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Field-induced phase transitions and phase diagrams in BiFeO3-like multiferroics

Z. V. Gareeva,1,2,* A. F. Popkov,3 S. V. Soloviov,3 and A. K. Zvezdin4,5,6

1Institute of Molecular and Crystal Physics, Russian Academy of Sciences, 450075, Ufa, Russia
2Bashkir State University, 450076, Ufa, Russia

3National Research University of Electronic Technology, 124498, Zelenograd, Moscow, Russia
4A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, 119991, Moscow, Russia

5P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
6Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudny, Russia

(Received 18 February 2013; revised manuscript received 7 April 2013; published 12 June 2013)

We explore incommensurate magnetic structures and phase diagrams of multiferroics through accurate
micromagnetic analysis, taking into account the spin flexoelectric interaction (the so-called Lifshitz invariant).
We consider BiFeO3 single crystals and epitaxial films grown on (111) substrates. The main control parameters
of these systems are the magnetic field, magnetic anisotropy, and, in the case of thin films, epitaxial strain. We
construct phase diagrams representing stability regions for the homogeneous magnetic states and incommensurate
structures for two geometries of the field (parallel to the principal crystal axis H‖C3 and perpendicular to this
direction H⊥C3). It is shown that the direction of applied magnetic field substantially affects the magnetic
phases, the properties of incommensurate structures, and the character of phase transitions. A conical type of
cycloidal ordering is revealed to exist during the transition from the incommensurate cycloidal structure to
the homogeneous magnetic state. Constructed phase diagrams provide the combination of control parameters
required to suppress the cycloidal ordering. Our results show that the critical magnetic field for suppression of the
cycloid is lower in thin films than in single crystals, and can also be lowered by appropriate selection of applied
magnetic field orientation. These results provide a stronger understanding of the complex magnetic ordering in
BiFeO3 and can be useful for strain engineering of new multiferroic materials on demand.
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I. INTRODUCTION

Multiferroic materials are compounds that have coupled
magnetic, ferroelectric, and ferroelastic orders. The interest in
these materials is driven by the prospect to control charges
by applied magnetic fields and spins by applied voltages.
They have potential applications in nanoelectronics, sensors,
photovoltaics, and energy harvesting.1–8

Although the number of multiferroic materials increases the
one of the most studied multiferroics remains bismuth ferrite
(BiFeO3 or BFO). BFO has extraordinary ferroelectric1,2,9

and unexpected transport properties.10,11 It has been used
as a blocking layer in spin valves12,13 to control their giant
magnetoresistance (GMR) by an electric field and also as a
gate dielectric layer in magnetoelectric field effect devices.14

BFO can be interesting for magnonics15 since their magnon
spectra can be electrically controlled over a wide range.16

The structure and properties of BFO bulk single crystals
have been extensively studied.9,17–19 BFO has high temper-
atures of ferroelectric TC = 1083K and antiferromagnetic
ordering TN = 643K, an electric polarization of the order
1 C/m2 and magnetization of the order 5 emu/cm3.2,7,20

Its crystal structure is based on ABO3 perovskite structure.
Three types of distortions: relative displacement of Bi and Fe
ions along 〈111〉 axis, deformations of oxygen octhahedral,
and counterrotation of oxygen octhahedral around the 〈111〉
axis reduce the perovskite symmetry group to the R3c space
group. The spontaneous polarization, caused by the distortions,
appears along one of the eight pseudocubic 〈111〉 directions.

The magnetic structure of BFO in the first approximation
is G-type antiferromagnetic, with weak ferromagnetic com-
ponent, as established by Kiselev et al.21 Further neutron

diffraction studies22–24 showed that the G-type antiferromag-
netic structure is superimposed with a cycloidal modulation
with period 62 nm (Fig. 1). Since in the bulk eight directions
of polarization are allowed, several directions of the cycloid
propagation are possible. Although there is the possibility that
the cycloid be either left- or right- handed, cycloids observed
in the bulk were found to be of single chirality.22 According to
Ref. 25 the cycloidal magnetic structure exists below 650 K on
cooling down to critical temperature of 4 K. The explanation of
the complicated spin arrangement in BFO requires taking into
account specific spin flexoelectric (or flexomagnetoelectric)
interaction.

The corresponding additional term arising in a free energy
expansion in crystals of R3c symmetry group is known as the
Lifshitz invariant. In Ref. 26 it was shown that the presence
of the Lifshitz invariant leads to a solution related to cycloidal
spin arrangement. The relationship between the Lifshitz
invariant and the related Dzyaloshinskii-Morya interaction was
discussed in Ref. 27.

The first observations of space-modulated structures refer
to metallic magnets; later on the spiral magnetic ordering
was discovered in magnetic dielectrics (antiferromagnets),
particularly BFO. At present many multiferroics with helical
magnetic ordering are known.28,29 The theoretical description
of incommensurate superstructures in ferromagnetic metals
was elaborated by Dzyaloshinskii.30 Within the same approach
the cycloidal magnetic ordering in BFO was explained taking
into account the mechanism of inhomogeneous magnetoelec-
tric interactions.30–35 The spin cycloid at room temperatures
is well described by harmonic functions sin(k · r), cos(k · r),
where k is the wave vector of spin propagation. In the
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FIG. 1. BFO unit cell, schematic illustration of spin cycloid.

general case, the spin distribution in the cycloid obeys an
anharmonical law and is described with the Jacobi elliptical
functions sn(k · r; ν), cn(k · r; ν) where ν defines the degree
of anharmonicity. A change of temperature,25 rare-earth ion
doping,36–38 magnetic and electric fields,39–41 and stresses
induced by orienting substrate42–45 are external factors that can
affect the parameter ν. Slight structural modifications in BFO
thin film can cause drastic changes in the magnetic structure.42

A broad array of magnetic phases can be realized in BFO films
depending on the type of substrate, crystallographic orientation
of the film, chemical doping, or presence of ferroelectric
domain structure.36–38,42–46

The aim of this work is to analyze the possible commen-
surate and incommensurate magnetic structures that can be
realized in single BFO crystals and in (111)-oriented films, as
well as the investigation of the transitions between modulated
and homogeneous magnetic states under external conditions.
In our treatment, magnetic field and magnetic anisotropy are
taken as the key parameters regulating the appearance of the
magnetic phases and their restructuring processes. We argue
that micromagnetic structure is modified under temperature
variations of exchange and induced anisotropy parameters,
and that the magnetic field is an important factor controlling
magnetic states. Our findings show that incommensurate mag-
netic phase is complex, and that it comprises different phases
between which phase transitions occur when parameters of the
system are changed. Presently, the incommensurate phase in
BFO multiferroics is considered a cycloidal structure where
spins rotate in the plane passing through the principal crystal
axis and one of the axes lying in a crystal basal plane. We show,
however, that new cycloidal phases with three-dimensional
spin reorientation arise with the change of external magnetic
field and magnetic anisotropy. The most essential geometries
of magnetic field (magnetic field oriented along principal
crystal axis C3 and in the direction perpendicular to C3) have
been considered, and phase diagrams in terms of magnetic
field and magnetic anisotropy have been constructed.

The paper is organized as follows. Section II discusses the
problem and presents the theoretical model and governing
equations. Section III treats homogeneous magnetic states, in-
commensurate states and phase diagrams of BFO multiferroics

in the magnetic field applied along the principal axis H‖C3.
Sections IV and V present a similar analysis for the case of
the magnetic field applied in the basal plane of the film. We
concentrate on limiting situations concerning the magnetic
field oriented along the direction of cycloid space modulation
H‖O X‖[11̄0] (Sec. IV) and magnetic field oriented in the
perpendicular direction H‖OY‖[112̄] (Sec. V); the phase
diagram related to the situation H⊥C3 is presented in
Sec. V.

Experiments have shown that the cycloid is suppressed
by high magnetic fields39–41 and is not always observed in
BFO thin films.47 The phase diagram of the stability of the
magnetic states presented in this paper will enable estimation
of conditions that define the type of space-modulated structures
that exist, and furthermore, the conditions required for the
destruction of the space-modulated state.

II. GENERAL EQUATIONS

In this section the formalism of the micromagnetism
approach is developed to describe magnetic phases in BFO
multiferroics considered both in a single crystal and in films.
The symmetry and crystallographic structure of the film differ
from those of single crystal and consequently crystals and
films can possess different physical properties. BFO is a
strong example of this assessment. It is known that BFO
films can demonstrate semiconducting properties or even
become metallic in specific conditions while BFO single
crystals are known as insulators. However, in our consideration
we investigate the magnetic properties of BFO films, while
limiting the problem with a range of parameters, which do
not allow strong structural changes. (111)-oriented BFO film
with rhombohedral crystallographic structure the same as BFO
crystal is considered.

The determination of magnetic structures and the construc-
tion of corresponding phase diagrams is based on the known
variational problem of free energy functional minimization,
namely δ� = δ

∫
FdV = 0 with the condition δ2� > 0.

The free energy density of a BFO-like crystal is represented
in the form

F = FλD + Fex + Fan + FL + FH + Fm.elas, (1)

where

FλD = λM1 · M2 + D[M1 × M2] (2)

is the isotropic and the Dzyaloshinskii-Morya exchange
interaction energy density, M1 and M2 are the sublattice
magnetizations, λ is the antiferromagnetic exchange coupling
parameter, D = Dnc is the Dzyaloshinskii vector, nc is the
unit vector oriented along crystal principal axis, and D is
the Dzyaloshinskii parameter. In antiferromagnetism theory it
is accepted to use ferromagnetic and antiferromagnetic order
parameters M = M1 + M2, L = M1 − M2 or dimensionless
variables m = M/2M0, l = L/2M0.

In terms of M,L the Dzyaloshinskii-Morya exchange
interaction energy density can be rewritten in the form

FλD = λ

4
(M2 − L2) + D

2
M[nc × L]. (3)
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The exchange energy density acquires a form

Fex = A
∑
x,y,z

(∇li)
2, (4)

where A is the stiffness constant li , i = x,y,z are the
components of the unit antiferromagnetic vector l , and M0 is
the sublattice magnetization. The nonuniform magnetoelectric
interaction energy density, known as the Lifshitz invariant, is
written as

FL = β(lx∇xlz + ly∇ylz − lz∇xlx − lz∇yly), (5)

where O X‖[11̄0], OY‖[112̄], O Z‖[111], the spontaneous
electric polarization vector P is assumed to be oriented along
[111], β is the constant of the nonuniform magnetoelectric
interaction, with its sign dependent in particular on the
orientation of vector P . For the definiteness we suppose below
that β > 0; in the case of BFO multiferroics β ≈ 0.6 erg/cm2.

The Zeeman energy density is given by

FH = −M · H, (6)

where H is the applied magnetic field; the magnetic anisotropy
energy density is represented as

Fan = −Kul
2
z , (7)

where Ku is the constant of uniaxial magnetic
anisotropy.

The effective magnetic anisotropy in films can be different
from the one in single crystals. It is shown below that in the case
of (111)-oriented BFO films, uniaxial magnetic anisotropy has
an additional contribution related to the magnetoelastic energy
density

Fm.elas. = −B2u0

2
l2
z , (8)

where B2 is the magnetoelastic constant, u0 is the mismatch
parameter determined over film and substrate lattice parame-
ters afilm, asubs

u0 = asubs − afilm

afilm
. (9)

The lattice mismatch depends on their values in a single crystal,
the growth conditions of the heterostructure, temperature, and
thickness of the film.48,49 As seen from (7), (8) consideration
of the magnetoelastic interaction leads to the renormalization
of the uniaxial magnetic anisotropy constant K̃u = Ku +
B2u0/2.

At low temperatures T � TN (TN is the Neel temperature)
ferromagnetic and antiferromagnetic vectors satisfy the rela-
tions

l2 + m2 = 1
(10)

l · m = 0.

In relatively weak magnetic fields H � Hex (Hex ≈ 107Oe
in BFO) these additional conditions allow the exclusion of the
vector m from the minimization problem, and the free energy
density F can be represented in terms of the unit vector l and
its derivatives.

F = −χ⊥
2

(
H2

eff − (Heff · l)2
) + Fex + Fan + FL + Fm.elas,

(11)
where Heff = M0h + D[l × ep], ep = (0,0,1) is the unit
vector of spontaneous polarization P oriented along the
principal crystal axis, h = H/M0.

Hereinafter we transform to the reduced parameters
κc,κm,κd determined as

κc = 4A

β2

(
−K̃u + χ⊥H 2

D

2

)
κm = χ⊥M2

0
2A

β2

κd = χ⊥H 2
D

2A

β2
,

where HD = D is the Dzyaloshinskii field, and χ⊥ is the
transversal magnetic susceptibility of the antiferromagnet.

In the calculations carried out below we have chosen
parameter values characteristic of the multiferroics BFO.
Literature values of the exchange stiffness A are in the
range of (2 − 4) × 10−7erg/cm.9,26,50 Below we have taken
A = 3 × 10−7erg/cm. The magnetization M0 on various
estimates2,7,20,51 is in the range (2 − 5) emu/cm3 (films doped
by rare-earth ions have larger values of magnetization), we
put M0 = 5 emu/cm3. The Dzyaloshinskii-Moriya interaction
field, estimated from measurements of electron paramagnetic
resonance,52 is Hd = 1.2 × 105Oe. Transverse susceptibility
of an antiferromagnet by Ref. 53 equals χ⊥ = 4 × 10−5. Mag-
netostriction and magnetic anisotropy of the perovskitelike
antiferromagnets varies rather widely.50,54,55 If we assume
that the variation of the induced anisotropy in BFO is in the
range 104erg/cm3 < |K̃u| < 106erg/cm3, then it corresponds
to a change of the normalized parameter κc in the range
−5 < |κc| < 5.

The reduced free energy density E = 2AF/β2 in terms of
the variables κc, κd , κm, x̃ = xβ/2A acquires the form

E = 1

2

[(
∂lx

∂x̃

)2

+
(

∂ly

∂x̃

)2

+
(

∂lz

∂x̃

)2

+
(

∂lx

∂ỹ

)2

+
(

∂ly

∂ỹ

)2

+
(

∂lz

∂ỹ

)2
]

+
(

lx
∂(l · ep)

∂x̃
+ ly

∂(l · ep)

∂ỹ
− (l · ep)

∂lx

∂x̃
− (l · ep)

∂ly

∂ỹ

)
+ 1

2
κcl

2
z + 1

2
κm(h · l)2 − √

κmκd h[ep × l]. (12)
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Due to the identity |l2| = 1 the vector l may be determined
by the two coordinates qi = θ,ϕ (i = 1,2), which are the
polar and the azimuthal angles in spherical coordinate frame.
The polar angle is measured from the equilibrium position of
antiferromagnetic vector l0, the azimuthal angle is measured
from its projection on the orthogonal plane.

In this paper we restrict ourselves to the investigation
of one-dimensional magnetic structures depending on the x

coordinate. In this assumption the equation δ� = 0 results in
the Euler-Lagrange equation

− ∂

∂x

∂F

∂q ′
i

+ ∂F

∂qi

= 0, (13)

where q ′
i = ∂qi/∂x, i = 1,2.

Let q0α(x) be a set of magnetic structures determined by
Eq. (13) where α enumerates a set of solutions of Eq. (13) (α =
1,2,3, . . .). The condition of stability δ2� > 0 of magnetic
structure q0α arrives at the Sturm-Liouville eigenvalue problem

L̂ij (q0α)δqαj = ραiλαδqαi, (14)

where the functions δqαi = qi − q0αi(x), the differential oper-
ator L̂ij and the weight functions ραi are fully determined by
the second variational derivative δ2F

δqiδqj
. The condition δ2� > 0

requires that all λα > 0. The corresponding differential equa-
tions will be given below when the specific situations are be
considered.

Equation (14) determines a set of the eigenvalues λα and
the eigenfunctions δqαi for the every solution q0α . Parameters
λα and eigenfunctions δqαi have a simple physical sense. The
eigenfunctions δqαi can be considered as amplitude functions
of low energy spin waves or magnons. The eigenvalues λα are
proportional to the square of magnon frequencies ω related to
the q0α-magnetic structure, namely λα = χ⊥ω2

α(k)/γ 2, where
k is the wave number of magnons, γ is the gyromagnetic ratio.
In the following we will analyze the magnon frequencies ω2

α(k)
rather than the eigenvalues λα .

For numerical calculations, we will also use the Cartesian
representation of the antiferromagnetic vector l = (lx,ly,lz).
In this case Eq. (13) acquires the form

δF (l)
δl

= λ0l0, (15)

where λ0 is undetermined Lagrange multiplier. Equation (15)
can be written as follows

δF (l0)

δl
× l0 = 0 (16)

In its turn Eq. (14) yields∑
j=x,y,z

(
δF (l)
δliδlj

− λ0δij

)
δljα = λαδliα (17)

Note that conditions of transitions between magnetic phases
qα can be described in terms of (14). Eigenvalues λα change
with the change of control parameters such as magnetic field or
intrinsic magnetic anisotropy. In the case when the phase q0α

loses its stability the parameter λα changes its sign. In other
words, one of numbers λα becomes equal to zero approaching
to the critical point of phase transitions. In accordance with
Landau theory this circumstance determines the soft mode

of antiferromagnetic vector oscillations. The condition of the
phase q0α loss of stability is determined by the vanishing of
minimal eigenvalues λα . Later on we consider phase diagrams
of magnetoelectric antiferromagnet in terms of H and κc.

The intrinsic magnetic anisotropy of BFO multiferroics
has a complicated character depending on the variations of
temperature, doping of rare-earth ions, stresses arising during
film growth, and lattice mismatch.20,42–45,53,56–58 Magnetic
anisotropy of BFO-like crystals is governed by several
competing mechanisms including the single-ion anisotropy,
anisotropic superexchange coupling, and magnetodipole inter-
actions. In its turn the single-ion magnetic anisotropy can be
divided into several contributions attributed to the symmetry of
magnetic ions surrounding; the exchange coupling mechanism
includes the antisymmetrical Dzyaloshinskii-Morya exchange
along with other relativistic exchange contributions of qua-
sidipolar and nondipolar types. An overall dependence of
magnetic anisotropy of the crystal on internal and external
parameters, e.g., concentration of rare earth ions and temper-
ature variations, is determined by the corresponding behavior
of its constituting components.20,56

In magnetic films magnitude and nature of the magnetic
anisotropy may differ from those in a bulk crystal, which
may lead to differences in the states of their spin subsystems.
Magnetic anisotropy of the film depends on a number of
factors: the effect of roughness, shape of a sample, dipole-
dipolar interactions, etc.59,60 One of the important mechanisms
of change in the magnetic anisotropy of the films is the
magnetostriction arising due to the presence of elastic stresses
caused by the mismatch of the lattice parameters of the film
and the substrate. In the case of (111)-oriented BFO films the
magnetoelastic energy density attributed to magnetostriction
effect can be written in the form

Fm.elas. = B1
(
l′2x u′2

xx + l′2y u′2
yy + l′2z u′2

zz

)
+B2

(
l′xl

′
yu

′
xy + l′xl

′
zu

′
xz + l′yl

′
zu

′
yz

)
, (18)

where B1,B2 are the magnetoelastic coupling coefficients
accessible from experimental determination54,61 or ab initio
calculations,62 l′i are the components of antiferromagnetic
vector, u′

ik are the components of deformation tensor taken in
the Cartesian coordinate frame X ′ related to crystallographic
axes [100], [010], [001]. One can show that in the coordinate
system X connected with the principal crystal axis C3‖〈111〉
the magnetoelastic energy density given by (18) causes an
additional contribution to the magnetic anisotropy of the form

Fm.elas. = −B2u0

2
l2
z . (19)

In view of the above consideration it is interesting to
discuss the change of the ground state of the antiferromagnetic
multiferroics by varying the energy of the magnetic anisotropy
and exchange parameters. We treat BFO multiferroics placed
in magnetic field applied along the principal crystal axis and
in the perpendicular direction. In the latter case we investigate
the influence of variation of the direction of magnetic field
in the basal plane of a sample relative to the direction of
space modulation of antiferromagnetic cycloid. Hereinafter
we consider homogeneous magnetic states, incommensurate
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structures, and related phase diagrams for each orientation of
the magnetic field.

III. MAGNETIC FIELD H‖O Z APPLIED
PERPENDICULAR TO THE FILM PLANE

Let us consider the case H‖O Z choosing Cartesian
coordinate frame connected with the principal crystal axis
C3‖〈111〉 : O X‖[11̄0],OY‖[112̄],O Z‖[111].

A. Homogeneous magnetic states

In the case H‖O Z the uniform part of the free energy
density (12) is represented as

E0 = 1
2

(
κc + κmh2

)
l2
z = − 1

2

(
κc + κmh2

)(
l2
x + l2

y

)
. (20)

One can see that the magnetic field applied along the principal
crystal axis renormalizes the constant of magnetocrystalline
anisotropy. Dependent on a sign of effective anisotropy
constant κeff = κc + κmh2 a homogeneous magnetic state of
the easy plane |ly | = 1 or the easy axis |lz| = 1 type is
realized. As follows from (20) the phase |lz| = 1 exists when
h >

√−κc/κm. The exchange and the nonuniform magneto-
electric interactions result in the appearance of inhomogeneous
magnetic phases and the shift of boundaries of homogeneous
phase transitions.

To analyze the stability of homogeneous state it is necessary
to solve the eigenvalue problem and to find the spectrum of
natural oscillation frequencies ω(k). For the definiteness we
consider nonuniform perturbation of the homogeneous state
|ly | = 1. In accordance with (14) the stability condition defin-
ing natural frequencies of antiferromagnetic vector oscillations
is determined by

(ω2 − k2)(−ω2 + k2 − (κc + κmh2)) = 4k2
x, (21)

where k is the wave vector of spin waves, kx is the x projection
of vector k indicating the direction of spiral propagation.

Similar consideration can be applied for the analysis of the
stability of any other easy plane state, in particular |lx | = 1.
However instability in the last case develops in OY direction.

Critical points of transition from homogeneous magnetic
state into modulated structure associated with soft mode of
oscillations (which is attained at zero values of minimum
frequency) are determined from the dispersion equation (21).
Equation (21) yields the saddle dependence of the smallest of
natural frequencies’ oscillation branches with two minimums
in the kx direction. The critical field of the transition into
the homogeneous state is determined by the requirement of
the vanishing of minimum frequency when the minimum is
attained only at one (e.g., positive) value k = kx . Following
(21) one can define the critical field of the transition from
the homogeneous magnetic state into the space-modulated
structure.

hc =
√

4 − κc

κm

. (22)

The curve representing dependence κc(h) determined by (22)
is shown on the phase diagram (Fig. 4) as line 3.

B. Incommensurate structures

To consider the structure and properties of inhomogeneous
magnetic states we turn to the polar coordinate system with the
polar axis aligned along the crystal principal axis and rewrite
energy density (12) as

E = 1

2
[(∇θ )2 + sin2 θ (∇ϕ)2] −

[
cos ϕ

∂θ

∂x̃
+ sin ϕ

∂θ

∂ỹ

]
+ sin θ cos θ

(
sin ϕ

∂ϕ

∂x̃
− cos ϕ

∂ϕ

∂ỹ

)
+1

2
(κc + κmh2) cos2 θ. (23)

Corresponding Euler-Lagrange equations are

�θ + 2 sin2 θ

(
sin ϕ

∂ϕ

∂x̃
− cos ϕ

∂ϕ

∂ỹ

)
+ sin θ cos θ [(κc + κmh2) − (∇ϕ)2] = 0, (24a)

∇(sin2 θ∇ϕ) + 2 sin2 θ

(
cos ϕ

∂θ

∂ỹ
− sin ϕ

∂θ

∂x̃

)
= 0.

(24b)

In a general case the system of equations (24) allows a set
of periodical solutions describing possible space modulated
structures in multiferroics film. Periodical solutions differ
from each other by space structure (magnetic configuration),
areas of stability dependent on values of magnetic anisotropy
constant, mismatch parameter, magnitude, and direction of
applied magnetic field.

To consider conceivable periodical structures let us start
from some simple approximations. In the case when magnetic
anisotropy and magnetic field are absent, Eq. (24) has the solu-
tion θ0 = kxx + kyy = (k · r), ϕ = arctan(ky/kx) describing
harmonic cycloid. In the case when only the uniaxial magnetic
anisotropy is taken into account the anharmonical solution of
(24) described by elliptical functions is found as

sin θ = sn

(√
κeff

ν
x̃; ν

)
, (25)

where sn(x; k) is the Jacobi elliptical function, κeff = κc +
κmh2, ν is the elliptical modulus 0 < ν < 1 determined from
the minimum of averaged energy

〈F 〉 = κeff

ν2

E(ν)

K(ν)
− π

√
κeff

2νK(ν)
− κeff

2ν2
,

where K(ν), E(ν) are complete elliptical integrals of the
first and the second kind, ϕ is supposed to be constant.
The other solution differing from (25) by the sign has not
been considered since it is energetically disadvantageous. The
theoretical analysis of the given above equations has been done
for ferromagnet and antiferromagnet in works.30,32

A set of periodical solutions in magnetoelectric antiferro-
magnet belonging to the space symmetry group R3c = C6

3V

has been considered in Ref. 34 dependent on the constant of
uniaxial magnetic anisotropy. It has been shown therein that the
new type of space-modulated structure, which is characterized
by the conical distribution of antiferromagnetic vector arises
along with the plane modulated structure. The first one is
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FIG. 2. Dependence of the period of Cy structure on the parameter
κc. Inset: dependence θ (x). Solid curve corresponds to κc = −2.4,
dashed curve corresponds to κc = −2, dotted curve corresponds to
κc = −1.

denoted here as the cone cycloid CC state, which means that
spins rotate a cone around the OY axis and the second one is
denoted as the plane cycloid Cy state, which points out that
Z O X is the plane of spin rotation. Besides that it should be
noted that the plane modulated structure Cy slips into the CC
phase in the case when hard plane anisotropy attains the critical
value corresponding to κcrit1 = 2.015.

As was shown at the beginning magnetic field applied in
the [111] direction renormalizes the constant of magnetic
anisotropy so spin distribution in the cycloid in this case
can be also described in a framework of Ref. 34 by taking
into account the substitution κ → κh

eff = κc + κmh2. It is seen
from Eq. (25) that the parameter ν defining spin arrangement
in the cycloid can change in the interval 0 < ν < 1, which
is accompanied with the subsequent change of the effective
anisotropy constant 0 < κh

eff = κc + κmh2 < κcrit. By taking
into account the both relations one can find the critical field
required for the destruction of space-modulated structure
following the condition

hc <

√
κcrit − κc

κm

.

The plot illustrating the dependence of the period of
incommensurate structure � = 4K(ν)ν/

√
κh

eff on the effective
constant of magnetic anisotropy κc is represented in Fig. 2.
It is seen that the spiral period changes with the varying of
effective magnetic anisotropy. The period of spiral increases
and tends to infinity at the critical value of κc corresponding
to κcrit2 = −2.467. In this case the spiral state disappears,
domain walls diverge to infinity, and the transition into the
homogeneous easy axis state takes place. With κc decreasing
the spiral length shrinks, but when κc changes its sign the spiral
period increases again with the growth of modulus |κc|. When
κc attains values corresponding to κcrit1 = 2.015 domains
have no time to be formed and the commensurate structure
transforms into conical state. With further change of effective
magnetic anisotropy the cone converges to homogeneous easy
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FIG. 3. Spin modulated structure, the scan of projections l(x) =
(lx(x),ly(x),lz(x)) for the left symmetry CC solutions, solid line
corresponds to the dependence lx(x), dashed line corresponds to the
dependence ly(x), dotted line corresponds to the dependence lz(x),
Hz = 173 kOe, κc = 0.556.

plane state at κcrit3 = 4 (see34). The scan of l projections in
CC phase is shown in Fig. 3. As it is seen in Fig. 3 the
antiferromagnetic vector goes out from the rotational plane
in the CC phase.

C. Phase diagram H‖C3

The considered analysis together with the computer simu-
lation allow us to reveal a set of magnetic phases realizing
in multiferroics film in the magnetic field oriented in the
[111] direction coinciding with the principal crystal axis C3.
The obtained results are presented as the phase diagram or
the map of incommensurate states stability shown in Fig. 4.
The following four types of magnetic states are distinguished:
homogeneous magnetic states of easy plane type |ly | = 1
further on denoted as EP phase and easy axis type |lz| = 1
denoted as EA phase, two types of incommensurate structures:
the plane cycloid Cy and the conical cycloid CC being de-
scribed by the corresponding solutions of the Euler-Lagrange

|H
|||

 (
kO

e)

κc

0

100

200

300

-4 -3 -2 -1 0 1 2 3 4

Cy

CC

1
2

3

4

EA

EP

FIG. 4. (Color online) Phase diagram of a (111)-oriented BFO
film, H‖C3. Line 1 corresponds to the transition from the plane
cycloid Cy phase into the easy axis EA phase going over the phase
domains growth, line 2 corresponds to the loss of EA phase stability,
line 3 corresponds to the second-order phase transition between the
Cy and the cone cycloid CC phases, line 4 corresponds to the second-
order transition between CC and easy plane EP phases, the area
restricted by lines 1, 2 is the metastable area of EA and Cy phases
coexistence.
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equations (24). The Cy solution corresponds to the cycloid
developing in Z O X plane, the z and x components of anti-
ferromagnetic vector of Cy phase are described by elliptical
Jacobi functions, the y component of antiferromagnetic vector
in this state is equal to zero. The plane of spin rotation in
CC phase is different from the Z O X basal plane, all the
components of antiferromagnetic vector of CC solution are
different from zero. Magnetic states continuously transform
into each other. The plane cycloid Cy continuously transforms
into the conical cycloid CC with the right symmetry of spin
rotation, the conical cycloid CC transforms into the easy
plane |ly | = 1 state when the magnitude of magnetic field
and the magnetic anisotropy constant enhance. It should be
noted here that the transition from the modulated Cy state
into the homogeneous easy axis EA phase |lz| = 1 goes
over the nucleation of domain structure, the transition from
plane-polarized Cy phase into the conical space-modulated
structure CC and the transition into homogeneous easy plane
state EP occur along the second-order transition line.

IV. MAGNETIC FIELD H‖O X APPLIED
IN THE FILM PLANE

A. Homogeneous magnetic states

Consider the magnetic field applied in the H‖O X‖[11̄0]
direction. We start from the determination of possible homo-
geneous magnetic phases, which can be found out from the
uniform part of the free energy density

E0 = 1

2
κcl

2
z + 1

2
κmh2l2

x + √
κdκmhly. (26)

As follows from (26) the symmetrical phase l = (0, − 1,0)
satisfies the minimum energy condition at positive values
of hx > 0 at κc > −√

κdκmh. In the case κc < −√
κdκmh

the tilted phase l0 = (0, − sin θ0, cos θ0), where sin θ0 =√
κdκmh/|κc| possessing the energy E = κdκmh2/2κc arises.

Therefore the transition between symmetrical and tilted phases
occurs at κc = −√

κdκmh in the case when nonuniform
contributions to the free energy are neglected.

To determine the boundary of the phase transition from the
symmetrical easy plane phase l0 = (0, − 1,0) into the space-
modulated structure we refer to analysis of the stability of
antiferromagnetic spin structure existing in the space uniform
state by means of (14) resulting in the equation

(ω2 − h
√

κdκm − κc − k2)

× (ω2 − h
√

κdκm − κmh2 − k2) = 4k2
x (27)

allowing us to determine soft modes of spin excitations
indicating to a possibility of phase transition. The soft mode
of the transition corresponds to zero frequency of spin
oscillations. As in the case considered in Sec. III A one can
find that (27) yields the saddle dependence of the smallest of
natural frequencies oscillation branches with two minimums
in kx direction. In the case of soft oscillation mode when the
frequency tends to zero the following conditions are to be
satisfied:

k4
x + k2

x(κc + 2h
√

κdκm + κmh2 − 4)

+ (κc + h
√

κdκm)(κmh2 + h
√

κdκm) = 0. (28)

Here kx is the x projection of magnon wave vector k indicating
the direction of spiral propagation. The condition of merging
two wave number values corresponds to the critical magnetic
field value. Therefore the critical field of the transition from
the homogeneous magnetic state into the space-modulated
structure is defined as the minimum positive root of the
equation

(κc + 2h
√

κdκm + κmh2 − 4)2

− 4(κc + h
√

κdκm)(κmh2 + h
√

κdκm) = 0. (29)

Equation (29) determines the line of the transition from the
symmetrical phase into the Cy-modulated structure corre-
sponding to curve 1 on the phase diagram shown in Fig. 10.

The condition of the transition from the tilted magnetic
phase into the incommensurate structure according to (14) is
of the form

(ω2 − h
√

κdκm sin θ0 + κc cos 2θ0 − k2)

×(ω2 − h
√

κdκm sin θ0 + κc cos2 θ0 − κmh2 − k2)

= 4k2
x sin2 θ, (30)

where θ0 determines the polar angle of antiferromagnetic
vector canting in the tilted phase. By taking into account
that sin θ0 = −√

κdκmh/κc when 0 < h < −κc/
√

κdκmh we
reduce (30) to(

ω2 + κc − h2κdκm

κc

− k2

)
×(

ω2 + κc − κmh2 − k2
) = 4k2

x

h2κdκm

κ2
c

. (31)

Proceeding in a similar way as in the previously considered
case we find from (31) that the critical field of the transition is
determined by the formula

hc = −4
κc/

√
κm√

2κ2
c + 8 + 8κc − κcκd − 16κd/κc − κ3

c /κd

.

(32)

B. Incommensurate structures

The system of Euler-Lagrange equations determining pos-
sible incommensurate phases for the field H‖O X is written
in the form

�θ + 2 sin2 θ

(
sin ϕ

∂ϕ

∂x̃
− cos ϕ

∂ϕ

∂ỹ

)
+ sin θ cos θ (κc − (∇ϕ)2 − κmh2 cos2 ϕ)

−√
κdκmh cos θ sin ϕ = 0, (33a)

∇(sin2 θ∇ϕ)

+ 2 sin2 θ

(
cos ϕ

∂θ

∂ỹ
− sin ϕ

∂θ

∂x̃

)
+ κmh2 sin2 θ sin ϕ cos ϕ − √

κdκmh sin θ cos ϕ = 0.

(33b)

In the absence of the magnetic field the only plane cycloid Cy
state is realized. Numerical analysis of Eq. (33) shows that
cone cycloids CC+, CC− differing by the direction of spin
rotation appear when magnetic field is applied. For example
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FIG. 5. Space distribution of the antiferromagnetic vector in
the cone cycloid CC+, solid line corresponds to the dependence
lx(x), dashed line corresponds to the dependence ly(x), dotted line
corresponds to the dependence lz(x), Hx = −70 kOe, κc = 0.556,

κd = 0.556.

the spatial dependencies of vector l projections in the CC+
state are presented in Fig. 5. The both CC+ and CC− states
continuously arise from the Cy phase when the magnetic field
is applied and continuously transform into the homogeneous
easy plane EP state when the magnetic field grows as shown
in Fig. 6.

As can be seen from plots in Fig. 6 and in the inset to
this figure transitions between CC+ and CC− structures can
be of the first and the second type, dependent on the value
of the reduced anisotropy constant κc. In the area κc < 2.015
the transition between conical structures CC+ and CC− is of
nonhysteretic character, in the area κc > 2.015 the transition
between conical modulated structures becomes the first-order
phase transition accompanied with hysteresis. Such change of
the character of the phase transition can be caused as by the
change in the uniaxial magnetic anisotropy in films and also
by temperature variations of magnetic parameters in single
crystals.

Due to the axial symmetry the space modulation in the spin
subsystem can develop in any direction in the plane of the
film in the absence of magnetic field. We have considered the
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0
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1
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>
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FIG. 6. The dependence of the space-averaged projection of the
antiferromagnetic vector < ly > in the cone cycloid CC+ on magnetic
field starting from the initial plane cycloid Cy state, in the CC+ state
for the fixed value of κc = 0.556, κd = 0.556, κm = 2.28 × 10−5.
Inset: the dependence of the space-averaged projection of the
antiferromagnetic vector < ly > on the magnetic field calculated for
κc = 2.356.

case when the magnetic field is applied along the direction of
space modulation of antiferromagnetic structure. However the
situation when the magnetic field is applied at an angle to the
direction of space modulation is possible as well. Below we
consider the limiting case corresponding to the magnetic field
oriented in the direction transverse to the direction of space
modulation.

V. MAGNETIC FIELD H‖OY APPLIED
IN THE FILM PLANE

Consider now magnetic phases and phase transitions in
BFO film subjected to the magnetic field applied in the
H‖OY‖[112̄] direction.

A. Homogeneous magnetic states

As in the previous cases we begin with the exploration of
homogeneous magnetic phases. The uniform part of the free
energy density (12) acquires the form

E0 = 1
2κcl

2
z + 1

2κmh2l2
y − √

κdκmhlx. (34)

We consider positive values of hy > 0: in the case κc > 0
the minimum of the free energy density (34) corresponds to
the symmetrical easy plane phase l = (1,0,0) (EP), in the case
κc < 0 at |κc| >

√
κdκm the tilted phase l = (sin θ0,0, cos θ0),

sin θ0 = √
κdκmh/|κc| (T) arises.

The analysis of the stability of the symmetrical phase (EP)
and the tilted phase (T) are quite similar to the case H‖O X
so for this situation we refer to Sec. IV A. The action of the
magnetic field applied in O X , OY directions in the basal plane
due to the axial C3 symmetry should be equivalent, however
the selected direction of the spiral propagation breaks the
symmetry. In the case H‖O X the plane cycloid Cy develops
in O X direction, in the case H‖OY the modulated in the plane
Z OY Cy structure propagates in OY direction.

Thus we conclude that the critical magnetic field governing
the stability of the symmetrical EP phase is determined by
Eq. (29) deduced from the equation identical to (28), the
transition from the T phase into the Cy structure is described by
(32) following from the equation analogous to (31), in which
kx projections of the vector k are substituted by ky projections.

B. Incommensurate structures

Turning next to inhomogeneous spin structures arising in
the magnetic field h = (0,hy,0), we come back to the system
of Euler-Lagrange equations, which in the considered case is
represented in the form

�θ + 2 sin2 θ

(
sin ϕ

∂ϕ

∂x̃
− cos ϕ

∂ϕ

∂ỹ

)
+ sin θ cos θ (κc − (∇ϕ)2 − κmh2 sin2 ϕ)

+√
κdκmh cos θ cos ϕ = 0, (35a)

∇(sin2 θ∇ϕ) + 2 sin2 θ

(
cos ϕ

∂θ

∂ỹ
− sin ϕ

∂θ

∂x̃

)
− κmh2 sin2 θ sin ϕ cos ϕ − √

κdκmh sin θ sin ϕ = 0.

(35b)
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Periodical solutions of (35) equations describe incommen-
surate spiral structures differing by magnetic configurations
determined by spatial dependencies of θ,ϕ variables. Let us
consider solutions with the determined plane of the rotation
whose position is found at the following restriction

∂θ

∂ỹ
= 0, (36a)

sin ϕ = 0. (36b)

Equation (36) implies spins to be rotated in the ZOX plane.
The law of the spin distribution in the plane cycloid Cy is
derived from the equation(

∂θ

∂x̃

)2

+ κc sin2 θ + 2
√

κdκmh sin θ = c. (37)

By integrating Eq. (37) one can obtain

∂θ

∂x̃
= ±

√
c − κc sin2 θ − 2

√
κdκmh sin θ, (38)

which can be also represented as

sin θ = γ sn
(

x̃
a
,ν

) + 1

sn
(

x̃
a
,ν

) + γ
, (39)

where

a =
√

γ 2 − 1

cγ 2 − 2
√

κdκmhγ − κc

ν =
√

c − 2γ
√

κmκdh − γ 2κc

cγ 2 − 2γ
√

κmκdh − κc

cγ = 2
√

κdκmh(γ 2 + 1) + 2γ κc.

The integration constant c is determined from the minimum
condition of the Cy-phase energy

E = 1

2

(
∂θ

∂x̃

)2

− ∂θ

∂x̃
− 1

2
κc sin2 θ − √

κdκmh sin θ (40)

averaged over a unit volume by use of (37)

〈E〉 = 1

�(c)

∫ 2π

0

√
c − κc sin2 θ − 2

√
κdκmh sin θdθ

− 2π

�(c)
− 1

2
c, (41)

where

� =
∫ 2π

0

dθ√
c − κc sin2 θ − 2

√
κdκmh sin θ

(42)

is the spiral period.
We exclude the solution (38) with the negative sign since it

is energetically disadvantageous. Minimization of the function
(41) with respect to an unknown parameter c d 〈E〉 /dc = 0
leads to the condition∫ 2π

0

√
c − κc sin2 θ − 2

√
κdκmh sin θdθ = 2π, (43)
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FIG. 7. Space distribution of antiferromagnetic vector in the Cy
state, solid line corresponds to the dependence lx(x), dashed line
corresponds to the dependence ly(x), dotted line corresponds to the
dependence lz(x), Hy = 70 kOe, κc = κd = 0.556.

which allows us to calculate the averaged energy of Cy phase
〈E〉 = −c/2. Formula (39) together with the condition (43)
allows determining cycloidal structure. The scan of cycloid
corresponding to κc = 0.556, κd = 0.556 at H = 70 kOe is
represented in Fig. 7. The field dependence of the cycloid
period calculated by the use of (42) for κc = 0.556 is shown
in Fig. 8. It is seen that there is the critical field, the cycloid
period increases without limit approaching to the critical field
value. The unlimited growth of the period of cycloidal struc-
ture corresponds to the transition into space-homogeneous
state.

One can estimate the critical points of the transition into
homogeneous tilted and symmetrical phases κc = κc(h) by
comparing the energies of corresponding states. Let us restrict
ourselves with negative values of uniaxial anisotropy constant
since as was shown in Sec. IV A the tilted phase realizes in
the area |κc| >

√
κdκmh, κc < 0, d = √

κdκmh. As was shown
in the very beginning in the case d < −κc the tilted phase
possessing with the energy E = d2/2κc is stable. It yields
c = −d2/κc and the equation determining the critical line of
transition is represented as follows:∫ 2π

0

√
−d2

κc

− κc sin2 θ − 2d sin θdθ = 2π. (44)
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FIG. 8. Dependence of the period of CC state on magnetic field,
κc = 0.556. The period increases with the growth of magnetic field
tending to the infinity at the critical field corresponding to the
transition into homogeneous easy plane state.
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FIG. 9. Dependence of the average energy density of the structure
on the magnetic field, solid line corresponds to the homogeneous EP
phase, dashed line corresponds to the plane cycloid Cy, dotted line
corresponds to the cone cycloid CC, κc = 0.556.

In the case d > −κc the symmetrical phase θ = π/2 pos-
sessing with the energy E = −κc/2 − d occurs, c = 2d + κc

and the line of the transition from the Cy-modulated structure
into the symmetrical phase is found as∫ 2π

0

√
2d (1 − sin θ ) + κc(1 − sin2 θ )dθ = 2π. (45)

However, the conditions of the transition of the considered
plane cycloidal structure into homogeneous state are not phys-
ically meaningful. The homogeneous antiferromagnetic state
can not be considered as the ground state on lines determined
by (44), (45) where the period of cycloidal structure grows
without limit. In the vicinity of these lines the ground state
is represented by the space cycloid of conical type modulated
along the direction of the applied magnetic field. In this con-
nection we made numerical analysis of the plane and the cone
cycloid energies dependent on the variations of magnetic field
at the different values of reduced anisotropy parameter. The
simulation shows that at low magnetic fields in the restricted
range of anisotropy energy values the ground state corresponds
to the plane cycloid modulated in the direction perpendicular to
applied magnetic field. With magnetic field enhancement
the energy of the cone cycloid modulated in the direction
transverse to the direction of magnetic field approaches
to the energy of the plane cycloid modulated along the
magnetic field (Fig. 9). At the critical field value the energy
of the plane cycloid becomes larger than the energy of
the cone cycloid modulated in the direction perpendicular
to the applied magnetic field. These values determine the
line of the first-order phase transition, which is attained
before reaching the critical values of magnetic field when the
unlimited growth of the plane cycloid period occurs. The line of
this transition is shown by lines 6, 7, 7’ on the diagram Fig. 10.

C. Phase diagram H⊥C3

We summarize the results of the analysis of homogeneous
and incommensurate magnetic phases for the considered
antiferromagnetic system in BFO film with Hamiltonian (12)
for the case of magnetic field applied perpendicular to the
principal crystal axis H⊥C3.

H
⊥
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FIG. 10. (Color online) Phase diagram of a (111)-oriented BFO
film, H⊥C3. Lines 1, 1’ correspond to the transition from cone
cycloids CC+, CC− into tilted phases T+, T−, lines 2, 2’ restrict the
area of homogeneous phases EP+, EP− stability, lines 3, 3’ correspond
to the second-order transition between easy plane states EP+, EP−
and tilted phases T+, T−, lines 4, 4’ are the lines of the loss of stability
of cone cycloids CC−, CC+, line 5 corresponds to the line of the loss
of stability of T+ and T− phases, lines 6, 7, 7’ correspond to the
first-order transition between Cy and CC+, CC− phases.

For the definiteness we consider the diagram corresponding
to the magnetic field oriented along OY‖[112̄] axis, the similar
analysis is relevant for the magnetic field oriented in the
perpendicular direction O X‖[11̄0]. The areas of the existence
and the stability of possible homogeneous (tilted phases
T+, T−, easy plane phases EP+, EP−) and incommensurate
magnetic structures (plane cycloid Cy, conical cycloids CC+,
CC−) are distinguished on the diagram. In the phase T+ ly > 0
and in the phase T− ly < 0. The phases EP+ (H > 0) and
EP− (H < 0) have the oppositely directed antiferromagnetic
vectors in the film plane perpendicular to magnetic field.
The conical phases CC+ and CC− differ by the sign of
antiferromagnetic vector projection on the perpendicular to
cycloid modulation direction OY . The area of the ground states
T+ and T− existence is restricted by lines 1, 3 and 1’, 3’. Lines
3, 3’, and 5 are lines of the loss of stability of these ground
states. Lines 2 and 3 as well as lines 2’ and 3’ are lines of the
second-order phase transition between easy plane EP+, EP−
phases and space-modulated structures of the cone type CC+,
CC−. They restrict the areas of the stability of homogeneous
symmetrical easy plane phases EP+ and EP−. Lines 6, 7, 7’
are lines of the first-order phase transition between the plane
cycloidal space-modulated structure Cy and cone cycloidal
structures CC+, CC−. The direction of space modulation is
perpendicular to the orientation of the applied magnetic field
in the considered Cy structure and parallel to the magnetic field
in CC+, CC− structures. In the area situated inside these lines
the ground state of multiferroics corresponds to Cy structure,
in the outside area the ground state corresponds to CC+, CC−
structures. Lines 4 and 4’ are lines of the loss of the stability
of the cone cycloidal structure with the opposite projection of
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antiferromagnetic vector on the film plane comparing to the
ground space-modulated state. They restrict metastable areas
of the corresponding phases when the magnetic field changes
its sign. In the area restricted by these lines there is the line
of the first-order phase transition delimiting CC+ and CC−
phases, which begins and ends with the tricritical points of the
first-order liquid-vapor-like transition.

It should be noted here that dashed lines 1, 1’ and 7, 7’ are
of a qualitative character, which is attributed to the difficulties
of their precise definition in framework of numerical analysis.
On the lines 1, 1’ unlimited growth of the period of space-
modulated structure occurs. The transition from the cone
cycloids CC+, CC− into the homogeneous phases T+, T−
goes over the unlimited expansion of the tilted phase domain.
In the vicinity of the first-order transition lines 6, 7, 7’ the
metastable areas of the plane cycloid Cy and the cone cycloids
CC+, CC− exist, however to determine the boundaries of their
existence an additional analysis is required.

VI. CONCLUSION

Our findings show that the structure and types of incom-
mensurate phases in BFO-like multiferroics, the character of
phase transitions, and the phase diagrams substantially depend
on the external magnetic field and the magnetic anisotropy.
We stress as well the role of the strain induced magnetic
anisotropy. The primary sequence of phases: homogeneous
magnetic state, incommensurate phase, domain structure is
driven by the constant of magnetic anisotropy, which depends
on a number of factors, such as temperature, rare-earth ion
doping, and magnetostriction appearing as a result of the lattice
mismatch between film and substrate.

It has been shown that cycloidal states in BFO multiferroics
can be transformed into the transverse conical spiral structure
under the action of uniaxial stresses, driving magnetic field or

temperature variations. Phase diagrams or maps of magnetic
phases determining the ground state of multiferroics have been
constructed for the magnetic fields applied along the principle
crystal axis and in the basal crystal plane. These diagrams can
be used as practical tools to interpret experimental data, for
strain engineering design of (111)-oriented BFO films with
compressive [corresponds to the left part of the diagram (κc <

0)] and tensile [corresponds to the right part of the diagram
(κc > 0)] deformations.

Another important aspect of the performed research is the
consideration of the critical magnetic field of the transition into
the homogeneous magnetic state. It is known that the magnetic
field can suppress the cycloid but the required destruction
value of the field is too high in bulk materials, which
makes them difficult to use. We have shown that in epitaxial
multiferroics films the destruction field can be lowered due
to the magnetoelastic effect. In the case when magnetoelastic
contribution is not sufficient the cycloid can be suppressed
by the magnetic field whose critical value is lower than the
one in bulk materials. The critical magnetic field depends
on the direction of the applied magnetic field; the given
results show that its value becomes lower in the case when
the magnetic field is applied in the film plane. Our approach
gives an opportunity to explain experimental observations of
antiferromagnetic restructuring of the BFO films not only with
a magnetic field, but also with an electric field and with the
change of the temperature in a variable range.40,41
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