
PHYSICAL REVIEW B 87, 214203 (2013)

Ideal strength of random alloys from first principles
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The all-electron exact muffin-tin orbitals method in combination with the coherent-potential approximation
was employed to investigate the ideal tensile strengths of elemental V and Mo solids, and V- and Mo-based
random solid solutions. Under uniaxial [001] tensile loading, the ideal tensile strength of V is 11.6 GPa and the
lattice fails by shear. Assuming isotropic Poisson contraction, the ideal tensile strengths are 26.7 and 37.6 GPa for
V in the [111] and [110] directions, respectively. The ideal strength of Mo is 26.7 GPa in the [001] direction and
decreases when a few percent of Tc is introduced in Mo. For the V-based alloys, Cr increases and Ti decreases
the ideal tensile strength in all principal directions. Adding the same concentration of Cr and Ti to V leads to
ternary alloys with similar ideal strength values as that of pure V. The alloying effects on the ideal strength are
explained using the electronic band structure.

DOI: 10.1103/PhysRevB.87.214203 PACS number(s): 62.20.−x, 71.23.−k, 71.15.Nc, 71.20.Be

I. INTRODUCTION

High strength and good ductility define the two most
important mechanical properties of metallic structure
materials.1 In materials, strength is usually controlled by the
occurrence of grain boundaries, cracks, dislocations, and other
microstructural defects. If such defects were not present, the
strength would be limited by the stress at which the lattice
itself becomes unstable with respect to a homogeneous strain.
This stress, referred to as the ideal strength, is the possible
maximum strength of an ideal single crystal. The ideal strength
is an inherent property of a material which can offer insight
into the correlation between the intrinsic chemical bonding and
the crystal symmetry, and has been accepted as an essential
mechanical parameter of single-crystal materials.2

The experimental data on ideal strength are rather limited,
since it is difficult to measure the ideal strength using
experimental tools. There are only a few cases of experimental
data that were obtained from tensile tests for whiskers3 and
from nanoindentation experiments.4 Recently, calculations of
ideal strength became of great interest because they represent
an upper bound to the strength of any real crystal on the
attainable stress. The ideal strength may be calculated under
special loading conditions: ideal strength in tension, e.g., for
high-symmetry directions of cubic crystals under uniaxial
load, or ideal strength in shear, e.g., for common slip systems
〈111〉{112} and 〈111〉{110} in body-centered cubic (bcc)
crystals.5,6

The ideal strength is one of the few mechanical properties
that can be calculated from first principles. The ideal strength
of refractory metals (such as Mo, Nb, V, and W), late transition
metals (such as Cu, Pt, and Au), elements crystallizing in the
diamond structure (Si, Ge, and C), as well as some ordered
alloys (TiAl and Ni3Al) have been extensively investigated.6–18

For example, Luo et al.15 and Nagasako et al.6 focused on
the ideal tensile strength (ITS) of the bcc metals Mo, Nb,

and V in the 〈001〉 directions. Accordingly, in all of them,
the deformation starts along the Bain path, but branches away
onto an orthorhombic path before the face-centered cubic (fcc)
point is reached. In Mo, this orthorhombic distortion does not
influence the ITS; however, in Nb and V, the branching occurs
before the maximum stress on the tetragonal deformation curve
is reached and hence causes a significant decrease in the ITS.
The stress-strain relations and the corresponding theoretical
tensile strengths of ordered γ -TiAl (L10 structure) alloy exhibit
strong anisotropy in different crystalline directions originating
from the structural anisotropy of γ -TiAl.12 In spite of all
these theoretical efforts, the first-principles description of the
ITS in random solid solutions is rather limited. The only
attempt19 employed the virtual crystal approximation (VCA)
to study the ITS of the binary Ti-V for concentrations of
Ti equal to and higher than 30 at.%. The results showed
that the more Ti is present in the alloy, the more the ITS is
decreased.

Vanadium-rich ternary V-Cr-Ti alloys are important can-
didate structure materials for the first-wall/blanket of future
fusion reactors.20,21 These V-based alloys exhibit excellent
mechanical properties, decent thermal creep behavior, high
thermal conductivity, good resistance to irradiation-induced
swelling and damage, and long operating lifetime in the fusion
environment.20–25 Considerable efforts have been made to
find optimal V-based alloy compositions that can endure the
extreme environment of fusion reactors. The available experi-
mental data indicate that reasonable properties can be achieved
by introducing a few percent of Ti and Cr into the V matrix.26

Consequently, the ternary V-Cr-Ti system has attracted broad
interest and, in particular, the compositions with 0–15 at.%
Cr and 0–20 at.% Ti have been intensively investigated.27–31

To the best of our knowledge, most experimental efforts
on V-Cr-Ti alloys have been devoted to the ductile-brittle
transition temperature before and after irradiation, swelling
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properties, and impact toughness as a function of Cr and Ti
contents.

As a promising structure material for fusion reactors,
V-based alloys must not only withstand radiation damage
but should also keep intrinsic mechanical properties and
structural strength. Thus it is necessary to study fundamental
mechanical properties, such as elastic properties, which were
systematically investigated for V1−x−yCrxTiy random alloys
(0 � x � 0.1 and 0 � y � 0.1) in our former works.32,33

The second-order elastic constants describe the mechanical
properties of materials in the small deformation region,
where the stress-strain relations are linear. The ideal strength
describes the mechanical properties of the material beyond the
elastic region, which is important during the alloy design.

In this work, we use the all-electron exact muffin-tin orbitals
(EMTO) method in combination with the coherent-potential
approximation (CPA) to investigate the ITS of elemental bcc
V and Mo solids as well as Mo0.9Tc0.1 and V1−x−yCrxTiy (0 �
x + y � 0.1) random alloys as a function of concentrations.
The primary purpose of our work is to give an account of the
application of the EMTO method to the calculation of ITS in
bcc nonmagnetic metals and random alloys. Second, we aim to
provide a consistent theoretical guide to further optimization
of the composition of V-based alloys for structure material
applications.

The structure of this paper is as follows. In Sec. II, we
describe the computational tool and all important numerical
details. The results are presented in Sec. III. Here, first we
assess the accuracy of our calculations by considering pure Mo
and V and then we study the effects of the alloying elements on
the ideal strength of Mo-Tc and V-Ti-Cr alloys. We continue in
Sec. IV with a discussion about the anisotropy of the attainable
ideal strength and the trend of the computed ideal strength of
Mo-Tc and the V-based alloys for the case of an isotropic
Poisson contraction, making use of band filling arguments,
canonical band theory, and structural energy differences to
explain the anisotropy of the attainable ideal strength and the
trend of the computed ideal strength of Mo-Tc and the V-based
alloys.

II. COMPUTATIONAL METHOD

A. Total-energy calculation

The first-principles method used in this work is based
on density functional theory (DFT)34 formulated within the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approx-
imation for the exchange-correlation functional.35 The Kohn-
Sham equations were solved using the EMTO method.36–38

The problem of disorder was treated within the CPA and
the total energy is computed via the full charge-density
technique.39–42

The EMTO method is an improved screened Korringa-
Kohn-Rostoker (KKR) method,36 where the full potential
is represented by overlapping muffin-tin potential spheres.
Inside these spheres, the potential is spherically symmetric
and constant in between. By using overlapping spheres, one
describes more accurately the exact crystal potential compared
to conventional muffin-tin or nonoverlapping methods. Fur-
ther details about the EMTO method and its self-consistent

implementation can be found in previous works.36–38,41,42 The
accuracy of the EMTO method for the equation of state and
elastic properties of metals and alloys has been demonstrated
in a number of previous works.32,37,40,43–47 However, to our
knowledge, no CPA-based alloy theory has previously been
employed in the ab initio determination of the ideal strength
of random solid solutions. This may be ascribed to the limited
accuracy of the classical CPA-based electronic structure
methods for systems with reduced crystal symmetry. The
present work represents a demonstration of the EMTO-CPA
approach in ideal-strength calculations for random alloys.

B. Ideal tensile strength calculations for bcc crystals

The principles of the response of bcc crystals to uniaxial
loading were developed by Milstein et al.48–51 The first step in
ITS calculations is to compute the equilibrium lattice constant
of the material in the ground-state structure. The present alloys
adopt the bcc structure. In the second step, an uniaxial tensile
strain ε is applied along a specific crystalline direction which
mimics a certain tensile stress σ . For each value of the strain,
we relaxed the deformed structures, partially under constraints
described below, to make sure that no internal forces remain
in the crystal in directions perpendicular to the applied stress.
From the above steps, we obtained energy versus strain curves
and derived stress versus strain data. The first maximum on the
stress-strain curve defines the ITS σm for the selected strain
path.

The stress σ is given by16

σ (ε) = 1

�(ε)

∂E

∂ε
, (1)

where E is the total energy per atom and �(ε) is the volume per
atom at a given tensile strain. ε is the strain of the simulation
cell in the direction of the applied uniaxial force F̂ and is
defined as

ε = l‖ − l0

l0
, (2)

where l‖ and l0 denote the length of the cell parallel to F̂
in the final state and in the initial state (without any force),
respectively. The initial state corresponds to the equilibrium
bcc structure with energy E0. We define the uniaxial strain
energy �E(l‖,F̂) following Ref. 52 as the total-energy change
upon deforming the material in the direction along the applied
force and relaxing with respect to the dimensions in the plane
perpendicular to F̂, viz.,

�E(l‖,F̂) = min
a1,a2

E(a1,a2,l‖) − E0. (3)

The minimization is done with respect to the pair of unit cell
vectors {a1,a2} ⊥ F̂.

In this work, we computed the ITS in the 〈001〉, 〈111〉,
and 〈110〉 directions of bcc elemental solids and alloys. Each
direction breaks the guiding symmetry of the bcc structure
in a different way. First, we chose the [001] axis to be the
direction of the applied force for 〈001〉 ITS calculations. The
symmetry of the bcc lattice is reduced to the body-centered
tetragonal (bct) one on the primary deformation path; see
Fig. 1. Accordingly, we may rewrite Eq. (3) with the in-plane
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FIG. 1. (Color online) Illustration of the lattice distortion of the
bcc structure due to an applied uniaxial stress in the [001] direction.
(a) The unit cell in the absence of strain is bcc (in the bct delineation,
cbct/abct = 1). (b) For finite strain, the lattice symmetry is distorted to
bct and becomes fcc for cbct/abct = √

2. To describe the bifurcation
from the primary tetragonal to the secondary orthorhombic strain
path, the fct reference frame is used.

lattice constant abct ≡ a1 = a2, ai = |ai |, and a1 · a2 = 0,

�E prim(cbct,[001]) = min
abct

E(abct,cbct) − E0, (4)

with cbct ≡ l‖ denoting the unit cell length along [001].
Increasing the axial ratio cbct/abct from 1 to

√
2 transforms

the bcc lattice into the fcc lattice while the crystal remains bct
during the transformation. This transformation corresponds to
the Bain transformation.53

It is known from previous calculations for V (Refs. 6
and 19), as opposed to Mo,15 that a bifurcation to a secondary
orthorhombic strain path occurs before the ITS along the
primary tetragonal strain path is passed, leading to a significant
reduction of the ITS. The observed orthorhombic branching is
defined with respect to the face-centered tetragonal (fct) refer-
ence frame of the primary deformation path (see Fig. 1), while
the branching would correspond to a monoclinic deformation
in the bct reference frame. We used the fct reference frame to
describe the bifurcation in this work. Accordingly, we denote
the uniaxial strain energy of the secondary deformation path
by

�E secon(cfco,[001]) = min
afco,bfco

E(afco,bfco,cfco) − E0, (5)

with afco, bfco, and cfco, cfco ≡ cbct, denoting the lattice
parameters of the face-centered orthorhombic (fco) lattice.

In the actual calculation of the stress-strain relation, we
selected a set of cbct (cfco) values equidistantly separated by
2.2% of the bcc equilibrium lattice parameter corresponding
to different strains ε. For each strain value, we computed the
total energy on a dense mesh of abct (afco and bfco) values to
find the minimum according to Eq. (4) [Eq. (5)]. The total
energies as well as the volume of each state of strain were
fitted to polynomial fit functions and differentiated to obtain
the stress as a function of strain. The maximum strain εm is
then the ITS at the maximum stress σm on a given strain path.
The choice of the order of the polynomial fit functions was
cross-checked to avoid any substantial influence on the values
of σm and of εm. For consistency, we employed the same fit
function for all types of distortion, i.e., along the 〈001〉, 〈111〉,
and 〈110〉 directions.

Straining the bcc structure along the [110] axis reduces the
lattice symmetry to fco guiding symmetry. In the absence of

a

a

[001]

[11̄0]

[110]

afco

bfco

cfco

(a)
[001]

[11̄0]

[110]

afco

bfco

cfco

(b)

FIG. 2. (Color online) Illustration of the lattice distortion of the
bcc structure due to an applied uniaxial stress in the [110] direction:
(a) undistorted lattice and (b) distorted lattice. Both the fco unit cell
used in the computation and the (undistorted and distorted) bcc cell
are sketched.

strain, the fco lattice parameters fulfill afco = bfco = √
2cfco;

see Fig. 2 for a detailed illustration. Here, strain is applied to
bfco ≡ l‖. Assuming isotropic Poisson contraction, afco and cfco

are relaxed, keeping cfco/afco fixed to the initial value of
√

2.
This assumption was used to make the computations feasible.
Previous investigations for V identified the [110] direction as
the strongest one among [001], [110], and [111].54 Thus, the
[110] direction may be considered to be of the least interest in
ITS calculations. We may hence write for the uniaxial strain
energy of the [110] distortion,

�E(bfco,[110]) = min
afco

E(afco,bfco) − E0. (6)

If a uniaxial strain is applied along the [111] direction
parallel to the body diagonal of the bcc structure, then the
symmetry of the lattice is reduced to trigonal symmetry. The
distorted lattice can be equivalently described by a hexagonal
(hex) lattice or a rhombohedral lattice. Here, we chose the hex
lattice, as sketched in Fig. 3. The [0001] axis and the [101̄0]
axis of the hex lattice are oriented parallel to the [111] axis and
the [11̄0] axis of the bcc lattice, respectively. In the absence
of strain, the lattice parameters of the hex unit cell and the bcc
cell are related by ahex = √

2abcc and chex = √
3/4abcc, where

ahex denotes the in-plane lattice parameter of the hexagonal
basal plane (the distance between two atoms of the smallest
equal-sided triangle). The out-of-plane lattice parameter chex

is oriented parallel to the threefold stacking axis. Bcc (111)
planes are stacked along [0001] (ABCABC stacking) and two
successive planes are displaced by 1/3 of chex (cf. Fig. 3). For
each applied strain, interatomic distances in the (0001) planes
are relaxed, while the in-plane symmetry is preserved. Thus,
we assume isotropic Poisson contraction for the [111] type of
ITS calculations, noting that a branching away from trigonal
symmetry has not been reported in previous investigations
for V.54

The uniaxial strain energy relaxed with respect to ahex ≡
a1 = a2 becomes

�E(chex,[111]) = min
ahex

E(ahex,chex) − E0. (7)

When the hexagonal axial ratio chex/ahex is identical to
√

3/2,
the strained hexagonal lattice coincides with the simple cubic
(sc) lattice. Similarly, when chex/ahex = √

3, we recover the
fcc lattice.
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FIG. 3. (Color online) Illustration of the lattice distortion of the bcc structure due to an applied uniaxial stress in the [111] direction. (a) The
undistorted bcc lattice with hexagonal delineation (a wedge representing one-sixth of the conventional hex unit is drawn); the axial ratio is
chex/ahex = √

3/8. (b) The undistorted unit cell projected along [111] ([0001]) is depicted to show more clearly the full symmetry of the hex
lattice. (c) A finite strain lowers the symmetry of the bcc lattice to a trigonal one.

III. RESULTS

A. Equilibrium volume

The theoretical equilibrium lattice parameter of bcc Mo is
3.165 Å, which agrees well with the experimental data55 of
3.141 Å. When 10 at.% Tc is added into the Mo matrix, the
lattice constants decrease from 3.165 to 3.156 Å. This trend can
be understood by the smaller atomic radius of hexagonal close-
packed Tc (1.36 Å) as compared to that of bcc Mo (1.40 Å).55

Theoretical equilibrium lattice parameters and elastic prop-
erties of V and disordered V-Cr-Ti alloys were investigated
with EMTO and the CPA in our previous paper; see Ref. 32.
Since our employed lattice parameters are identical to these
earlier results, we refer the reader to this reference for a detailed
account of the numerical data. Here we only restate the most
important findings necessary to follow the ongoing discussion.

For pure vanadium, the calculated equilibrium lattice
parameter is 2.998 Å, in good agreement with the corre-
sponding experimental value56 of 3.03 Å at low temperature.
For V alloyed with Ti and Cr, we found that the theoretical
lattice constants increase (decrease) with increasing Ti (Cr)
concentrations; for instance, the lattice constant of the alloy
with 10% Cr is 2.981 Å, but for the alloy with 10% Ti, the
lattice constant is 3.021 Å. Our theoretical results confirmed
the experimental trend.57

Our results showed that the EMTO method with the CPA
can be used to describe the elastic properties of V-based
alloys and gave the accuracy and available results in the
small deformation region. Since the ideal strength describes
the mechanical properties of the material beyond the linear
stress-strain response, the ideal strength is very important
during the design process of alloys. Thus, based on the
equilibrium lattice constants and energies that we obtained
in our former calculations,32 we calculated the ideal tensile
strength of pure V, and investigated the ideal tensile strength
of bcc nonmagnetic V1−x−yCrxTiy random alloys as a function
of Cr and Ti (0 � x + y � 0.1) concentrations using EMTO
with the CPA.

B. Ideal strength of pure vanadium and molybdenum

To assess the reliability of our computational approach,
we first performed the simulation of a tensile test in V
for uniaxial loadings along the [001], [110], and [111]
directions. A branching to a secondary orthorhombic path

under uniaxial loading along [001] was predicted for V.6,19

The branching point occurs before the maximum stress on the
primary tetragonal deformation path is reached. Here, using
our computational approach, we investigated this bifurcation
for V with the aim to reveal its impact on the attainable ITS.

The corresponding stresses as a function of strain along the
[001] direction are displayed in Fig. 4. Along the tetragonal
deformation path, stress increases with increasing strain up
to a maximum of σm = 16.1 GPa at a strain of εm =
16.0%. The significantly lower ideal stress and strain on the
orthorhombic deformation path are clearly different from those
corresponding to the tetragonal deformation path. The stress
corresponding to the secondary orthorhombic path reaches a
maximum of 11.6 GPa at εm = 9.0%. Hence the ITS of V is
limited by the bifurcation to the secondary orthorhombic path
in the [001] direction, in line with the previous observations.6,19

Figure 5 displays the stresses as a function of strain along all
investigated directions for V. Compared to the [001] direction,
the ideal stresses are much higher in the [111] direction and
the [110] direction for which the stress reaches a maximum
of 26.7 GPa at εm = 35.2% and 37.6 GPa at εm = 38.3%,
respectively.

In the inset of Fig. 5(a), we also show stress as a function
of strain in the small deformation region (ε � 0.5%). These
strain-stress relations are linear and follow Hooke’s law,

FIG. 4. (Color online) The stress of bcc V under [001] tension as
a function of the applied strain. Open symbols and closed symbols
refer to the primary tetragonal deformation path and to the secondary
orthorhombic deformation path, respectively.
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FIG. 5. (Color online) The (a) stress and (b) energy of pure V in
the [001] (secondary deformation path), [111], and [110] directions
as a function of strain. The insets show the trends of ideal strength
and energy in the smaller strain region.

σ = E · ε, where E is Young’s modulus, which depends on
the direction of the applied force.60 For further use, the explicit
expression of E in terms the cubic elastic constants (C11, C12,
and C44) for a uniaxial stress in the 〈001〉 directions (E〈001〉)
and in 〈111〉 directions (E〈111〉) is given by

E〈001〉 = 6C ′ B

C11 + C12
, (8)

E〈111〉 = 3C44
1

1 + C44
3B

, (9)

where C ′ = (C11 − C12)/2 and B = (C11 + 2C12)/3 are the
tetragonal shear elastic constant and the bulk modulus,
respectively. According to the Fig. 5(a) inset, the [001]
direction exhibits the largest Young’s modulus, which means
that the [001] direction is the strongest direction among the
three selected ones in the small deformation region, while
the Young’s moduli in the [110] and [111] directions are
smaller and degenerate. Indeed, using the theoretical elastic
parameters of bcc V,32 we obtain E〈001〉 = 205.3 GPa and
E〈111〉 = 101.4 GPa. These values are in good agreement with
those derived directly from Fig. 5(a) (approximately 200 and
110 GPa for E〈001〉 and E〈111〉, respectively). This behavior at
small strains is distinct from the one for the larger, nonlinear
deformation region, where [110] ultimately replaces [001] as
the strongest direction.

TABLE I. The ideal tensile strength σm and the corresponding
strain εm for the tetragonal (V and Mo) and orthorhombic (V)
deformation paths in the [001] direction.

Tetragonal Orthorhombic

System Method σm (GPa) εm(%) σm (GPa) εm(%)

V This work 16.1 16.0 11.6 9.0
PAW, Ref. 54 19.1 18.0
PAW, Ref. 6 17.8 17.0 11.5 10.0
PAW, Ref. 58 18.9 18.2
PP, Ref. 19a 17 16.0 14 12.0
PP, Ref. 17 12.2 8.3

Mo This work 26.7 12.0
FP-LAPW, Ref. 59 25.4 10.0
PP, Ref. 15 28.8 13.0

aValues estimated from figure.

The ideal tensile strengths σm corresponding to the strains
εm from our and other calculations in the [001] direction
and in the other two directions are listed in Tables I and II,
respectively. In Table I, for comparison, we include results ob-
tained for both primary tetragonal and secondary orthorhombic
path, as many of the previous calculations were performed
only for the prior one. From Table I, it can be seen that for
the tetragonal deformation path, projector-augmented-wave
(PAW) works6,54,58 reported similar ideal-strength values, such
as Nagasako et al.6 who gave a value of σm = 17.8 GPa at
εm = 17.0% and Liu et al. who reported a value of σm =
19.1 GPa at εm = 18.0%. Our EMTO results for stress and
strain are slightly smaller than the PAW values, however, they
are still in good agreement with them. Li et al.19 tabulated a
value of σm = 17 GPa at εm = 16.0% using pseudopotentials
(PPs). Our results are in agreement with their values. Krenn
et al. obtained an ITS value of 12.2 GPa at an attainable
strain of 8.3%, which is considerably lower compared with
all other theoretical results. The difference may be due to
their estimation of the ideal stress assuming a sinusoidal
stress-strain relation on the basis of Frenkel’s61 and Orowan’s62

works. Compared to the tetragonal deformation path, the ITS
and the maximum strain are significantly reduced along the
orthorhombic path, in accordance with previous investigations.
The ITS of V decreases by about 4 GPa, which is in line with
the 6 and 3 GPa decrease as reported in Ref. 6 (PAW) and
Ref. 19 (PP), respectively.

From Table II, we can see that our computed maximum
stress for the [110] direction is somewhat larger than the
only available theoretical data, given in Ref. 54. This may be
attributed to our constraint relaxation (fixed lattice parameter

TABLE II. Comparison of the present and former (Ref. 54) ideal
tensile strength σm and the corresponding strain εm of bcc V calculated
in the [111] and [110] directions.

Direction/[111] Direction/[110]

Element Method σm (GPa) εm(%) σm (GPa) εm(%)

V This work 26.7 35.2 37.6 38.3
PAW, Ref. 54 31.0 36.0 32.8 42.0
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FIG. 6. (Color online) The ideal tensile strengths of Mo single
crystal and the Mo-10Tc alloy as a function of strain in the [001]
direction.

ratio cfco/afco = √
2). If this constraint is released as done in

Ref. 54, then the total energy for each lattice distortion lowers
and hence the uniaxial strain-energy curve may be shallower
compared to a constraint calculation.

Comparing the ITSs along the [001], [111], and [110]
directions, we identify the [001] direction as the weakest one.
Former ab initio approaches2,8,15,16,18,63–65 also identified the
[001] direction as the weakest direction in tension for elements
crystallizing in the bcc structure. The ITSs of V along the [111]
and [110] directions are clearly larger than the one along [001],
with the ideal strength along the [110] direction exhibiting the
largest value. Černý and Pokluda18,65 investigated various bcc
transition metals and also predicted the largest stresses for the
[110] direction.

To further assess the accuracy of our computational ap-
proach, we calculated the ITS of bcc molybdenum. Since the
[001] direction was already identified to be the weakest direc-
tion of bcc Mo and no branching to a secondary deformation
path occurs before the ITS on the primary deformation path is
reached,15 here we concentrated on the primary deformation
path along the [001] direction only. The ideal strength of bcc
Mo obtained in this work and the previously published results
are listed in Table I. One can see that the present results are
very close to the other theoretical evaluations.

Based on the above findings, we conclude that our theo-
retical tool is able to describe the ideal strength of the V and

Mo systems with sufficiently high accuracy and thus can be
further employed to study V- and Mo-based alloys.

C. Ideal strength of Mo-Tc alloys and V-based alloys

Next, we investigated the alloying effect of Tc on the ideal
strength of Mo in the concentration range up to 10 at.% Tc
along the [001] direction. We took into account the possibility
of a branching from the primary bct deformation path to
the secondary orthorhombic deformation path for the present
Mo-Tc-based alloys. Based on these calculations, we can
exclude a bifurcation from the primary bct deformation before
the ideal strength is reached, i.e., the Mo-10Tc alloy fails
by cleavage. The stress-strain dependence for Mo-Tc alloys
is displayed in Fig. 6 and the corresponding ITS data are
listed in Table III. From Fig. 6, we identify σm = 24.9 GPa at
ε = 11.6% for the Mo-10Tc alloy. Compared to pure Mo, Tc
decreases the ideal strength. An explanation of the obtained
alloying effect on the ITS of bcc Mo will be given in Sec. IV.

In the following, we turned to the V-based alloys and
investigated the effect of the alloying elements Cr and Ti on
the ITS of bcc V. The total concentration of both solutes was
varied in the range from 0 to 10%.

Figure 7 shows the composition dependence of the ideal
strength of ternary bcc V-Cr-Ti random alloys along the [001],
[111], and [110] directions, and the corresponding numerical
data for selected compositions are listed in Table III. We find
that the ideal strengths of the binary V alloys increase with
increasing Cr content for all directions and decrease with
Ti addition for all directions. For instance, along the [001]
direction, an addition of 10% Ti to V reduces the ITS from
11.6 to 10.5 GPa. If, however, 10% Cr are added to the V
matrix, the ITS increases by 1.4 GPa. Furthermore, we infer
that the [001] direction exhibits the lowest maximum strain
value among all three directions for all V-based alloys.

The addition of chromium or titanium to the vanadium
matrix leads to opposite effects in the ideal strength of binary
vanadium alloys. It is apparent from our data that the effect
of both elements on σm is, however, of similar magnitude.
As a result, σm is almost unchanged if equal amounts of Cr
and Ti are alloyed to V. That is, equicomposition V-Ti-Cr
alloys possess nearly the same ideal strength as pure vanadium
(equicomposition alloys are situated along the diagonal in
Fig. 7). For example, the ideal strength of V-5Cr-5Ti is
11.6 GPa, which is identical to the value of V.

TABLE III. The ideal tensile strength σm, and the corresponding strain εm from our calculations in the [001], [111], and [110] directions
for vanadium-based alloys and [001] for Mo-10%Tc alloy.

Tetragonal/[001] Orthorhombic/[001] Direction/[111] Direction/[110]

Composition σm (GPa) εm(%) σm (GPa) εm(%) σm (GPa) εm(%) σm (GPa) εm(%)

V-10Cr 18.4 16.2 13.0 9.2 27.7 34.3 38.7 37.6
V-5Cr 17.3 16.1 27.3 34.4 38.2 38.0
V 16.1 16.0 11.6 9.0 26.7 35.2 37.6 38.3
V-5Cr-5Ti 16.0 16.0 11.6 9.1 26.5 35.3 37.3 38.2
V-5Ti 14.9 15.3 26.1 35.2 36.6 38.5
V-10Ti 13.7 15.2 10.5 9.0 25.4 35.3 35.9 38.3
Mo-10Tc 24.9 11.6
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FIG. 7. (Color online) The ideal strength of V-based alloys in
the [001], [111], and [110] directions as a function of Cr and Ti.
All stress values are in GPa. The [001] stress corresponds to the
secondary (orthorhombic) path (i.e., fully relaxed structure within
the plane perpendicular to the strain), whereas the [111] and [110]
stresses correspond to isotropic Poisson contraction.

Comparing the maximum strains on the primary and the
secondary deformation paths along the [001] direction with
each other, we can see that the orthorhombic bifurcation
occurs before the maximum stresses on the primary tetragonal

deformation path are reached for all selected V-based alloys.
The maximum stresses of the alloys decrease due to the
orthorhombic branching, e.g., the 18.4 GPa of the binary
V-10Cr alloy on the tetragonal path drops to 13.0 GPa on
the orthorhombic path.

Li et al.19 calculated the ideal strength of Ti-V alloys along
the [001] direction for concentrations of Ti � 30 at.% based
on a PP method and the VCA. Their results confirm our
trend, namely, that the more Ti is present in the alloy, the
more the ideal strength is decreased. To further assess our
results, we also calculated the ideal strength on the primary
deformation path of the V-30Ti alloy. Our value of 9.4 GPa is
close to the 10 GPa obtained by Li et al.19 for the same alloy
composition. More importantly, the alloying effect obtained
by Li et al. is −6.7 GPa/30%Ti, which is in perfect agreement
with the one obtained by us. Assuming a linear decrease of
the ITS with increasing Ti concentration in the range from 0
to 30%, the alloying effect on the ITS along the secondary
deformation path is −0.13 GPa/1%Ti as obtained by Li
et al.,19 which is in reasonably good agreement with our value
of −0.11 GPa/1%Ti.

From the above results, we conclude that alloying V with
Ti and/or Cr produces similar trends (although quantitatively
slightly different) on the ITS for two strain paths for an
uniaxial load along the [001] direction. A bifurcation from
the primary tetragonal path to the secondary orthorhombic
path accompanied by a significant reduction of the ITS occurs
for all investigated V-based alloys. However, one should point
out that the above results might not be the case for many other
complex solid solutions, where alloying may very well induce
or remove the above orthorhombic branching of the uniaxial
strain and thus have a more severe impact on the maximum
attainable ideal stress.

IV. DISCUSSION

The anisotropy of the maximum stress of V between the
〈111〉 directions and the 〈001〉 directions may be understood
on the basis of structural energy differences (SEDs)66–69 of
cubic structures, as outlined in the following. Here, we focus
on the primary tetragonal deformation path (along the 〈001〉
directions) because this deformation follows the Bain path
from bcc to fcc. The secondary orthorhombic deformation
path follows the Bain path only up to the branching point.
Stress along one of the 〈111〉 directions occurs along a trigonal
deformation path from bcc to sc. Using SEDs, we explain the
calculated alloying trend of Mo-Tc alloys and V-based alloys
in the 〈111〉 and 〈001〉 directions.

We note that the presented arguments cannot be used to
explain the relative magnitude of σm for uniaxial loading in
the 〈110〉 directions of the bcc lattice because the distorted
orthorhombic lattice does not coincide with a higher sym-
metric cubic one for any value of the strain ε > 0 (Poisson
contraction), i.e., the uniaxial strain energy does not level off
as if there is a nearby symmetry dictated extremum.

A. Structural energy difference and ideal strength

The distorted bct lattice of the [001] tetragonal deformation
and the distorted hex lattice of the [111] deformation coincide
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with the fcc lattice (at cbct/abct = √
2) and with the sc lattice (at

chex/ahex = √
3/2), respectively. The fcc and the sc structures

of V, as well as fcc Mo, were identified to be the nearest
symmetry-dictated maxima to the bcc phase of the respective
energy versus strain curves,54,70–72 i.e., the uniaxial strain
energy must level off to the fcc-bcc SED and to the sc-bcc
SED for an elongation along [001] and an elongation along
[111], respectively, albeit at strains larger than the maximum
strain (εm).

The fcc structure of the tetragonal strain path ([001]
direction) and the sc structure of the trigonal strain path ([111]
direction) can thus be identified as the structures associated
with the minimum-energy “barrier” in total energy73,74 that
appear on the two uniaxial loading paths of V and Mo nearby
the equilibrium bcc phase. The existence of a nearby maximum
in energy on a particular strain path implies a limitation on the
attainable maximum stress.15,49,74,75 It restricts the uniaxial
strain energy (�E) to the SEDs within the strain interval (�ε)
to accomplish the transformation from bcc to either fcc or sc,
i.e., the ratio �E/�ε is bounded.

It should be pointed out once more that in the case of V
or Mo, the fcc structure and the sc structure are symmetry-
dictated maxima of the uniaxial strain energy along the [001]
primary tetragonal strain path and along the [111] trigonal
strain path, respectively. As a consequence, the attainable
maximum stress may be directly correlated to the (structural)
energy difference between these maxima and the nearby bcc
equilibrium phase. A theoretically possible alternative bcc to
fcc transformation (or vice versa) via intermediate bct states
may occur under the assumption that both bcc and fcc are
minima in energy of the tetragonal configuration space. In
this case, the minimum energy barrier for the bcc to fcc
transformation on the uniaxial deformation path is associated
with a stress-free bct state.73,74 While the existence of such
an unstressed intermediate state is guaranteed, no definite
statements on either the height of the minimum energy barrier
or its geometry (e.g., lattice parameter ratio, cbct/abct) can
be made without knowledge of the deformation path itself
because the lattice parameter ratio of a stress-free bct state
is not dictated by symmetry.70–72 It appears that a simple
estimation of the attainable maximum stress on the basis of
SEDs is hindered in this case.

For a quantitative estimation of the ITS, below we assume
a state of strain with constant volume fixed to the theoretical
bcc equilibrium volume per atom, �bcc. This is to keep
the presented argument both simple and general (the only
additional input is the total energy of the fcc state), and is
not a severe approximation since the relaxed volumes of all
three cubic structures of V, i.e., the volumes of the initial and
final states of the transformation, differ from each other by less
than 6 %. We then may approximate the “true” σm by rewriting
Eq. (1),

σm ≈ σ SED
m = 1

�bcc

�E

�ε
, (10)

where �E is either the fcc-bcc or the sc-bcc SED, and
�ε is the strain at constant volume necessary to transform
the bcc lattice into either the fcc lattice or the sc lattice.
One may readily find �ε[001] = (1 − 0.51/3)/0.51/3 ≈ 0.260
and �ε[111] = (1 − 0.251/3)/0.251/3 ≈ 0.587 for the [001]

distortion and the [111] distortion, respectively. For �E

of V, we computed Efcc − Ebcc = 20.48 mRy/atom and
Esc − Ebcc = 82.76 mRy/atom. Using �bcc = 13.4695 Å

3

and Eq. (10), the above SEDs yield σ SED
m = 12.8 GPa and

σ SED
m = 22.9 GPa for the [001] distortion and the [111]

distortion, respectively, with their ratio being 1.79. These
simple estimates should be compared to our ab initio results
(Table I), where we obtained 16.1 GPa and 26.7 GPa for the
respective ideal stresses, and their ratio is 1.66.

For the V-based alloys, from Table III, we can see that
the ratio of the calculated maximum strain along the [111]
direction to the calculated maximum strain along the [001]
direction for all alloys varies from 2.11 to 2.32. That seems
plausible since the strain at constant volume necessary to
transform the bcc lattice into the sc lattice (�ε[111]) is much
larger than the strain necessary to transform the bcc lattice
into the fcc lattice (�ε[001]); in fact, their ratio is 2.260. This
agreement may, however, be fortunate. It is obvious that the
“true” εm is much smaller than �ε, since the uniaxial strain
energy levels off around the stable bcc state and around the fcc
and sc maxima. If this leveling off is presumably symmetric
on the minimum and the maximum in energy, then εm equals
roughly �ε/2 for the respective directions, which, however,
preserves their mutual ratio (2.260).

B. Electronic structure and ideal strength

The ideal strength of materials is ultimately due to the
atomic bonding strength. It is well established76–78 that the
electronic structure and the bonding in transition metals
is governed by a narrow valence d band that hybridizes
with a broader valence nearly-free-electron sp band. SEDs
for the transition-metal series (disregarding the effect of
magnetism in the present discussion) that give rise to the
experimentally observed sequence of stable crystal structures
are well understood in terms of band filling within this band
picture.66–68 It is clear that it is mainly the gradual filling of
the d band that not only dictates crystal structure sequences
in all three transition-metal series, but also trends of the
equilibrium volume dependence,78,79 cohesive energy,68,79,80

bulk modulus,81 and elastic constants.82,83 Here we argue that
the observed trend of σm for V-Cr-Ti and Mo-Tc alloys may
as well be understood on the basis of band filling arguments.

Figure 8 shows the density of states (DOSs) of pure
vanadium alloyed with 10% Cr and 10% Ti, as well as the
DOS of the equicomposition V-5Cr-5Ti alloy, as obtained from
our CPA calculations. We notice that the curves of V-10Cr
and V-10Ti are almost rigidly shifted with respect to the one
of V, while the shape of their DOSs is merely effected by
alloying vanadium with adjacent elements in the periodic table.
This rigid band shift behavior signals an increase of the d

occupation (increase of the number of valence electrons) and
a decrease of the number of d occupation (decrease of the
number of valence electrons) for Cr addition and Ti addition,
respectively. Thus, alloying V with Cr and Ti changes the
band filling. The DOS of V-5Cr-5Ti is virtually not shifted
with respect to the one of V, which indicates a zero net gain in
the number of d electrons in the matrix.

Since the band filling is the most important parameter
determining structural stability in transition metals, it is
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FIG. 8. (Color online) The DOSs of V-based alloys show that
alloying with a single element leads mainly to a rigid band shift of
the DOS. The inset displays the complete valence band of pure V.
Energies are given relative to the Fermi level, which is indicated by a
vertical dotted line.

straightforward to correlate the d-band filling due to alloying
to the ideal stress via SEDs. For the refractory element V
with a d-band occupation of approximately four electrons,
one expects an increase of the fcc-bcc SED if more electrons
are added into the d band since the fcc-bcc SED of Cr is larger
than the one of V.66,67,72 That is, the SEDs corresponding to
intermediate band fillings are simply assumed to lie in between
the values of adjacent elements, corroborated by results of
canonical band theory.66,69 In other words, adding electrons
starting at the band filling corresponding to the one of V
stabilizes the bcc structure with respect to the fcc structure.
The opposite holds for Ti alloying: the fcc-bcc SED of Ti is
smaller than the one of V, which means a destabilization of
the bcc structure with respect to the fcc structure if electrons
are removed from the d band. Figure 9 displays the uniaxial
strain energy as a function of strain for V-based alloys in the
[001] direction. It is apparent that with respect to the curve of
V, the energy-strain curve rises more rapidly with increasing
Cr concentration and decreases more rapidly with increasing
Ti concentration. Furthermore, the energy-strain curve of the

FIG. 9. (Color online) The uniaxial strain energy of V-based
alloys for an applied strain in the [001] direction (primary deformation
path). The higher the 3d-band occupation is, the steeper the curve
progression is.

TABLE IV. SEDs (in mRy) of the fcc and the sc structure with
respect to the stable bcc phase for bcc V1−x−yCrxTiy random alloys.
Based on these energy differences and volumes from Ref. 32, the
ideal strength σ SED

m (in GPa) is approximated according to Eq. (10).

Direction/[001] Direction/[111]

Composition Efcc − Ebcc σ SED
m Esc − Ebcc σ SED

m

V-10Cr 23.00 14.6 84.79 23.9
V-5Cr 21.74 13.7 83.99 23.5
V 20.48 12.8 82.76 22.9
V-5Cr-5Ti 20.28 12.6 82.76 22.8
V-5Ti 19.06 11.8 81.98 22.4
V-10Ti 17.63 10.8 80.81 21.9

equicomposition alloy (V-5Cr-5Ti) is similar to that of V.
Based on the above trends and according to the behavior of
SEDs with band filling, we expect that the ideal strength in the
[001] direction increases (decreases) with increasing Cr (Ti)
concentration. To the best of our knowledge, sc-bcc SEDs for
3d transition metals have not been systematically investigated
so far, apart from the FM elements Fe, Co, and Ni,84 and Cu.85

From the trend of the sc-bcc SEDs, we may, however, deduce
the behavior of σm along the [111] direction as a function of
band filling.

To confirm our expectation, we computed SEDs of
vanadium-based alloys and present the results in Table IV.
Following the same reasoning as before, we also computed
σ SED

m according to Eq. (10), employing the theoretical equilib-
rium volumes of these bcc alloys that we reported prior.32 Note
that the influence of the volume change due to alloying [which
enters Eq. (10)] is about 2% and is not primarily responsible
for the observed trend of σm since the volume effect is much
smaller than the effect of �E.

Our calculated SEDs clearly substantiate an increase of
Efcc − Ebcc with Cr addition, while the opposite effect is
observed upon alloying with Ti. The function Esc − Ebcc

follows the same trend. On the basis of our simple estimate of
the ideal strength (Table IV), we conclude with respect to bulk
V an increase of σm for the V-Cr binary alloys and a reduction
of the ideal strength in the case of V-Ti binary alloys. Our data
affirms the larger relative change of σm for the [001] direction
compared with the relative change of σm for the [111] direction.
We find for the equicomposition alloy V-5Cr-5Ti that its ideal
strength almost retains the ideal strength of pure V.

Here we would like to bring up an interesting and
important detail related to the above correlations. For the [001]
distortions in V-Cr-Ti alloys, it is found that the composition
dependence of the ideal strength correlates well with that of
the SEDs and also with the one followed by E〈001〉, which
is ultimately determined by the composition dependence of
C ′.32 However, for the [111] distortions, the ideal strength vs
SED correlation is not followed by the E〈111〉. For instance,
Cr increases the [111] ideal strength and the sc-bcc energy
difference, but slightly decreases E〈111〉 and C44. In other
words, the present results confirm the often quoted C ′ vs
fcc-bcc energy difference correlation.82,83 However, no such
correlation seems to be valid between the C44 (or E〈111〉) and
the sc-bcc energy difference.
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For Mo-Tc alloys, Tc decreases the ideal strength compared
to the value of Mo. The reason is that bcc Mo, with
approximately 4.6 electrons, as obtained from our EMTO
calculation, has a larger d-band occupation than V. According
to band filling theory and DFT calculations,66,72 the fcc-bcc
SED of Tc is smaller than the one of Mo, which means a
destabilization of the bcc structure with respect to the fcc
structure. Thus, based on Eq. (10), the ideal strength of Mo-Tc
should be smaller than that of Mo, which is in line with the
results from Fig. 6.

V. CONCLUSIONS

Using the EMTO method in combination with the CPA,
we have investigated the ideal strength of bcc V-based alloys
in the [001], [110], and [111] directions and of Mo in the
[001] direction. In the [001] direction, we calculated the ITS
of V and V-based alloys along the tetragonal and orthorhombic
deformation paths. All other ideal strengths considered in this
work correspond to isotropic Poisson contraction, viz., no
shape change was allowed perpendicular to the uniaxial stress.
The present computed values for both V and Mo are in good
agreement with previous calculations and thus confirm that our
methodology has the accuracy needed for such calculations.

For Mo-Tc random alloy, we have found that adding Tc to
Mo decreases its ITS. In the case of V-based alloys, we have
obtained that Cr addition increases and Ti addition decreases
the ideal strength of bcc V in all three crystallographic
directions. As a consequence, the ideal strength of V-Cr-Ti
alloys remains virtually unchanged if equal amounts of Cr
and Ti are introduced into the V host. We have shown that
the observed alloying effects on the ideal strength can be
understood on the basis of band filling arguments and structural
energy differences.

The strength of a material in the range of validity of Hooke’s
law is characterized by its elastic constants. In our previous
paper,32 we investigated the strengthening effects of Cr and Ti
on the elastic constants of disordered V-Cr-Ti alloys and found
that Cr increases the tetragonal shear modulus (C ′) and Ti
decreases it, while alloys with equiconcentrations have similar
C ′ values as the elemental V. The effects of Cr and Ti on

the C44 elastic constant of V are somewhat smaller (and have
opposite signs) compared to those obtained for C ′. On this
ground, combining our findings for the elastic regime and those
obtained in this work for the ideal strength of V-Cr-Ti ternary
alloys, we conclude that Cr strengthens the ITS and C ′ of these
V-based alloys and Ti has a weakening effect on both ITS and
C ′. Furthermore, it is known82,83 that the Efcc − Ebcc SEDs in
nonmagnetic transition metals scale with their C ′. This relation
can now be extended to our vanadium alloys: an increase of
the d-band filling by alloying Cr to V leads to increasing
C ′ and ideal stress along the [001] direction, which scales
with the corresponding SED. The effect of adding Ti to the V
matrix (decrease of the d-band filling) is opposite to that of Cr
addition on both C ′ and σm. We have shown that no similar
correlation between C44, ideal strength, and sc-bcc structural
energy difference can be established for the [111] mode.

The present results offer a consistent starting point for
further theoretical modeling of the micromechanical properties
of technologically important transition-metal alloys. Based
on these achievements, we conclude that the EMTO-CPA
approach provides an efficient and accurate theoretical tool to
design the mechanical strength of nonmagnetic bcc random
solid solutions and reveal the composition dependence of
this fundamental physical parameter. Nevertheless, in such
applications, one should always monitor the basic muffin-tin
and single-site CPA errors and make sure that they remain
at an acceptable level as a function of the lattice distortion
and chemical composition. The extension of the present
investigation to the case of magnetic alloys (such as the
stainless steels) and to other Bravais lattices is in progress.
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