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Experiments in the antiferromagnetic phase of a quasi-two-dimensional S = 1/2 quasi-square-lattice
antiferromagnet Cu(pz)2(ClO4)2 reveal a biaxial type of anisotropy, instead of the easy-plane one considered
before. The weak in-plane anisotropy, found by means of electron spin-resonance spectroscopy and magnetization
measurements, is about an order of magnitude weaker than the off-plane anisotropy. The weak in-plane anisotropy
results in a spin-flop phase transition for the magnetic field aligned along the easy axis, and, thereby, in a bicritical
point on the phase diagram. A remarkable feature of the weak in-plane anisotropy is the abrupt change of its sign
at the spin-flop point. This anisotropy switching disappears at the tilting of the magnetic field to the easy axis
by the angle of 10◦ within the plane. The nature of the abrupt anisotropy reversal remains unclear. The phase
diagram is characterized by the increase of the ordering temperature TN in the magnetic field used, except for a
dip near the bicritical point.
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I. INTRODUCTION

The Heisenberg S = 1/2 antiferromagnet on a square
lattice (HSLAF) is a popular model of low-dimensional
magnetism.1 An ideal HSLAF has no long-range order except
at T = 0, where a Néel-type ground state with 40% reduction
of the ordered spin component should be realized.2 In a real
quasi-two-dimensional (quasi-2D) antiferromagnet, a weak
interlayer interaction is present, providing a Néel order at
T > 0. An organometallic compound Cu(pz)2(ClO4)2 (copper
pyrazine perchlorate) has been considered as an example of
quasi-2D HSLAF: copper ions carrying spin S = 1/2 are
bridged together in slightly distorted square-lattice layers by
pyrazine (C4H4N2) rings, as shown in Fig. 1.

Copper pyrazine perchlorate crystallizes from a solution
in the space group C2/m at room temperature; however,
at cooling, near 180 K, there is a phase transition to a
structure which has the space group C2/c (Ref. 3). In the
low-temperature phase, parameters b and c of the monoclinic
lattice are close to each other. The rectangles with sides
b and c are approximately squares. Diagonals of these
rectangles form a rhombic lattice, and these rhombuses are
slightly distorted squares. The angle between the a and c

axes differs only a little from 90◦, thus the lattice may be
represented as a weakly distorted tetragonal lattice. Magnetic
ions Cu2+ (S = 1/2), placed at the corners of rhombuses, form
layers in bc planes. The nearest-neighbor exchange paths are
symmetrically equivalent and exactly identical. Therefore, the
exchange network within the bc planes is equivalent to that of a
square lattice. Due to ClO4 complexes between the layers, they
are well separated, as well as due to half of a period in-plane
shift between layers. Because of this shift, a magnetic ion
within a layer is equidistant from four ions in the adjacent layer;
therefore, the interlayer coupling is canceled in the first order.3

Indeed, estimation of the interlayer effective exchange J⊥
from values of TN = 4.25 K and nearest-neighbor exchange
J = 18.1 K by an empirical relation J⊥/J ∼ exp (− 2.3J

TN
),

derived from quantum Monte Carlo simulation,4 leads to a

very small value of J⊥ � 9 × 10−4J (Ref. 5). The magnetic
moment per Cu2+ ion in the two sublattice structures is only
0.47μB at T → 0 in the zero field, as detected by elastic neu-
tron scattering.6 This quantum spin reduction indicates a strong
influence of quantum fluctuations on the ground state. From
the observation of an increase of the ordered spin component in
the external field, Tsyrulin et al.6 conclude that the fluctuations
are suppressed by the magnetic field. A related evidence of
fluctuation suppression is the significant growth of TN in the
magnetic field, confirmed by neutron scattering and specific-
heat measurements.6 A gap of E0 � 0.2 meV in the spin-wave
spectrum, detected by inelastic neutron scattering,6,7 was
ascribed to easy-plane (XY -type) anisotropy, keeping the spins
within the bc plane. The observation of the minimum in
susceptibility vs temperature dependence for a field directed
perpendicular to the bc plane is consistent with quantum Monte
Carlo (QMC) simulations,8 which predict the minimum of the
susceptibility for HSLAF with a small XY anisotropy.

We describe systematic investigations of Cu(pz)2(ClO4)2

by means of multifrequency electron spin-resonance (ESR)
spectroscopy and magnetization measurements for different
orientations of the magnetic field. Our main result is the
observation and measurement of a weak in-plane anisotropy.
This weak anisotropy induces remarkable features of the phase
diagram. These are (i) the spin-flop phase transition in a
magnetic field applied along the easy axis, (ii) a bicritical
point, and (iii) a dip in TN (H ) dependence near the bicritical
point. From the antiferromagnetic resonance spectrum, we also
find that the weak in-plane anisotropy surprisingly changes its
sign by a jump at the spin-flop point. Besides, this effect of
abrupt anisotropy reversal arises as another phase transition
at tilting of the magnetic field, at a critical angle between the
magnetic field and the easy axis.

II. EXPERIMENT

Samples of Cu(pz)2(ClO4)2 have been grown at Clark Uni-
versity as described in (Ref. 3). The lattice parameters of the
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FIG. 1. (Color online) Cu(pz)2(ClO4)2 structure. Two layers, each
containing a square magnetic lattice, are displayed; ClO4 complexes
are not shown for clarity. Colors of ions and connecting lines
in the lower layer are faded out. Crystallographic data are taken
from Ref. 3.

monoclinic C2/c lattice are a = 14.072(5), b = 9.786(3), and
c = 9.781(3) Å; β = 96.458(4)◦. Crystals are flat rectangular
plaquettes colored blue, of the typical size of 2 × 2 mm2; the
plane of the square lattice (bc plane) coincides with the plane
of the plaquette. The sides of the square crystal plaquettes are
aligned at 45◦ to the b and c axes, coinciding with the directing
lines of the magnetic square lattice; see a sketch on the margins
of Fig. 4.

ESR experiments were performed at the Kapitza Institute,
using a set of resonator spectrometric inserts in a 4He pumping
cryostat with a cryomagnet. The frequency range from 5
to 140 GHz was covered. A spectrometric insert for the
18–140 GHz range has a rotable sample holder, allowing
one to change the orientation of the sample with respect to

the magnetic field during the experiment. A small amount
of diphenylpicrylhydrazyl (DPPH), a free-radical compound
with g = 2.00, was used as a magnetic field label.9

Magnetization experiments were performed at the Depart-
ment of Low Temperature Physics and Superconductivity of
M. V. Lomonosov Moscow State University on the Quantum
Design 9 Tesla PPMS machine equipped with a vibrating
sample magnetometer (VSM) and at the Neutron Scattering
and Magnetism Group in the Laboratory for Solid State
Physics at ETH Zürich with the identical machine. The lowest
available temperature was 1.8 K.

III. ESR DATA

A. Temperature evolution of ESR signal

The magnetic resonance signal in Cu(pz)2(ClO4)2 at
temperatures above TN = 4.2 K corresponds to a typical
exchange-narrowed paramagnetic resonance of Cu2+ ions with
anisotropic g factor. The values of the g factor, obtained
by high-temperature (T � 10 K) ESR measurements, are
gx = gy = 2.05 and gz = 2.28. A narrow Lorentzian line,
with a half-width of about 5 × 10−3 T, broadens with cooling
and becomes unresolvable near TN . Below TN , the ESR
response becomes strongly anisotropic. For H ‖ z, a broad
signal transforms into a single narrow line, shifted from
the high-temperature position, while for H ‖ x,y, two lines
appear, as shown on the left panel of Fig. 2. The resonance
half-width shows a clear critical dependence near the phase-
transition temperature. The divergency in the line half-width
together with the shift of the resonance position, as shown
in Fig. 3, can be used as a marker of the phase transition,
allowing us to extract TN from the ESR data. The value
of TN = 4.2 ± 0.1 K is in agreement with the results of
the magnetization measurements, as shown on the phase
diagram (Fig. 16).

B. Antiferromagnetic resonance

The anisotropy within the bc plane below TN results in
the angular dependence of the resonance field, as shown in

FIG. 2. (Color online) Left panel: Resonance line temperature evolution in a sample, containing two types of domains, when ψA = 15◦.
Right panel: Resonance line temperature evolution in a single domain sample when ψ = 0◦. In both cases, ξ = 0◦, i.e., the field lies in the xy

plane. The angles ψ and ξ are defined in Fig. 4. A scaling factor of 0.25 is applied to the 8 K line on the right panel.
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FIG. 3. (Color online) Changes of resonance field and linewidth
through TN in a single domain sample for H ‖ x at ν = 27.46 GHz;
corresponding set of ESR signals is shown in the right panel of Fig. 2.
Lines are a guide to the eye.

Figs. 4 and 5. This reveals two kinds of resonances with the
identical rosettelike angular dependencies, which are shifted
for 90◦ in Fig. 4. The relation between the intensities of these
two kinds of signals is different for different samples. This
observation indicates a presence of two kinds of domains.
The ratio of intensity of signals from two kinds of domains
has the same value for zero-field cooling and field cooling of
the sample in the field of 6 T, as well as at thermocycling
through TN . Therefore, we conclude that these domains are
crystallographic domains for which b axes are rotated for 90 ◦.
We denote domains with orthogonal b (c) axes as domain

FIG. 4. (Color online) Polar plot of 27.46 GHz ESR field at
rotating Cu(pz)2(ClO4)2 sample in the bc plane; T = 1.3 K. Solid
symbols correspond to actual experimental data, and open symbols
are the repetition of solid symbols with the 180◦ period. Symbol size
corresponds to resonance intensity. Dashed lines are a guide to the
eye. A rough sketch of a two-domain sample and orientation of the
x,y,z axes within domains is shown.

FIG. 5. (Color online) Summary of angular dependencies in the
xy plane for a domain. Solid lines are a guide to the eye; dashed
lines are the theoretical calculation (biaxial model) with a shaded
region around it, marking a possible error due to the parameters
uncertainty. Arrows indicate the field of paramagnetic resonance at
the corresponding frequency.

A and domain B. One of the samples has the intensity for
one rosette that is much stronger than for another one. For this
approximately single-domain sample, the relation between the
volumes of domains of different types may be evaluated, e.g.,
from the relation of intensities of ESR lines presented in Fig. 6,
upper panel, between 0.82 and 0.88 T. Such an estimation
gives the number of spins belonging to domain A, which is
approximately 30 times greater than those of domain B. This
sample remained approximately single domain at numerous
cycles of cooling from the room temperature.

The rosettes shown in Fig. 4 demonstrate a smooth
evolution of the resonance field with the angle in the whole
angle range, except for the narrow range in the vicinity of
the b direction. This direction was identified for the nearly
single-domain sample by room-temperature x-ray diffraction.
At the angle ψ = 10◦, there is a steplike jump of the resonance
field, shown in Figs. 4 and 5. Near the exact orientation
of the external field along the b axis, i.e., when tilting ψ

does not exceed 10◦, the resonance field is shifted to a much
lower field and this position cannot be extrapolated from the
smooth angular dependence in the main part of the field range.
Therefore, we denote the resonance observed at |ψ | < 10◦ as
anomalous mode νa . The redistribution of the intensity from
the regular to the anomalous mode at a slow rotation of the
field is shown in Fig. 6. One can see here that the transmission
of the intensity between the two types of resonances has the
character of a switching; it is performed within an interval
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FIG. 6. (Color online) Evolution of the ESR line of a single-
domain sample at the rotation of the magnetic field within the xy plane
near the critical angle ψc = 10◦, when regular mode ν4 transforms to
anomalous mode νa . Zero-field cooling from 15 K to T = 1.3 K was
performed before each record. Upper panel: ν = 27.28 GHz. Lower
panel: ν = 37.7 GHz. Inset: Angular dependences of the intensities
of ESR modes ν4 (red circles) and νa (blue squares). Each half-open
symbol corresponds to a line recorded after zero-field cooling. Solid
symbols present ESR lines recorded without thermocycling, with each
rotation performed in a field 1.2 T. Thick lines are a guide to the eye.

of about 1◦, which may be a measure of the mosaic of the
sample. Thus, a narrow phase transition at the angle variation
is observed.

To check the dependence of this transition on magnetic and
thermal history, we used the following four different regimes
of generation of the state with anomalous magnetic resonance
mode: (1) rotation of the sample from an angle ψ > ψc to an
angle ψ < ψc in a field of 3 T at T = 1.3 K, (2) the same
rotation in the zero field at T = 1.3 K, (3) the same rotation
at T > TN , μ0H = 3 T, followed by cooling down to T =
1.3 K, and (4) rotation at T > TN , H = 0, with magnetization
at T = 1.3 K. All methods have resulted in identical ESR

FIG. 7. (Color online) Angular dependence of the field of
49.31 GHz ESR in a two-domain sample of Cu(pz)2(ClO4)2 at the
temperature T = 1.3 K. Rotation is performed in the xz plane of
the domain A. Triangles: domain A; squares: domain B; circles:
signal of the whole sample when domains become indistinguishable;
crosses: T = 8 K. Solid line presents the calculated low-temperature
resonance field (biaxial model) for ψ = 90◦; dashed line is for
ψ = 0 and dotted line is theory for high-temperature paramagnetic
resonance. The shaded region marks error boundaries of the model
calculation (see text).

lines for the frequencies, listed in Fig. 5. Thus, no difference
between the ordered states prepared by different field-cooling
and zero-field-cooling procedures has been found.

Tilting the field within the xz plane conserves the anoma-
lous mode, as shown in Fig. 7, at least in the range |ξ | � 30◦,
where the difference between the anomalous mode and an
extrapolation for a regular mode may be detectable. The
anomalous mode was observed only at μ0H > 0.4 T. Below
this field, the resonance positions at ψ = 0◦ and ψ = 15◦
are almost identical, as one can see on the upper and lower
records of Fig. 8 and on the low-field part of frequency-field
dependencies on the inset of Fig. 9. At the same time, at
μ0H > 0.4 T, there is a jumplike evolution of the resonance
field and frequency in this range of angles.

Further, we measured ESR fields for a set of frequencies
(see examples of records in Fig. 8) at three principal directions
of the magnetic field and at a tilting angle ψ = 15◦, as well
as for two intermediate orientations in the bc plane. The
corresponding frequency-field dependencies are presented in
Figs. 9 and 10. From these data, we conclude that the spectrum
of frequencies of the antiferromagnetic resonance has two
energy gaps, approximately equal to 35 and 10 GHz, and two
branches in a magnetic field. For the direction of the magnetic
field near the b axis, there is a mode softening at approaching
the field of 0.42 T from the zero-field side. At μ0H > 0.42 T,
we observe the softened mode in the angular range of
the regular mode and the anomalous mode in the narrow
angle range |ψ | < 10◦. By changing the angle ψ across the
critical value toward ψ = 0, the ESR frequency is transposed
from the value below the paramagnetic resonance frequency,
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FIG. 8. (Color online) Collection of ESR lines at T = 1.3 K for
fields along ψ = 0◦ (red solid) and ψ = 15◦ (blue dashed). Vertical
dashed line denotes critical field Hc = 0.42 T at this temperature.

gxμBμ0H/2πh̄, to the value above it. This transposition is
marked by an arrow on the inset of Fig. 9; it occurs by a jump
at crossing the critical angle ψc = 10◦. This jump corresponds
exactly to the jump of the resonance field, shown in Fig. 5.

We note here that the observed frequency-field dependen-
cies for field orientation in the whole solid angle, except for the
range of the anomalous mode, may be well described by the
calculated frequencies of the two sublattice antiferromagnets
with a biaxial anisotropy and the easy axis directed along
b; see, e.g., Ref. 10. The calculated frequencies are given
in Appendix A and presented in Figs. 9 and 10 by solid

FIG. 9. (Color online) AFMR spectra at T = 1.3 K for the field
along the easy axis. Solid line is the model calculation; dash-dotted
line is the empirical formula (1). Inset: Shift from paramagnetic
resonance frequency vs field for directions ψ = 0◦ (empty circles)
and ψ = 15◦ (solid squares) in the xy plane. Solid and dashed lines
are theoretical calculations corresponding to these cases. Dash-dotted
line is the same as on main plot.

FIG. 10. (Color online) AFMR spectra for several field directions
in the xy plane and along the z axis at T = 1.3 K. Solid lines are the
calculation according to (B2) with �y = 11 GHz and �z = 35 GHz;
dashed lines are paramagnetic resonance with gxy = 2.05 and
gz = 2.28.

lines. The eight curves shown here and the calculated angular
dependencies shown in Fig. 7 are parameterized only by two
energy gaps and three g factors. The g factors gx , gy , and gz

are measured independently in the paramagnetic phase and are
not fitting parameters. Below the critical field of 0.42 T, the
frequencies in the whole solid angle range of the magnetic field
directions are described with that model. In particular, a mode
softening at H ‖ b indicates the spin-flop transition. By this
observation, we can conclude that b is the easy-axis direction.
For the anomalous mode, observed at |ψ | < 10◦, |ξ | < 30◦,
μ0H > 0.42 T, we use the empirical relation

νa =
√

�2
a +

(
gxμB

2πh̄
μ0H

)2

, (1)

with �a = 14 GHz at T = 1.3 K. This relation represents the
observed frequency at the unexpected position above (and not
below) the paramagnetic resonance frequency at H > Hc.

Thus, the ESR data reveal a weak magnetic anisotropy
in the bc plane and a spin-flop transition, as well as the
anomalous mode νa appearing in the narrow angular range
of the field direction instead of a regular resonance of a biaxial
antiferromagnet.

IV. MAGNETIZATION

A. Field along the easy axis

The main feature of low-temperature magnetization curves
at H ‖ b is the presence of jump in magnetization correspond-
ing to the spin-flop transition, detected by ESR. As shown
at Fig. 11, the magnitude of the jump increases with cooling
and its position shifts to lower fields. Jump in magnetization
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FIG. 11. (Color online) Isothermal low-field magnetization
curves of the Cu(pz)2(ClO4)2field along x. An offset of 1.5 emu/mol
per curve is present. Upper inset: An expanded region around the
temperature, where magnetization jump disappears. Lower inset:
A few dM/dH curves are shown, allowing one to locate phase
transitions between disordered and ordered phases, marked by arrows.

disappears around 4 ± 0.05 K, which is lower than TN . The
sharp increase in magnetization can also be seen in M(T )
curves, presented in Fig. 12. Crossing the spin-flop phase
boundary by temperature in a constant field also gives a very
pronounced step in magnetic moment. This step disappears at
μ0H = 0.74 T, and above this field, there appears a minimum
on the M vs T dependence. Below the temperature of the
minimum of the magnetization, there is a kink marking the
onset of long-range order. The minimum and the kink are
marked in Fig. 12. Both minimum and kink shift upwards
in temperature with increasing field up to 9 T, though the
former becomes less pronounced. Note that there is no offset
in Fig. 12, and stacking of the curves reflects the nonlinearity
of the magnetization process.

We derive the ordering point by a peak in the derivative
∂(MT )/∂T , as suggested by Fisher.11 We can also detect this
transition by a peak in the derivative dM/dH of the isothermal

FIG. 12. (Color online) Normalized magnetization M(T )/H for
various magnetic fields, directed along x. Inset: An expanded region
around the point, where magnetization jump vanishes.

FIG. 13. (Color online) Phase diagram of the Cu(pz)2(ClO4)2field
along the easy axis. AF is the l ‖ x collinear antiferromagnetic
phase, SF is the spin-flop antiferromagnetic phase, and PM is the
paramagnetic phase. Circles are features in M(T ) curves, squares are
features in M(H ), red points correspond to ψ = 0◦ orientation, and
black points correspond to ψ = 12◦. Lines are a guide to the eye. In
the inset, an expanded region around the bicritical point is shown.

magnetization curve, as displayed in the inset of Fig. 13. A final
phase diagram, with points on phase boundaries obtained by
both M(T ) and M(H ) scans, is presented in Fig. 13.

B. Field in bc plane

In Fig. 14, a collection of magnetization derivatives
dM(H )/dH for various directions of the magnetic field in the

FIG. 14. (Color online) Magnetization derivative dM/dH for
various directions of the magnetic field in the xy plane at T = 2 K.
Dashed lines show zero for corresponding curves. Inset: Temperature
dependencies of magnetization derivatives for directions ψ = 8◦ ± 2◦

and ψ = 10◦ ± 2◦.
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xy plane is presented. dM(H )/dH curves show a sharp peak
at ψ → 0, which broadens with misalignment. The left wing
of the peak is always smooth, in contrast to a discontinuity
in the right wing of the peak. The discontinuity exists up
to a critical angle ψc, observed in angular dependences of
ESR; see Figs. 4 and 5. When the tilt angle exceeds ψc, the
dM/dH curve becomes completely smooth. The transition
between smooth and discontinuous types of derivative, which
affects mostly the right wing, occurs abruptly. This difference
between the curves, corresponding to field tilts below and
above ψc, is pronounced in a whole temperature range where
spin-flop transition takes place, as shown in the inset of Fig. 14.
The discontinuity of differential susceptibility dM/dH occurs
exactly at the same magnitude of the magnetic field and in
the same angular range |ψ | < ψc, as the anomalous ESR
mode νa .

With further increase in ψ , the peak becomes less pro-
nounced, and almost disappears when ψ approaches ∼45◦.
The magnetization curve at ∼45◦ (this is the direction along
natural crystal facets) does not show a step and demonstrates
a smooth slope increase, as observed in Ref. 12.

We have also performed a study of a phase diagram with a
magnetic field slightly tilted from the x axis. The orientation
we chose was ψ = 12 ± 2◦ > ψc. Here, Cu(pz)2(ClO4)2 still
demonstrates an increase in magnetization near Hc, but the
transition is regular, i.e., with a smooth derivative dM/dH on
both sides of Hc. We locate Hc and TN in the same way as was
described before for H ‖ x. The resulting phase boundaries
are also shown in Fig. 13, and the difference between the
phase diagram for exact and misaligned orientations along x

is observed only near the bicritical point.

C. Field along middle and hard axes

The curves of normalized magnetization for the fields
directed along middle axis y and hard axis z at Fig. 15 do
not show spin flop, but demonstrate an increase of TN in a
magnetic field. The only qualitative difference between these

FIG. 15. (Color online) Normalized magnetization M(T )/H for
various magnetic fields, directed along z (left panel) and y (right
panel). The kink and the minimum on the curves are marked by a
droplet and a cross, respectively.

two sets of curves is in the onset of the minimum of M(T ):
for the field along y, the minimum appears for the applied
fields between 1.5 and 2 T, while for the field along z, it
is present even at H → 0 (as independently confirmed by
zero-field ac magnetization measurements).12 Another feature
of M(T ) curves at H ‖ y is the existence of an inflection point
below TN at low fields, in contrast to the case of H ‖ z. As the
field is increased, the inflection disappears.

V. DISCUSSION

A. Biaxial model and spectra

In Sec. III, we have presented antiferromagnetic resonance
(AFMR) spectra for various field directions. These spectra
follow a biaxial collinear antiferromagnet paradigm for all
magnetic field directions, except for a small solid angle
corresponding to the anomalous mode. The anomalous mode
is observed in a solid angle of about 10−24π , close to the
easy axis, and only above Hc. Resonance frequencies in this
range of fields and angles correspond to a gapped branch (1)
with �a = 14 GHz. This unexpected effect can be described
as an in-plane anisotropy switching caused by spin flop, i.e.,
the resonant frequencies are that of a two-sublattice biaxial
antiferromagnet, for which x turns abruptly from the easy into
middle axis and y turns into the easy axis at the spin-flop point.
This conclusion is made on the basis of the experimental obser-
vation of the anomalous mode, which appears at H > Hc and
has the frequency following the relation (A3), corresponding
to middle-axis orientation of the field, instead of the expected
(A7), derived for the easy-axis orientation.

We consider the magnetoelastic hypothesis, which might
explain the switching of anisotropy at the spin-flop point. The
in-plane anisotropy, marking the easy axis, originates from
rhombic distortion of the square lattice; for Cu(pz)2(ClO4)2,
this distortion is due to a relative difference of ∼10−4

between the lattice constants b and c. In principle, the
antiferromagnetic ordering may cause a striction of the same
order of magnitude.13 Because of the magnetostriction, the
in-plane anisotropy may be dependent on the magnitude and
the direction of sublattice magnetizations, and, therefore, it
should change when the spin-flop transition takes place. One
could expect the y axis to become the easy axis and x to
become the middle axis immediately after the spin flop.

Nonetheless, a simple quantitative formulation of this
approach, described in detail in Appendix B, does not capture
a steplike angular dependence of the AFMR field in the xy

plane, and is in contradiction to the observed relation between
the zero-field gap and a critical field. The analysis of a
complete Lagrangian, allowed by symmetry, should include
several dozens of magnetoelastic and elastic terms and was
not performed.

Another possibility, presumably explaining the nature of
anomalous mode νa , is the existence of a phase other than
collinear for H > Hc,ψ < ψc. This implies destabilization
of the collinear phase by frustration when the external field
compensates in-plane anisotropy. However, our measurements
do not support this hypothesis: the magnetization curve M(H )
and phase boundary TN (H ) are indistinguishable for ψ < ψc

and ψ > ψc in fields above Hc.
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The influence of a change of the direction and magnitude
of zero-point fluctuations at the spin flop may also be of im-
portance because anisotropic spin fluctuations also contribute
to the energy of anisotropy.

Nevertheless, the nature of the anisotropy switching re-
mains unclear.

To give a connection with the previous work (Ref. 7), we
derive a relation between zero-field gaps �y,z of antiferromag-
netic resonance and the parameters of a microscopic model
Hamiltonian. In the nearest-neighbor exchange approxima-
tion, the complete biaxial Hamiltonian reads as

Ĥ =
∑
〈i,i ′〉

J Ŝi Ŝi ′ − gμBμ0

∑
i

HŜi

−
∑
〈i,i ′〉

(
δJyŜ

y

i Ŝ
y

i ′ + δJzŜ
z
i Ŝ

z
i ′
)
, (2)

where δJy and δJz are parameters of so-called exchange
anisotropy. According to the linear spin-wave approximation,
which have proven to be good for describing the k dependence
of the spectrum in the vicinity of the Brillouin-zone center
of Cu(pz)2(ClO4)2 (Ref. 6), the energy gaps are related to
exchange anisotropy parameters as

�y,z = 2
√

2JδJy,z. (3)

In this spin-wave approximation, the sublattice magnetiza-
tion is supposed to be μB per magnetic ion, which is not the
case of the Cu(pz)2(ClO4)2, where a strong quantum reduction
of about 50% is observed. A finer estimation for the case
of S = 1/2 square-lattice antifferomagnet, considering 1/S

corrections, was given by Weihong et al.:14

�y,z � 1.2
√

2JδJy,z. (4)

Thus, this equation may be used for an estimation of
δJy,z. Spectroscopic gaps of 35 ± 2 and 11 ± 2 GHz are
�z = 1.68 ± 0.1 K and �y = 0.53 ± 0.1 K, correspondingly.
Hence, from Eq. (4) we extract δJz = 53.2 mK and δJy =
5.3 mK. This corresponds to relative exchange anisotropy
δJz/J = 3.1 × 10−3 and δJy/J = 3.1 × 10−4. This is in
agreement with previous neutron data, except for the parameter
δJy , which was not resolved by the neutron-scattering experi-
ment. We can characterize the observed anisotropy switching
in terms of changing of parameters of Hamiltonian (2). It
corresponds to transformation of δJy into δJ ∗

y , which is of
negative sign and equals −6.7 mK.

B. Phase diagrams

Phase diagrams for the x, y, and z directions of the magnetic
field are presented in Fig. 16. For the y and z directions, the
phase diagrams are analogous, with a monotonous increase
of TN . For the field along x, the phase diagram is more
complicated, with a bicritical point, where spin-flop, ordered
and paramagnetic phases meet. The phase diagram presents
the spin-flop transition and the bicritical point in addition
to the phase boundaries reported in the previous work using
neutron-scattering and specific-heat measurements.6

The field at which the antiferromagnetic resonance mode
ν3 is observed also marks the spin-flop transition (see the
Appendix). From the ESR experiment, we get μ0H

ESR
c =

FIG. 16. (Color online) Phase diagrams for H ‖ x (upper panel)
and H ‖ yz (lower panel) directions. Points are experimental data:
circles for M(T ) and squares for M(H ) features. Stars and diagonal
crosses mark phase transitions determined by ESR; solid triangles
are data from Ref. 6. Horizontal crosses (x, y) and snowflakes (z)
are minima in M(T ). Solid lines are a guide to the eye; dashed lines
are fit (5) for Tmin(H ). The fit for all three orientations is separately
shown in the inset in the upper panel.

0.45 T at T = 1.3 K (see Fig. 9); this field increases with
temperature. The temperature dependence of Hc derived from
ESR is consistent with the magnetization measurements, as
shown in Fig. 16.

The minima of M(T ) are also plotted, showing different
behavior for all three directions. While for H ‖ z the minimum
persists up to the H = 0 limit, for different directions it appears
only at some finite field at which Tmin reaches TN .

The reason for this minimum may be qualitatively explained
by the following consideration: for an easy-plane antiferro-
magnet, it is natural to have an anisotropic susceptibility,
which is larger for the out-of-plane direction. In the case
of a 2D antiferromagnet with δJz � J , one should expect
this anisotropic behavior to rise only at low temperatures,
when T < J . Numerical simulations of HSLAF with a weak
easy-plane anisotropy8 show that the tendency for an increase
of magnetization at H‖z due to the onset of planar correlations
overcomes the tendency for its decrease due to short-range
AF order. Thus a characteristic minimum in χ (T ) marks a
crossover from Heisenberg to XY behavior. Cuccolli et al.,8
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using a QMC data analysis, suggested a formula for the
estimation of Tmin in a case of easy-plane HSLAF model,

Tmin = 4πρs

ln
(

C
δeff

) . (5)

Here, ρs � 0.22J is the renormalized spin stiffness, δeff

is the relative anisotropy, and C � 160 is the dimensionless
constant. It has also been found that the presence of an
external magnetic field in 2D magnets makes them effectively
easy plane and induces both a Berezinsky-Kosterlitz-Thouless
transition at finite temperature and a minimum in χ (T ) above
it (Ref. 15). In the absence of long-range order, when a local
order parameter l is formed, the orientation l ⊥ H provides
an energy gain. Hence, the short-range order parameter
becomes 2D instead of 3D in the isotropic case and the
effective anisotropy energy in this field-induced XY behavior
is proportional to H 2.

For the orientation of the magnetic field H ⊥ z for a strong
enough field (gμBμ0H �

√
δJzJ ), we consider “effective”

easy-plane anisotropy induced by an external field. The easy
plane of this anisotropy is perpendicular to the field. We take
this anisotropy in the form derived in Ref. 15 for HSLAFM,

δ
xy

eff = β

(
gxyμBμ0H

kBJ

)2

, (6)

where β is a dimensionless parameter. Here we disregard
smaller anisotropy δJy , as the experimental Tmin(H ) in the
x and y directions is the same within the error bars.

For the case H ‖ z, the easy-plane anisotropy originates
due to the combination of the natural and field-induced
anisotropy. We empirically combine these two factors which
were analyzed separately in QMC simulations,15,16

δz
eff = δJz

J
+ β

(
gzμBμ0H

kBJ

)2

. (7)

Fitting experimental data for Tmin with Eq. (5), where δeff

is set as δ
xy

eff or δz
eff , and parameters J = 18.1 K and C = 160

are fixed, we yield ρs � 0.24J , δJz � 0.023 K, and β � 0.1,
which is quite close to the result of Cucolli et al. (Ref. 15).
Fits are shown in Fig. 16 with dashed lines. This result can
be considered as another indication of the 2D correlations
developing in Cu(pz)2(ClO4)2 at T > TN . Nonetheless, the
value of δJz obtained by this fit is in better agreement with
the estimation by Eq. (3), which does not take into account
quantum renormalization of the gap, than with Eq. (4), which
considers 1/S corrections.

For H ‖ x (i.e., the field along the easy axis), there
is a bicritical point (Hc,Tc). Three phase transition lines
meet in this point: second-order paramagnetic to collinear
antiferromagnetic phase transition (PM-AF), second-order
paramagnetic to flopped antiferromagnetic phase transition
(PM-SF), and first-order spin-flop phase transition (AF-SF).
In the vicinity of the bicritical point, the following scaling
equations are expected:17 for AF-SF, the transition temperature
dependence for the critical field is

H 2(T ) − H 2
c = A

(
T

Tc

− 1

)
, (8)

while for ordering transitions to AF and SF phases relations
between the magnetic field and ordering, temperatures are

H 2(T ) − H 2
c = A

(
T

Tc

− 1

)
− BAF

(
T

Tc

− 1

)φ

(9)

and

H 2(T ) − H 2
c = A

(
T

Tc

− 1

)
+ BSF

(
T

Tc

− 1

)φ

, (10)

correspondingly. For a “classical” 3D antiferromagnet, the
scaling exponent is known to be φ = 1.25 for uniaxial and
φ = 1.175 for biaxial anisotropy. Theory also suggests an
amplitude ratio Q = BSF /BAF = 1 for the former case.17,18

In contrast, for the pure 2D case with easy-axis anisotropy, the
bicritical point is expected19–21 to occur only at T = 0; a simple
argument for that is the following: when easy-axis anisotropy
is compensated by the external field, the system becomes
equivalent to a nonperturbed two-dimensional Heisenberg
model, which can possess long-range order only at zero
temperature. The PM-AF and PM-SF phase boundaries, which
meet at T = 0, are defined by∣∣H 2(T ) − H 2

c

∣∣ ∝ T −2 exp

(
−4πρs

T

)
. (11)

The above equation is valid only in the absence of additional
anisotropies and interlayer couplings, while in the case of
Cu(pz)2(ClO4)2, both of these perturbations are present and
the bicritical point is at T > 0. A numerical proof for the
latter statement can be found, e.g., in the Monte Carlo study
of the classical anisotropic XY antiferromagnet on a square
lattice (Ref. 22), where the phase diagram strongly resembles
that of a 3D easy-axis AFM. Hence, the phase diagram of
Cu(pz)2(ClO4)2 turns out to be an intermediate case between
ideal 2D and conventional 3D anisotropic antiferromagnets. A
straightforward fit of the experimental data with Eqs. (8)–(10)
gives the bicritical point at Tc = 3.97 K, μ0Hc = 0.73 T
with scaling exponent φ = 1.4 and amplitude ratio Q = 1.78.
Fixing the value of φ to the theoretically suggested value for
a 3D antiferromagnet, φ3D = 1.175, leads to Tc = 3.99 K,
μ0Hc = 0.738 T, and Q = 1.54, but with a worse fit quality.
The data and fits are presented in Fig. 17, together with
the numerical quality criterion—the sum of the average least
squares for all three formulas (8)–(10). It can be concluded that
a reliable estimation of the universal parameters from our data
is φ = 1.4 ± 0.2 and Q = 1.8 ± 0.2, and the bicritical point is
located at μ0Hc = 0.730 ± 0.006 T and Tc = 3.97 ± 0.03 K.
The region �T � 0.2 K where the scaling equations are
fulfilled is about 5% of Tc, which is significantly larger than
for the classical three-dimensional uniaxial antiferromagnet
MnF2 [�T/Tc ∼ 10−3 (Ref. 18)], though smaller than for
the quasi-2D compound Rb2MnF4 [�T/Tc ∼ 0.26 (Ref. 21)],
with a purely uniaxial anisotropy. These facts, as well as
the larger value of critical index φ = 1.4 > φ3D , result in
the conclusion that Cu(pz)2(ClO4)2 presents an intermediate
behavior between 3D and 2D models in the vicinity of the
bicritical point.

The observed dependence of the phase diagram in the
bicritical point range on the field orientation is natural because
the bicritical point is very sensitive to field misalignment.18
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FIG. 17. (Color online) Scaling in the vicinity of the bicritical
point. Blue solid and red dashed lines are fits [(8)–(10)] with φ = 1.4
and φ = 1.175 correspondingly; dotted lines are extension of Eq. (8)
to the T > Tc region. Left inset: Magnified part of main plot. Right
inset: Fit deviation (see text) vs critical exponent φ.

On the contrary, away from the region around Hc, the phase
boundaries for ψ = 0◦ and ψ = 12◦ coincide within error bars.

VI. CONCLUSIONS

In the present work, we have studied the AFMR spectra
and magnetization curves of HSLAFM Cu(pz)2(ClO4)2. These
measurements reveal the presence of biaxial anisotropy in
Cu(pz)2(ClO4)2instead of the easy-plane formulation used
earlier. From the ESR experiments, we have derived two
energy gaps, �z � 35 and �y � 11 GHz. The weak in-plane
anisotropy is responsible for the spin-flop phase transition at
μ0Hc � 0.4 T in the H ‖ x direction. The AFMR spectra also
show that weak in-plane anisotropy is changing its sign at
the spin-flop transition. This anisotropy reversal, occurring
in a manner of switching, may be also observed as a phase
transition at changing the orientation of the magnetic field
within the bc plane, at the critical angle 10 ◦ with respect to the
easy-axis direction. The conjecture that this anomaly might be
of magnetoelastic origin may, by simplified treatment, explain
the anisotropy reversal at the spin flop, but is not consistent
with the steplike angular dependence of the ESR field or
frequency. It is also not consistent with the observed relation
between the energy gap �y and spin-flop field Hc. The nature
of the abrupt reversal of the weak anisotropy remains unclear.

The hypothesis which is probably worthwhile to analyze
theoretically is a possible change of the direction and magni-
tude of zero-point spin fluctuations at the spin flop. A change of
the contribution of fluctuations to the energy of the anisotropy
may also change the effective anisotropy of the ordered spin
component.

The field dependence of the temperature of the minimum
on M(T ) curves for three principal orientations is found to
be in agreement with the results of the numerical simulation
of HSLAFM.8 The increase of TN in the external field has
been found for all orientations, in agreement with previous
measurements. The scaling exponent φ = 1.4 ± 0.2 of the
phase boundaries near the bicritical point is intermediate
between the 2D and 3D models.

Accounting for the observed weak anisotropy might be
significant for the correct estimation of other weak inter-
actions, e.g., next-nearest-neighbor and interlayer exchange
from experimental data.23 Similar anisotropy can be present in
another HSLAFM of the Cu-pz family [namely, Cu(pz)2(BF4)2

and [Cu(pz)2(NO3)](PF6)], as according to Xiao’s magneti-
zation data12 there are signatures of spin-flop transitions as
well.

We note that for deuterated Cu(pz)2(ClO4)2, the difference
between b and c, resulting in the weak anisotropy, is larger
than for a regular sample with hydrogen, so it would be
of interest to test if the in-plane anisotropy is the same
in a deuterated sample. Other possible future experiments
include NMR and neutron scattering with the field along x to
probe the magnetic structure as well as search for anomaly
in magnetic field dependencies of low-temperature elastic
properties (magnetostriction, ultrasound propagation, etc.).
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APPENDIX A: AFMR FREQUENCIES
OF A BIAXIAL ANTIFERROMAGNET

A theory for AFMR in a two-sublattice antiferromagnet
with biaxial anisotropy was developed in the 1950s.10 For
both orientations of the magnetic field along the hard and
middle axis (z and y) in the ground state, we have the
antiferromagnetic order parameter l ‖ x, and this orientation
of l is independent of the external field magnitude.

Magnetic resonance frequencies for H ‖ z are

νzz =
√(

gzμB

2πh̄
μ0H

)2

+ �2
z, (A1)

νzy = �y ; (A2)

and for H ‖ y, we have

νyy =
√(

gyμB

2πh̄
μ0H

)2

+ �2
y, (A3)

νyz = �z. (A4)

At the orientation of the magnetic field along the easy
axis, the case is more complicated, as the ground state is field
dependent. There is a spin-flop transition with an abrupt change
from l ‖ x to l ‖ y. The critical field of this transition is

μ0Hc = 2π
h̄�y

gxμB

. (A5)

This transition is accompanied by a jump in magnetization.
The ESR frequencies below and above Hc are the following:
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For H < Hc,

ν1,2 =

√√√√(
gxμB

2πh̄
μ0H

)2

+ �2
y + �2

z

2
∓

√
2

(
gxμB

2πh̄
μ0H

)2(
�2

y + �2
z

) +
(

�2
y − �2

z

2

)2

. (A6)

For H > Hc,

ν4 =
√(

gxμB

2πh̄
μ0H

)2

− �2
y, (A7)

ν5 =
√

�2
z − �2

y. (A8)

The resonant mode ν3 with the vertical ν3(H ) dependence
corresponds to a spin-flop transition, as the system is allowed
to absorb energy in a band of frequencies in the critical point.
Modes ν1 and ν4 are softened at the critical field Hc. For the
intermediate-field orientations, we calculated the frequencies
of spin resonance numerically within the same formalism.

APPENDIX B : MAGNETOELASTIC CORRECTION

For a description of the ESR modes at T → 0, we use
macroscopic exchange symmetry formalism.24 This formal-
ism, in particular, reproduces the results of a mean-field theory
of a two-sublattice antiferromagnet with biaxial anisotropy.10

In the framework of the exchange approach, the spin structure
is considered to be collinear, and the anisotropy of a relativistic
origin, and magnetization, induced by the external field,
are taken as perturbations. Though being applicable only in
fields H � Hsat, this formalism is model independent and
allows easy introduction of additional anisotropy terms. As
the saturation field in Cu(pz)2(ClO4)2 constitutes almost 50 T,
restriction on the field magnitude is not an issue for the
exchange symmetry formalism applicability. Our calculations
are based on the following Lagrange function per mole of the
compound (in the Gaussian unit system):

L = χ⊥
2γ 2

(l̇ + γ [H × l])2 − Ua. (B1)

Here, γ = gμB

h̄
is the gyromagnetic ratio; unit vector l with the

orientation, given by angles ϕ and θ shown in Fig. 4, is the order
parameter; H is the magnetic field; and χ⊥ is the magnetic
susceptibility in the direction perpendicular to l. Equation (B1)
also implies χ‖ = 0 at zero temperature. The term Ua = ηl2

y +
ζ l2

z is the anisotropy energy. We assume positive constants η

and ζ , η < ζ . Hence, l ‖ x minimizes anisotropy energy.
The ground-state and magnetic-resonance frequencies may

be calculated using this Lagrange function, as described in
Ref. 24. The ground state and the spectrum are identical to
that of Ref. 10, described above. The anisotropy constants
may be expressed via energy gaps, η = χ⊥(2π�2

y)/2γ 2 and
ζ = χ⊥(2π�2)z/2γ 2, where �z > �y are the energy gaps
which one actually observes in the ESR experiment. With this
substitution, the Lagrange function (B1) is

L = χ⊥
γ 2

{
1

2
(l̇ + γ [H × l])2 − (2π�z)2

2
l2
z − (2π�y)2

2
l2
y

}
,

(B2)

and the corresponding potential energy in the nonzero mag-
netic field is

E = χ⊥
γ 2

{
−γ 2

2
[H × l]2 + (2π�z)2

2
l2
z + (2π�y)2

2
l2
y

}
. (B3)

Monoclinic symmetry allows for another second-order
term, ly lz. Such a term results in a tilt of hard and middle
anisotropy axes, leaving the easy axis undisturbed. In our
experimental data, related to xz-plane rotation of the magnetic
field (Fig. 7), we do not notice any significant tilt of the middle
axis from the c direction, and, therefore, we do not take the
ly lz term into account.

We have to note that the anisotropic term ηl2
y originates

from a weak orthorhombic distortion of a square lattice.
Due to this distortion, the lattice constants b and c differ
in a relative sense for ∼10−4. Hence, this term should be
small in comparison with, e.g., ζ l2

z , and can be comparable
with the contributions of a higher order in components of
l. There is a term B(lx ly)2 among the fourth-order terms,
allowed by symmetry for Cu(pz)2(ClO4)2. This term couples
the components lx,ly and could result in the “anisotropy
reversal” as a result of l reorientation. Indeed, considering
a modified Lagrange function

L = χ⊥
γ 2

{
1

2
(l̇ + γ [H × l])2 − (2π�z)2

2
l2
z − (2π�y)2

2
l2
y

}
+B(lx ly)2, (B4)

we obtain approximate frequencies, corresponding to in-
plane fluctuations of l, for ground states before and after
reorientation:

ν̃(l ‖ x) =
√

�2
y + 2B

χ⊥

(
gxμB

2πh̄

)2

−
(

gxμB

2πh̄
H

)2

,

FIG. 18. (Color online) Spectra of model (B4) for various values
of the quartic term. The field is directed along x. Arrows mark
frequencies at which angular dependencies for B = χ⊥( 2πh̄�y

gxμB
)2 are

shown in the inset; dashed lines are the expectation for paramagnetic
resonance.
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FIG. 19. (Color online) Spectra of the model with a quartic term
−βl4

x , H ‖ x. Dashed line is paramagnetic resonance.

and

ν̃(l ‖ y) =
√

−�2
y + 2B

χ⊥

(
gxμB

2πh̄

)2

+
(

gxμB

2πh̄
H

)2

.

The field-independent constants under the square-root signs
in these relations may be treated by use of model (B2) and
relations (A6) and (A7) as the anisotropy constant for in-plane
anisotropy (note that these constants should be taken with
the opposite signs). Thus, if B > 0 is large enough, the
in-plane anisotropy effectively changes its sign. A significant
value of B might be provided by a magnetoelastic interaction.
There are 13 elastic terms of the form of uikumn and 20
magnetoelastic terms of the form of uiklmln allowed by
symmetry for Cu(pz)2(ClO4)2 (Ref. 25). From these terms, we
take for the magnetoelastic contribution to potential energy
(B3) the following terms:

Eme ∝ uxylxly, (B5)

FIG. 20. (Color online) Spectra of the model with a quartic term
βl4

x , H ‖ x. Dashed line is paramagnetic resonance.

FIG. 21. (Color online) Spectra of the model with a quartic term
−βl4

y , H ‖ x. Dashed line is paramagnetic resonance.

and

Eee ∝ u2
xy

2
. (B6)

These terms couple lx and ly . Here, uik are components of the
strain tensor.

Minimization of energy, including the above-described
magnetoelastic correction (B5) and (B6), with respect to strain
variable uxy , will result in the magnetoelastic correction in the
form of Bl2

x l
2
y .

We numerically calculate the ground state and spectrum of
the model (B4). For our numerical work, we choose parameters
�z = 37 and �y = 15 GHz, and follow the perturbations
introduced by the quartic term Bl2

x l
2
y . In Fig. 18, numerically

calculated spectra for the field along x and different values
of B [namely, 2B

χ⊥
( gxμB

2πh̄�y
)2 = 0,0.1,0.5,1,1.5,2] are presented.

Indeed, we can choose the value of B, which is large enough to
push mode ν4 above paramagnetic resonance, as clearly seen
in Fig. 18. But there remains a crucial difference between
the properties of model (B4) and the experimental data

FIG. 22. (Color online) Spectra of the model with a quartic term
βl4

y , H ‖ x. Dashed line is paramagnetic resonance.
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because the angular dependence is not described. We found
from the ESR experiment that the angular dependence of
the resonance line shows a step when switching from νa to
ν4; the anomalous mode νa exists in a narrow angle range
near the x axis, and outside of this range all the data are
perfectly described by a simple biaxial model. In contrast, the
model with the strong B term (B4) shows smooth angular
dependence (see inset in Fig. 18), which differs significantly
from both the simple biaxial model (B2) and experimental
data (as in Fig. 5). Furthermore, as seen from Fig. 18,
enhancement of the B term also increases a lower zero-field
gap, while the critical field of the spin-flop transition is still
determined by �2

y alone, as the l2
x l

2
y combination gives the

same contribution to energies of both the l ‖ x and l ‖ y

phases. Therefore, the magnetoelastic approach (B4) predicts
the transposition of the antiferromagnetic resonance frequency

above the value of the paramagnetic resonance frequency,
which is one of the manifestations of the reversal of the
in-plane anisotropy. Nevertheless, at the same time, the angular
dependence of the resonance field and relation between the
gap and critical field do not correspond to the experiment even
qualitatively.

Other related quartic terms also could not describe the
observed anomaly. We have analyzed in the same way the
influence of anisotropic terms ±βl4

x and ±βl4
y . The results of

the calculation of the ground states (equilibrium values of ϕ,θ )
and frequency-field dependencies are given in Figs. 19–22.
One can see that it is impossible to find a value of β which
would correspond to the observed pulling of the frequency
above the paramagnetic resonance frequency for H > Hc

along with the softening of the mode at H < Hc, and with
the valid relation γHc = �y .
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