the low-energy physics can
be captured by projecting out both the Jeff = 3/2 and eg states
and retaining only the half-filled Jeff = 1/2 states.8,9 Therefore
it is useful to start from the most general on-site Hubbard model
in the Jeff = 1/2 basis allowed by symmetry:

H =
∑
ij

c
†
i hij cj + U

∑
i

ni↑ni↓, (1)

where i,j are lattice-site indices, ci = (ci↑, ci↓) are the
electron annihilation operators, ↑ and ↓ are the z components
of the pseudospin operator defined in the global basis, and
niσ = c

†
iσ ciσ is the electron number operator at site i of

pseudospin σ . In general the hopping matrix hij is complex

and can be constrained by considering time-reversal invariance
and various space-group symmetries (Moriya rules).17,29,33

Time-reversal invariance restricts the hopping matrix to the
form

hij = tijI + ivij · σ, (2)

where I is the 2 × 2 identity matrix, σ (= σx,σy,σz) are the
Pauli matrices (in the pseudospin space), and tij and vij =
(vx

ij ,v
y

ij ,v
z
ij ) are real hopping amplitudes. Hermiticity of the

Hamiltonian implies

tij = tj i , vij = −vji . (3)

Here tij and vij transform as a scalar and as a pseudovec-
tor, respectively, under the space-group symmetries of the
lattice.29,33 In particular these symmetries constrain the nearest
neighbor (NN) v〈ij〉 to be perpendicular to the mirror plane
containing i and j . The two possible directions in which v〈ij〉
can point are classified as “direct” and “indirect”.29 We shall
denote the unit vector of the “direct” case as dij (see Fig. 1).
For next-nearest neighbors (NNN) 〈〈ij 〉〉, the twofold rotation
axis that exchanges i and j restricts v〈〈ij〉〉 to lie in the plane
normal to this axis.34 We can parametrize this plane by the two
orthonormal vectors

pij ≡
√

6/4(−Rij + Dij ), (4)

qij ≡
√

3/2(Rij + Dij ), (5)

where Rij ≡ rik × rkj , Dij ≡ dik × dkj , site k is the common
NN of i and j (see Fig. 1), and rik is the vector pointing from
site i to k.

The above constraints allow us to parametrize hij by
two real NN (unprimed) hopping amplitudes and three NNN
(primed) hopping amplitudes:

h〈ij〉(t1,t2) = t1I + it2dij · σ,
(6)

h′
〈〈ij〉〉(t

′
1,t

′
2,t

′
3) = t ′1I + i(t ′2pij + t ′3qij ) · σ.

For the rest of the paper, instead of using (t1,t2),(t ′1,t
′
2,t

′
3) as

our hopping parameters, we find it more convenient to work
with (t,θ ),(t ′,θ ′,φ′), which makes certain symmetries of the
phase diagram readily accessible. These are defined as(

t1
t2

)
= t

(
cos(θt/2 − θ )
sin(θt/2 − θ )

)
, (7)

⎛
⎝ t ′1

t ′2
t ′3

⎞
⎠ = t ′

⎛
⎝ cos(θt/2 − θ ′) sin(φ′)

sin(θt/2 − θ ′) sin(φ′)
cos(φ′)

⎞
⎠ , (8)

where θt = 2 arctan(
√

2) ≈ 109.47◦ is the tetrahedral angle.
This parametrization together with the definition of pij and qij

naturally makes the following property of the model manifest:
if we perform the basis transformation ciaα → e−iπn̂a ·σαβ ciaβ ,
where n̂a is the unit vector pointing from sublattice a to
the center of the tetrahedron, the hopping parameters θ and
θ ′ are transformed to −θ and −θ ′, respectively. In other
words, the Hamiltonian parametrized by hopping parameters
(t,θ ),(t ′,θ ′,φ′) yields a spectrum identical to that of the
Hamiltonian with parameters (t, − θ ),(t ′, − θ ′,φ′).

We can also derive hopping matrices obeying the
above symmetry constraints by considering the Slater-Koster
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approximation of orbital overlaps. In terms of this microscopic
approach, the relevant Slater-Koster parameters are (1) Ir-Ir
hopping via direct overlap of d orbitals [there are three such
overlaps: tσ (for σ bonds), tπ (for π bonds), and tδ (for δ bonds)
for NN (and primed ones for NNN)] and (2) to describing the
hopping between the Ir atoms via the intermediate oxygen.
Details of such a derivation can be found in Refs. 3,6 and 34
and Appendix A.

We now briefly comment on the possible role of trigonal
distortion of the octahedral crystal field of oxygen. Since the
site symmetry of the Ir4+ ions is D3d , trigonal distortion is
symmetry allowed, and in principle, one should use the basis
orbitals in a trigonal environment. These are the so-called e′

g

and a1g orbitals (fourfold and twofold degenerate, including
spin degeneracy, respectively). In the presence of trigonal
distortions the energies of these two sectors are not equal. This
lifting of the t2g orbital degeneracy by trigonal distortion can
change the above Jeff = 1/2 picture if the trigonal distortion
energy scale is much larger than the atomic SO coupling.35

However, when the distortion energy scale is much smaller
than the SO coupling, the separation of the e′

g and a1g orbitals
is negligible. To a good approximation, one may still use the t2g

basis orbitals, consider the strong SO coupling limit first, and
treat the trigonal distortion perturbatively. This gives the above
Jeff = 1/2 bands whose mixing with the Jeff = 3/2 bands is
negligible. Treating the trigonal distortion perturbatively in the
Jeff = 1/2 manifold would simply renormalize our hopping
parameters and will not change our preceding arguments in an
essential way (the Jeff = 1/2 doublet cannot be split since it is
protected by time-reversal symmetry). In the present work, we
shall assume that the trigonal distortions in these pyrochlore
iridates are small such that the Jeff = 1/2 atomic orbitals
still provide a good description of the low-energy degrees of
freedom.

III. MEAN-FIELD PHASE DIAGRAM

In Fig. 2, we show the mean-field phase diagram for
0 < θ < π . We have chosen θ = θ ′, t ′/t = 0.1, and φ′ =
5π/6. The small NNN hopping t ′ was included to produce
the metallic (M), topological Weyl semimetal (TWS), and
magnetically ordered metallic (mAIAO) phases, which are
otherwise inaccessible with only NN-hopping amplitudes. For
t ′/t = 0 and U = 0, the strictly NN-hopping Hamiltonian
contains a Kramers pair of identically flat electronic bands
at the Fermi level along the 
-L direction. Inclusion of small
t ′/t disperses this section of the band structure and produces
the aforementioned phases for U � 0.3,34 Owing to our
parametrization, the phase diagram for 0 > θ > −π will be
identical because of the (t,θ ),(t ′,θ ′,φ′) ∼ (t, − θ ),(t ′, − θ ′,φ′)
structure, as discussed in Sec. II.

Throughout our calculation we have set t = 1 as our energy
scale, and we comment on its possible values in physical
systems in Sec. V. This is different from Refs. 3 and 34,
where the Ir-O-Ir hopping amplitude was used as the unit of
energy. In addition, the NNN hoppings in Ref. 34 were chosen
differently. Despite these two differences, our phase diagram
is in quantitative agreement with that obtained in Ref. 34.
This agreement is to be expected since the NNN hoppings are
small (t ′/t = 0.1). We have checked that no new phases are

FIG. 2. (Color online) Mean-field phase diagram with hopping
amplitudes θ ′ = θ , t ′/t = 0.1, t = 1, and φ′ = 5π/6. First-order
transitions are indicated by dashed lines, while second-order tran-
sitions are indicated by solid black lines. Lines A (θ = 1.45) and
B (θ = 1.70) represent the two cuts for which the RPA dynamical
structure factors are calculated (Fig. 3). The phases indicated are
strong topological insulator (STI), metallic (M), semimetallic (SM),
topological Weyl semimetal (TWS), metallic all-in/all-out (mAIAO),
rotated all-in/all-out (AIAO′), and all-in/all-out (AIAO).

generated with different choices of θ ′ and φ′ provided t ′/t

remains small (as expected in the real materials).
In the noninteracting limit, depending on the value of θ , we

find the strong topological-insulator (STI), metallic (M), and
semimetallic (SM) phases. The M phase has small particle-
and holelike pockets, whereas the SM phase has a quadratic
band touching at the 
 point at the chemical potential. At
finite U , only two magnetic configurations are found: the
AIAO and the rotated all-in/all-out (AIAO′) orders.3 The AIAO
configuration is realized by increasing U starting from either
the SM or M phase. On the other hand, the AIAO′ configuration
is realized by increasing U starting with the M or STI phase.
Phase transitions to the AIAO′ by an increase in U are of first
order. The transitions between the AIAO and the AIAO′ phases
are also of first order and occur at θt/2 and π − θt/2. In the
noninteracting limit, band inversion at the 
 point also occurs
at these values of θ . All other transitions are of second order.

At large U , the system is gapped, while for values of U near
the onset of magnetic order, the single-particle spectrum may
continue to remain gapless even after the onset of magnetic
order. The TWS and the mAIAO phases are realized in this
gapless window: the former is developed via the splitting of
the quadratic band touching at the Fermi level of the SM phase,
while the latter is realized due to the presence of particle-hole
pockets in the M phase.

IV. MAGNETIC EXCITATION SPECTRUM

As pointed out in Sec. III, for a sufficiently large Hubbard
interaction U and for θt/2 < θ < π − θt/2, the mean-field
solution is the AIAO state. We want to study the nature of the
low-energy magnetic excitation spectrum of this magnetically
ordered state, which is composed of the transverse fluctuations
of the spins about their local-ordering directions. We study
these excitations in both the intermediate- and strong-electron-
correlation regimes, and we accomplish this by applying
two contrasting approaches. For the case of intermediate
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U , we study the magnetic excitations by computing the
RPA transverse spin-spin dynamical structure factor at zero
temperature. In the large-U regime, we perform a strong-
coupling expansion of our Hubbard model [Eq. (1)] to derive
an effective spin model. The spin model is then used to
calculate the spin-wave spectrum about the AIAO state within
the Holstein-Primakoff approximation.

A. Intermediate U: RPA dynamical structure factor

The information about the magnetic excitations are con-
tained in the transverse part of the RPA dynamical spin-spin
susceptibility matrix. This is given by

χRPA⊥(q,ω) = [1 − UχMF⊥(q,ω)]−1[χMF⊥(q,ω)], (9)

where χMF⊥ is the bare mean-field transverse spin-spin
susceptibility and U is the Hubbard repulsion. Since the
pyrochlore unit cell has four sublattices, χMF⊥ is a 4 × 4
matrix. We compute the trace of the imaginary part of the RPA
susceptibility, i.e., the RPA dynamical structure factor. This
trace sums over the contribution of the individual magnetic
excitation bands (there are four such bands) and gives the
overall intensity that will be observed in inelastic neutron-
scattering or RIXS experiments. The details of the form of the
susceptibility matrix are discussed in Appendix B.

Results. We consider the RPA dynamical structure factor
along two representative cuts (A and B) in the phase diagram as
U is increased. For cut A, θ = 1.45, while for cut B, θ = 1.70
(Fig. 2). The first cut is chosen to represent the section of the
phase diagram given by (θt/2 < θ < π/2), while the second is
chosen to represent the part (π/2 < θ < π − θt/2). For small
NNN hoppings (t ′/t � 0.1) we have explicitly checked that
the qualitative features of these representative cuts are robust
against variations in t ′ and θ within their respective sections
of the phase diagram (not shown).

Due to the presence of spin-orbit coupling (t2 �= 0), spin-
rotation symmetry is explicitly broken, and the magnetic
excitation spectra are generally expected to be gapped. The
dynamical structure factors for cut A are shown in Fig. 3(a). For
this cut, the system is in the quadratic band-touching SM phase
in the noninteracting limit. For U = 4.5, the low-lying particle-
hole continuum damps and broadens the magnetic excitation
spectrum throughout most of the Brillouin zone. This so-called
Landau damping occurs because magnetic excitations lying
within the particle-hold continuum decay through interactions
with the particle-hole excitations. As a consequence, these
magnetic excitations acquire a finite lifetime which broadens
their spectrum.36,37 The lower bound of the particle-hole
continuum is dispersive, and this is most evident near the L

point: the particle-hole excitations are higher in energy than
the magnetic excitations; therefore these magnetic excitations

FIG. 3. (Color online) RPA dynamical structure factors for (a) θ = 1.45 and (b) θ = 1.70 for various values of U ; ω is in units of t = 1.
These correspond to cuts A and B in Fig. 2, respectively. Sharp dispersions can be seen at larger values of U , while lighter intensity and
broadened spectra are seen due to Landau damping in parts of the Brillouin zone at lower U . Degeneracies at 
, X, and W are symmetry
protected and are robust features of the AIAO state.
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become more sharply defined in that region of the Brillouin
zone. As U is increased, the particle-hole continuum is shifted
upwards in energy throughout the Brillouin zone due to an
increase in the single-particle charge gap, hence revealing
all four magnetic excitation modes. The lower-energy modes
are relatively dispersionless compared to the higher-energy
modes, which disperse most markedly near the L point. At
U = 6.5, the degeneracies of the spectrum become more
apparent: there are two twofold degeneracies at the X and
W points, while the 
 point has a threefold degeneracy. We
note that for U � 4.5, which includes the TWS phase, all the
magnetic excitation modes are damped by the particle-hole
continuum.

For the second cut [Fig. 3(b)], the system is in the metallic
phase in the noninteracting limit. Well-defined magnetic
excitations are only observed for U � 4.0. Starting at U = 4.0,
the magnetic excitation modes appear near the 
 point. At
U = 4.5, low-energy, damped features can be seen near the
L point and along the 
-K line. For U = 5.0, most of
the magnetic excitation modes become sharply defined as the
particle-continuum shifts upward. As U is increased further,
the low-lying dispersion at L shifts up, and bands at 
 begin to
separate while maintaining the threefold degeneracy required
by symmetry. At U = 6.0, the spectrum begins to resemble
the U = 6.5 spectrum of the first cut.

Degeneracies at the high-symmetry points 
, X, and W

are symmetry protected, and therefore they are characteristic
of the point-group symmetry that remains intact in the AIAO
state and common to both cuts A and B at all values of U .
The almost flat dispersion encountered at the zone boundary
(X-W ) is also a distinguishing feature and is also evident in
both cuts A and B.

B. Strong-coupling expansion: Linear spin-wave theory

We now look at the spin-wave spectrum in the strong-
coupling limit of large U/t . In this limit and at half filling, we
can apply perturbation theory to obtain the following effective
spin Hamiltonian at the lowest order:3,6

Hspin =
∑
ij

ab
ij Sa

i Sb
j

=
∑
ij

(
JSi · Sj + Dij · Si × Sj + Sa

i 
ab
ij Sb

j

)
, (10)

where the three terms in the last line are the trace, traceless
antisymmetric, and traceless symmetric parts of ab

ij . These
terms correspond to the Heisenberg, the Dzyaloshinskii-
Moriya (DM), and the anisotropic interactions, respectively,
and are related to the hopping amplitudes of Eq. (1) by

J = 4U−1(t2 − |v|2/3), Dij = 8U−1tvij ,
(11)


ab
ij = 8U−1

(
vij

avij
b − δab|v|2/3

)
[the magnitude of vij (= |v|) is site independent], which holds
for both NN- and NNN-hopping amplitudes. The “direct”
configuration of the DM vectors are known to stabilize
the AIAO state,29 which is in agreement with our earlier
mean-field phase diagram. Hence we consider the low-energy
spin-wave expansion about the AIAO state for the above spin
Hamiltonian.

To obtain the spin-wave expansion about the AIAO state
which orders noncollinearly, we rotate our spin-quantization
axis locally in alignment with the magnetic ordering.38 To this
end, we define rotated spin operators S̃ such that their local Sz

points to the direction of magnetic ordering at that site.

Sa
i = [Ri(S̃i)]

a = Rab
i S̃b

i , (12)

where Ri and Rab
i are the rotation operator and its matrix

representation that takes the direction of magnetic order at site
i and rotates it to the z axis of the global coordinate system.
With these rotated operators, we can rewrite Eq. (10):

Hspin =
∑
ij

[
RT

i ijRj

]ab
S̃a

i S̃b
j , (13)

where RT indicates matrix transposition.
After recasting our spin operators in the rotated coordinate

system, we are in the position to analyze the spin waves about
the AIAO state by applying linear spin-wave theory. First, we
rewrite our spin operators in the Holstein-Primakoff bosonic
representation:

S̃+
i =

√
2s − a

†
i aiai, S̃−

i = a
†
i

√
2s − a

†
i ai,

(14)
S̃z

i = s − a
†
i ai,

where s is the total spin angular momentum and we have
introduced four flavors of bosons, one for each sublattice of
the pyrochlore unit cell. Next, we expand and truncate the spin
Hamiltonian to quadratic order, Fourier transform the bosonic
operators, and solve for the resulting excitation spectrum via
a Bogoliubov transformation.

Results. We consider the spin-wave spectra obtained from
the effective spin Hamiltonian generated by only NN-hopping
amplitudes. Adding up to t ′ = 0.1t NNN-hopping amplitudes
(not shown) only leads to small changes (see below). In
Fig. 4, we depict the evolution of the spin-wave spectrum
as the NN-hopping parameter θ is varied. In the absence
of NNN-hopping amplitudes, θ and π − θ yield identical
spin-wave spectra. This structure is again related to our choice
of angular parametrization: θ and −θ are related by a basis
transformation and should therefore have the same spin-wave
spectrum. Moreover, −θ → −θ + π is equivalent to t → −t

and v → −v, which leaves J , Dij , and 
ij invariant. Hence, θ

and π − θ yield the same spin-wave spectrum, and this fact is
noted by assigning each of the plots in Fig. 4 two θ values.

For θt/2 < θ < π − θt/2, the spin-wave spectrum is
gapped, and the gap decreases as we approach either end point
of the interval. At the end points, two of the four bands of
the spectrum become both gapless and dispersionless, while
outside the end points, the lowest bands become negative in
energy, signaling an instability of the AIAO state. The onset
of these instabilities is consistent with NN mean-field theory
results, which predicts first-order transitions (between the
AIAO and the AIAO′ phases) at θ = θt/2 and θ = π − θt/2.

We note that the degeneracies at the high-symmetry points

, X, and W are consistent with the RPA results as they are
protected by symmetry. Also, the flat dispersions at the zone
boundary (X-W ) are also encountered in the present spin-wave
calculation. On the other hand, the lowest-energy dispersion
along the L-
 line is absolutely flat in this NN model. However,
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FIG. 4. (Color online) Evolution of the Holstein-Primakoff spin-
wave spectra as angle θ is varied between (θt/2 ≈ 0.96) < θ and
θ < (π − θt/2 ≈ 2.19); ω is in units of t2/U . θ and π − θ yield
identical spin-wave spectra, and this redundancy is reflected by each
plot having two θ values. Like the RPA results in Fig. 3, degeneracies
at 
, X, and W are symmetry protected.

on adding small NNN hopping (up to t ′ = 0.1t), it acquires
a small dispersion. This should be contrasted with the RPA
results in Fig. 3, where modes along the L-
 line are more
strongly dispersive.

C. Comparison of RPA and strong-coupling results

As the ratio of the typical hopping scale to the Hubbard
repulsion scale (t/U ) increases, the higher-order contri-
butions to the strong-coupling perturbative expansion (in
t/U ) become increasingly important, and the strictly NN
model we employed in Sec. IV B becomes inadequate to
describe the magnetic excitations of the AIAO state. Not
only do higher-order contributions generate farther-neighbor
Heisenberg exchanges, ring-exchange-type terms arise and
lead to renormalization of NN quadratic terms at the linear
spin-wave level.39,40 Therefore, we should not expect a perfect
agreement between the RPA and strong-coupling results.

Nevertheless, we attempt to fit (by eye estimation) the RPA
results for large U (e.g., U = 6.0 in cut B) with a linear
spin-wave (LSW) spectrum (see Fig. 5). First, we fit the RPA
dispersion features and overall bandwidth, resulting in J =
0.13, |D| = 0.13, |
| = 0.07 [see Eq. (11) for definitions].
These parameter values are different from those obtained
from Eq. (11), which is based strictly on the leading-order

FIG. 5. (Color online) RPA results at U = 6.0 for cut B (blue and
yellow color map) overlaid with a fit with the NN linear spin-wave
spectrum (red); ω is in units of t = 1. Although some features along
the 
-X-W line can be fitted, other high-symmetry lines show a larger
discrepancy.

strong-coupling expansion for the NNs. The gap obtained from
the RPA calculation is �RPA ≈ 1.70.

The resulting LSW fit captures the dispersion along 
-X-W
quite well but fails to capture the low-lying modes along the
L-
 line and, in general, the higher-energy modes where the
fit, at best, is qualitative. We would also like to point out that
fits at lower U and along cut A have been attempted, but large
discrepancies in both the features of the spectrum and the
spin-wave gap have been found.

The above fitting results point out that the NN spin model
(and also the NNN spin model with up to 10% NNN hopping
amplitude) is grossly inadequate to fit the RPA magnetic
excitation spectrum quantitatively for parameter values that
encompass the regime appropriate for the pyrochlore iridates.
In this context we would like to point out that recent estimates
of a small charge gap (∼10 meV) from the resistivity
measurements in Eu2Ir2O7

11,25 seem to suggest that the
intermediate-coupling calculations may be better suited to
describe this compound.

V. SUMMARY

To summarize, we have calculated the structure of the
magnetic excitation spectrum for the AIAO state that has been
proposed for the pyrochlore iridates such as Eu2Ir2O7 and
Y2Ir2O7. For intermediate correlations, we have calculated the
transverse spin-spin dynamical structure factor within the RPA
approximation. Features particular to the AIAO configuration
that can lead to conclusive identification of the magnetic order
in Eu2Ir2O7 and Y2Ir2O7 were discussed. For the large-U
limit, we used a strong-coupling expansion to derive a spin
model and calculated the linear spin-wave spectrum using the
Holstein-Primakoff approximation. By fitting the RPA results
with the linear spin-wave spectrum, we showed that results in
the intermediate-correlation regime are substantially different
from those obtained from the strong-coupling theory.

Finally, from our calculations, we can make rough estimates
of the experimental energy scales for the excitation gap and dis-
persion bandwidth by using Slater-Koster parametrization of
orbital overlaps [the relation connecting the symmetry-allowed
parameters in Eq. (6) to Slater-Koster parameters are detailed
in Appendix A]. Similar to Refs. 3 and 34, we have used
tπ = −2tσ /3, tδ = 0, while tσ = −1.16to (−1.37to) for cut
A (B) (the different orbital overlaps were introduced towards
the end of Sec. II and are also used in Appendix A). Typically,
the value of to, the Ir-O-Ir hopping, is about 200–350 meV
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in iridates with octahedral oxygen environments.41,42 Here we
choose a representative value of to ≈ 300 meV. The NNN
orbital overlaps are more difficult to estimate. However, they
are generally much smaller due to the increased interatomic
distances and should therefore be consistent with our choice
of t ′/t = 0.1. With these values, in Fig. 3, the spin gap found
from our RPA calculation is on the order of 100 meV, and the
dispersion width is on the order of ∼15 meV. This value of
spin gap is found to be very sensitive to the value of U , while
the bandwidth always remains in the same regime. While a
100-meV gap can be resolved within current RIXS resolution,
the dispersion width may be presently on the borderline of
resolvability.

In other iridium compounds, recent progress has been
made in RIXS,30,31,43 neutron-scattering,32,44 resonant mag-
netic x-ray scattering (RMXS),45,46 and x-ray absorption
spectroscopy (XAS)47 experiments. In particular, RIXS and in-
elastic neutron-scattering experiments have recently revealed
the magnetic excitation spectra of Sr2IrO4,30 Sr3Ir2O7,31

and Na2IrO3.32 Future applications of these techniques and
improvements in experimental resolution may help reveal the
magnetic behavior and, in particular, the magnetic excitation
spectra of pyrochlore iridates, thereby conclusively determin-
ing the nature of their magnetic order.
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APPENDIX A: MICROSCOPIC ORIGINS OF HOPPING
PARAMETERS

In order to estimate the values of the hopping parameters,
we turn to a microscopic analysis of hopping paths. We briefly
discuss the results of such an analysis and refer to Refs. 5,6
and 34 for more details.

We consider two types of hopping: Ir-Ir hopping via overlap
of d orbitals and O-Ir hopping between p orbitals of O and d

orbitals of Ir. We parametrize d-d overlaps with Slater-Koster
amplitudes tσ , tπ , and tδ (and primed ones for NNN), while for
p-d overlaps, we parametrize them with amplitudes tpdσ , tpdπ ,
and O-Ir occupation energy difference ε. Here the subscripts
σ,π , and δ denote the type of overlap of the orbitals. Also,
in this microscopic picture, we always work in the local axes
defined by the oxygen octahedra surrounding each Ir.

To arrive at a Jeff = 1/2 model, we first employ second-
order perturbation on the O-Ir hopping to generate an effective
NN Ir-Ir hopping between d orbitals. This indirect hopping is
given by

to = t2
pdπ/|ε|, (A1)

where ε is the difference of the on-site charging energies
between the oxygen 2p orbitals and Ir 5d orbitals. (This
indirect hopping receives a contribution from the tpdσ overlap
in the presence of distortion in the oxygen octahedra). We now
project the d orbitals into the local t2g and, finally, into the local
Jeff = 1/2 basis to find the hopping matrix which has the form
given by Eq. (6), where the relation with the effective hopping
parameters and more microscopic Slater-Koster parameters is
given by the following relations:

t1 = 1

972
(51tσ − 316tπ − 43tδ + 520to),

t2 =
√

2

972
(60tσ − 160tπ − 220tδ + 112to),

t ′1 = 1

8748
(699t ′σ − 1628t ′π − 1843t ′δ), (A2)

t ′2 =
√

2

8748
(−156t ′σ − 2720t ′π − 4t ′δ),

t ′3 = 1

8748
(−144t ′σ − 960t ′π + 1104t ′δ).

From these relations, it is straightforward to use Eqs. (7) and (8)
to relate the angular parameters to the above Slater-Koster
parameters.

The range of physical NN hopping parameters explored in
Ref. 34 (−1.2 � tσ � −0.5, tπ = −2tσ /3, tδ = 0, and to = 1)
corresponds to 0.85 � θ � 1.51 with the appropriate energy
scaling of t .

APPENDIX B: TRANSVERSE SPIN-SPIN SUSCEPTIBILITY

As Eq. (9) indicates, we need to compute the mean-field
transverse spin-spin susceptibility in order to obtain the RPA
susceptibility. Here we provide details of such a calculation
for noncollinear magnetic order like the AIAO state.

The mean-field susceptibility matrix is given by

χab
MF⊥(q,t) = −i�(t)〈[(Sa

⊥(q,t))i ,(S
b
⊥(−q,0))i]〉, (B1)

where Sa
⊥(q,t) denotes the Fourier transform of the component

of the spin operator that is perpendicular to the magnetic
ordering direction for sublattice a (see Fig. 1 for sublattice
convention) and i indexes the components of Sa

⊥(q,t), which
are to be summed over. If the direction of magnetic moment
on sublattice is given by the unit vector n̂a , then the transverse
spin operator for that sublattice is given by

Sa
⊥(q) = −n̂a × [n̂a × Sa(q)], (B2)

where Sa(q) is the Fourier transform of the spin operator. For
the AIAO state, n̂a points along the local [111] direction of the
lattice.

We write the spin operator with electron operators as

Sa(q) = 1

2

∑
k

c
†
k+q,ασ αβck,β , (B3)

where α,β = ↑ , ↓. Using this, we get

χab
MF⊥(q,t) = −iMab

αβγ δ�(t)
∑
k1k2

〈[c†aα(q + k1,t)caβ(q1,t),

× c
†
bγ (−q + k2,0)cbδ(k2,0)]〉, (B4)
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with

Mab
αβγ δ = 1

2 [n̂a × (n̂a × σαβ)] · 1
2 [n̂b × (n̂b × σγ δ)]. (B5)

Last, we transform our basis to the band basis using the results
from our Hartree-Fock mean-field calculation, evaluate the
two-body expectation value via Wick’s theorem, and Fourier
transform to frequency space to obtain χab

MF⊥(q,ω).
We next compute the trace of the imaginary part of

the RPA dynamical structure factor. This trace is a sum

of intensities contributed by all four individual magnetic
excitation bands and is the quantity most relevant to scattering
experiments. From Eq. (9), we notice that χab

RPA⊥ has the
same eigenbasis as χab

MF⊥ since U is diagonal in the sublattice
indices. Hence, Eq. (9) can also be regarded as a relation
between the eigenvalues of χab

RPA⊥ and χab
MF⊥. To compute

the trace of χab
RPA⊥, we therefore diagonalize χab

MF⊥ at every
q and ω and use Eq. (9) to compute the eigenvalues of
χab

RPA⊥.
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