
PHYSICAL REVIEW B 87, 214202 (2013)

Inverse simulated annealing for the determination of amorphous structures
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We present an efficient optimization method to determine the structure of disordered systems in agreement with
available experimental data. Our approach permits the application of accurate electronic structure calculations
within the structure optimization. This technique is demonstrated within density functional theory by the
calculation of a model of amorphous carbon.
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Amorphous solids can be produced from almost any chem-
ical system and are of great interest due to their large variety of
technologically important applications. In addition to conven-
tional silicate glasses, they are, for example, used in optical
waveguides (oxides), plastics (organic polymers), solar cells
(semiconductors), biomaterials (amorphous metals), xerogra-
phy, and nonvolatile memory devices (chalcogenides), to name
but a few.1,2 Nevertheless, finding their atomic-scale structure
is still a major challenge in material science2–4 due to the
absence of lattice periodicity and long-range-order character-
istics of a crystalline solid. Many sophisticated modeling tech-
niques from the field of crystal-structure prediction are based
on searching the global minimum in the energy landscape for
periodic structures.5–13 However, an amorphous solid does not
correspond to a global, but to a local, energy minimum, which
is energetically low enough to stabilize the structure against
alternative packings and exhibits desirable target properties.

The most commonly applied computational technique to
obtain the amorphous structure is to slowly quench it from
the melt by Monte Carlo (MC)- or molecular dynamics
(MD)-based simulated annealing (SA).14 However, the lack of
exploitable symmetry and, therefore, large number of degrees
of freedom requires the cooling to be conducted as slowly
as possible to determine an approximation of the amorphous
structure, and is, therefore, computationally very demanding.
This is even more pronounced in conjunction with accurate
ab initio electronic structure techniques, in spite of significant
progress in recent years,15,16 allowing for satisfactory structure
determinations.17–20

Instead of performing an elaborate calculation to obtain an
approximate amorphous model and to assess a posteriori how
well it matches the experiment, McGreevy and co-workers
demonstrated that it can be beneficial to reverse this procedure,
hence the name reverse Monte Carlo (RMC).21,22 Contrary
to energy-based minimization techniques, this method aims
at directly modeling the structure without invoking any
computationally expensive potential-energy calculation, using
only available experimental data. Specifically, the available
experimental data are reproduced simply by minimizing a
function of the form

F(R) =
∑

p

wp

[
χp(R) − χ exp

p

]2
(1)

under variation of the atomic positions R = {ri} using the
metropolis Monte Carlo method.23 In Eq. (1), χp(R) and χ

exp
p

are the calculated and experimental values, respectively, of a

property p, while wp = 1/σ 2
p is a weight factor and σp is the

experimental uncertainty for the corresponding property.
Even though p can, in principle, be any arbitrary property,

in practice, only geometric quantities, obtainable from neutron
or x-ray scattering data such as the structure factor or the
pair-correlation function for which χp(R) can be evaluated
easily and quickly, are employed. In particular, typically no
electronic quantities based on accurate electronic structure
calculations are utilized, which would otherwise be compu-
tationally unfeasible. While on the one hand, RMC allows for
an efficient and routine modeling of rather complex disordered
structures, on the other hand, the resulting models are not
necessarily physically sensible. It is, therefore, good practice
to circumvent that as much as possible by imposing specifically
selected constraints.22,24–26 Although, eventually, this often
leads to rather pleasing results, this may not be the case
when studying unknown systems where good constraints are
not known from the outset. In addition, since the atomic
configuration in RMC is not relaxed into a local-energy
minimum, the resulting structure is not necessarily stable.

The inverse design technique of Franceschetti and Zunger
allows one to, at least partially, circumvent the shortcomings
just mentioned by determining the crystal structure based on
electronic structure properties, which are rather sensitive with
respect to the atomic positions. In their method, an inner local
geometry optimization is performed in each optimization step
to relax the structure.27 However, for the sake of efficiency,
the latter is conducted using an empirical valence force field
only.28 Furthermore, in order to facilitate the calculation, they
confine themselves to highly symmetric structures on a given
crystal lattice.

In this work, we improve upon the existing approaches
by proposing an efficient method, which we call inverse
simulated annealing (ISA). This method combines the global
minimization of a linear combination consisting of various
geometric and electronic properties with structure relaxation to
determine an amorphous solid in best agreement with available
experimental data. Specifically, this is achieved by adding the
potential energy U (R) to the objective function of Eq. (1), and
employing a modified hybrid Monte Carlo (HMC)-based SA
scheme to minimize it. We will demonstrate that the present
method is efficient enough to be applicable in conjunction
with accurate electronic structure calculations, and in this way
allows one to routinely determine the amorphous structure.

In the following, we will confine ourselves to effective
single-particle theories, such as density functional theory
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(DFT).29 Hence, the modified objective function to be min-
imized reads as

Ũ (R) = U (R) +
∑

p

wp

[
χp(R) − χ exp

p

]2

+
∑

q

wq

(
ξq[R,{ψi}] − ξ exp

q

)2
, (2)

where Ũ (R) is a fictitious energy and U (R) is the potential
energy, as obtained by DFT, while ξq [R,{ψi}] and ξ

exp
q are

the computed and experimental values, respectively, of an
electronic quantity q. Note that the variance to Eq. (1), wp

and wq , now acquire the dimensions of energy divided by the
dimension of χ2

p and ξ 2
q , respectively.

In minimizing Ũ (R), we take advantage of the fact that by
using Eq. (2), the accessible phase space is substantially re-
duced and restricted to energetically low-lying configurations.
In other words, even though the dimensionality of the phase
space is equally vast, the optimization is guided in a funnel-like
fashion towards the minimum of Ũ (R). Obviously, in spite of
that, we still need a global optimization method to minimize
Eq. (2) that is efficient enough to enable the calculation of U (R)
at the DFT level of theory. The fact that the derivatives of some
of the properties in Eq. (2) with respect to R are not directly
available and may not even exist due to possible discontinuities
immediately suggests a MC-based minimization procedure.30

The development of such a technique is therefore an essential
part of the present work.

For the purpose of minimizing Eq. (2), while at the same
time using as few electronic structure calculations as possible,
we propose here a “fuzzy” HMC-based SA scheme within
the NVE instead of the more common NVT ensemble that
consists of only a single modified MD step. In comparison
to standard MC- or MD-based SA techniques, we found that
this technique performs particularly well as a minimization
method, as will be shown. The positions and velocities of all
atoms in each trial move are varied according to a slightly
modified velocity-Verlet algorithm,

r′
i = ri + vidt + 1

2

f̃i
mi

dt2

(3)

v′
i = C

[
vi + 1

2

(
f̃i
mi

+ f̃′
i

mi

)
dt

]
,

where vi are the ionic velocities, mi are the nuclear masses, and
dt is a randomly chosen time step from a uniform distribution
within the interval [0, dtmax], while the prime superscripts are
used to indicate quantities of the new (trial) configuration.
The forces f̃i are the best possible estimate for −∂Ũ/∂ r̃i , i.e.,
omitting the contributions from those terms in the sums of
Eq. (2) for which no derivatives are directly available. This
and the presence of a maximum time step dtmax, which is in
general much larger than in standard MD and continuously
adjusted to obtain an acceptance rate of about 50%, is why we
call our modified HMC algorithm fuzzy. In order to ensure that
the total energy is conserved, in Eq. (3) we have introduced
an additional prefactor denoted as C, which was chosen in
such a way that 1/2

∑N
i mi |v′

i |2 = K ′ = E − U ′ holds, where
K ′ is the kinetic energy of the system of the proposed trial
configuration. Within the NVE ensemble, the probability of

acceptance of a trial move is given by31

P = min

[
1,

(
E − U ′

E − U

)3N/2−1]
, (4)

where N is the number of atoms.
As already mentioned, the present approach differs from

the standard HMC algorithm in the fact that the NVE instead
of the usual NVT ensemble is employed. Furthermore, only a
single MD step is taken in each HMC step and the velocities are
not randomly reinitialized thereafter. The necessary random
element in our HMC method comes from the randomly
chosen, variable time step dt instead. Whenever a HMC
move is accepted, the positions and velocities are updated
as (ri ,vi) = (r′

i ,v
′
i), just as in normal MD. Otherwise, if an

HMC move is rejected, then one possibility is to maintain
(ri ,vi), in which case no update is required. We will denote
this straightforward version of our method as fHMC-NVE.
However, regarding the efficiency of the minimization proce-
dure, it is desirable to design an algorithm that combines a
large time step with a high acceptance rate. It appears that
an improvement in this direction is obtained by maintaining
the velocities of the rejected configurations, i.e., by updating
according to (ri ,vi) = (ri ,v′

i) after a rejection. In this modified
algorithm, indicated hereafter as mfHMC-NVE, the velocities
are gradually turned in the direction of the forces upon repeated
rejections. As a consequence, the acceptance probability
for large displacements (i.e., large dt) increases, since the
displacements become more and more parallel to the forces,
i.e., the direction of decreasing potential energy.

To assess the performance of our HMC-based minimization
technique, we have applied it to carbon using the empirical im-
proved long-range carbon bond-order potential (LCBOPII).32

This bond-order potential has been shown to accurately
describe many carbon phases including the disordered, liquid
phase within a whole range of different densities.33 We have
selected a system consisting of 216 atoms within a cubic
simulation box with periodic boundary conditions, which
corresponds to a density of ρ = 3.1 g/cm3, which is in
close agreement with the experimentally determined density
of amorphous carbon.34 For the sake of simplicity, in these
simulations, which are meant to test and compare the per-
formance of different minimization techniques, momentarily
only the potential energy is minimized.

The applied total-energy schedule as a function of the
(fictitious) MC “time” is schematically shown in Fig. 1(a).
Starting at a high total energy E = −1000 eV, to create
a well-disordered liquid phase, the schedule includes a
liquid equilibration period at constant E = −1200 eV, after
which the system is cooled down linearly to E = −1450
eV during a time interval �tcool. After that, the system is
relaxed in a relatively short quench by further decreasing
E to a value close to the final potential energy Uf,0(R).
Note that the instantaneous temperature of the system can
be deduced from K = (3/2)NkBT = E − U , which implies
T = 2(E − U )/(3NkB), so that T → 0 K for E → Uf,0.

The results for the average, final potential energy per
atom at 0 K, Uf,0(R)/N , as a function of the cooling time
interval �tcool in units of total-energy evaluations (tee),
based on 40 independent simulations, are shown in Fig. 1(c)
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FIG. 1. (Color online) Comparison of the average over the final
potential energies at 0 K of amorphous carbon as generated by
the various minimization method as a function of the quenching
time �tcool. The averages are based on 40 independent simulations,
allowing for the calculation of variances and error bars as indicated.
Note the logarithmic scale for the “time” axis.

and compared to the results from other, more standard
minimization techniques. These include the reference, which
is a random single-atom (RS) displacement MC method
within the NVT ensemble, indicated as RS-MC-NVT, and
two random all-atom (RA) MC methods within the NVT
ensemble: the RA-MC-NVT method with completely random,
simultaneous displacements of all atoms and the FA-MC-NVT
method, where the displacement of each atom is a mixture of
a random vector and the force on that atom (FA) with a mixing
coefficient chosen such that the efficiency is maximized.
The applied temperature versus the MC time for these NVT
simulations is schematically given in Fig. 1(b).

As can be seen in Fig. 1(c), the behavior of the RA-MC-NVT
technique and the reference is essentially identical, which
suggests that in the present case, it is insignificant if either
all or a single atom is randomly displaced. Nevertheless, the
straightforward inclusion of nuclear forces in the FA-MC-NVT
approach leads to an optimization scheme that can easily get
trapped in a local minimum and is hence not competitive. On
the contrary, in the (m)fHMC-NVE method, this is circum-
vented by the interplay of dt and C. On average dtmax ≈ 2 fs,
which is substantially larger than in a conventional MD sim-
ulation for carbon and remains approximately constant during

the annealing. In this way, the available gradient information is
rather well exploited. However, upon rejections, the decrease
of dt is counterbalanced by C to conserve the instantaneous
total energy and therefore prevents the system from being
trapped in a local minimum. In the end, by employing the
mfHMC-NVE method, the same potential energy as using the
RS-MC-NVT approach is realized, though with a cooling time
that is two orders of magnitude shorter. Comparing the final
potential energies with the ground-state energies of diamond
(−7.349 eV/atom) and graphite (−7.374 eV/atom), it is
apparent that the eventual structures correspond to amorphous
carbon, whose energies are about 0.4 eV/atom above the
corresponding ground state.

As already mentioned, the mfHMC-NVE method shows
the best performance regarding its ability to find low-energy
states. On the other side, it is feasible to do much longer
simulations (in terms of tee) with the RS-MC-NVT method
than with the other techniques because the reevaluation of
the total energy after the displacement of one single atom is
relatively fast for the empirical LCBOPII potential; this is due
to the intrinsic local dependencies of the energy contributions
in such potentials. Since the curve for RA-MC-NVT lies on top
of that of the RS-MC-NVT technique, the latter is preferred
whenever updating the total energy for a single-atom move,
which is faster than for an all-atom move.

To illustrate our method, we apply the mfHMC-NVE
method to minimize Eq. (2) for amorphous carbon at the
density functional level of theory (DFT). Therein, U (R) is
the total energy from DFT supplemented by the reduced radial
distribution function G(r), derived from scattering data, and
the optical Tauc gap �Etauc for amorphous phases.35,36 Hence,
in this case, Eq. (2) takes the form

Ũ (R) = U (R) + wG

∑
n

[
Gn(R) − Gexp

n

]2

+wgap
[
�ETauc(R) − �E

target
Tauc

]2
, (5)

where Gn(R) = G(rn) denotes a discretized representation of
G(r), which is defined as G(r) = 4πr[c(r) − c0], with c(r)
the average (number) density of atoms at a distance r and c0

the overall density. To obtain a smoothened G(r), allowing
for the calculation of analytical force contributions that were
included in the present simulations, we have computed it for
any r = rn on a grid with a spacing of 0.01 Å between the grid
points as

G(r) = 1

r�r

1

N

∑
i,j

∫ r+�r/2

r−�r/2
Pij (r ′)dr ′ − 4πrc0, (6)

where Pij (r) is a Gaussian-shaped polynomial of degree 4
within the open interval (rij − �r,rij + �r) and Pij (r) = 0
otherwise, with Pij and dPij /dr being continuous at r = rij ±
�r ,

∫
Pij (r)dr = 1, and rij being the interatomic distance

between atom i and j . The values reported for the experimental
gap of amorphous carbon vary between 1.0 and 2.5 eV, possibly
depending on the particular sample.18 Therefore, we have
taken an intermediate target value equal to �E

target
tauc = 1.7 eV

for our simulation. However, in the present study, we have
neglected the gradient of the Tauc gap term with respect to R in
the analytic expression of the forces. Nevertheless, using finite
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FIG. 2. (Color online) Evolution of the (a) potential energy,
(b) sum of the squared residuals of the RDF and (c) Tauc gap as
a function of time during the optimization using the mfHMC-NVE
technique to determine the structure of amorphous carbon. The
solid line denotes our simulation method, while the conventional
SA approach is depicted by the dashed line. The comparison of
the corresponding G(r), as obtained using both techniques, with the
experimental one,34 given by the solid line, is shown in Fig. 2(d).
Due to the nearly perfect agreement, the experimental curve is almost
completely covered by the results from the present method (red line).

differences, it is straightforward to include them, although at
the price that the computation becomes at least a factor of
3N times more expensive. Further details on the on-the-fly
calculation of the Tauc gap are discussed in the appendix.

Even though the values of the weight factors wG and wgap

have some importance, their impact is relatively small. In
principle, they should be chosen as small as possible and just
large enough to get a good agreement with the experimental
data. In the present simulation, we have used wG = 1 eV Å

4

and wgap = 2.5 eV−1. In general, the value wG should be
chosen in such a way that in the beginning of the simulation
at high temperature, wG

∑
n[Gn(R) − G

exp
n ]2 is on the same

order of magnitude as the thermal energy 3
2NkBT . In contrast,

the parameter wgap can be selected to be considerably smaller
than 3

2NkBT/[�ETauc(R) − �E
target
Tauc ]2.

We have linked our code to the CP2K suite of pro-
grams to compute the necessary total energies and forces.37

The closed-shell DFT calculations were performed for
exactly the same system as before using the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional38

and norm-conserving Goedecker-type pseudopotentials.39 The
total-energy schedule applied included an equilibration at
E = −32 950 eV for 1000 tee, followed by a cooling from
E = −32 950 to E = −33 175 eV during 4000 tee and a final
run of length 1000 tee during which E is further lowered to
get as close as possible to Ũf,0.

The results of such simulations using our method, with
and without the experimental constraints, are presented in

Fig. 2 and are compared to a conventional HMC-based SA
simulation. The improved overall agreement with the under-
lying experimental data is apparent, as shown in Figs. 2(c)
and 2(d).

We conclude by noting that our method in conjunction with
an appropriate minimization procedure has a wide domain of
applicability, not confined to amorphous phases. We wish to
specifically highlight that the present scheme can be directly
applied to any other disordered system, such as liquid water40

or, including the NMR chemical shift,41,42 to determine the
structure of proteins and nucleic acids. However, the maximum
permissible system size is limited by the underlying electronic
structure method. Further improvement of the method and the
minimizer will be presented elsewhere.

We would like to thank A. Zunger for fruitful discus-
sions, D. Richters for critical reading of the manuscript,
as well as the IDEE project of the Carl-Zeiss Foundation
and the Graduate School of Excellence MAINZ for financial
support.

APPENDIX: TAUC GAP

The optical Tauc gap �ETauc is a convenient definition
for the gap of amorphous phases, which circumvents the
difficulty that the band structure of disordered systems is not
properly defined. It relies on the following relation36 between
the experimental optical gap �Egap and the optical absorption
coefficient α as a function of the photon energy hν:

α(hν)hν ∝ (hν − �Egap)2, (A1)

which is applicable to (amorphous) semiconductors within
a certain range of photon energies just beyond the gap
�Egap. For the on-the-fly calculation of �ETauc within each
optimization step, we first compute the optical absorption
coefficient α from43

α(hν) = K

hν

∫ EF +hν

EF

n(E − hν)ñ(E)dE, (A2)

where K is a constant, while n and ñ are the densities
of the occupied and unoccupied states, respectively, that
are computed from the eigenvalue spectrum of the DFT
Hamiltonian after self-consistency has been achieved. Plotting√

α(hν)hν as a function of hν within a photon energy range
around the gap obeys a linear regime, from which �ETauc =
�Egap can be obtained by taking the intersection between the
linear fit with the horizontal

√
α(hν)hν = 0 axis. We note that

the value of the constant K is irrelevant for the value of �ETauc

resulting from this approach. Since the linear behavior only
applies to a finite-energy range just beyond the gap, the linear
fit has to be restricted to this energy interval. For the automatic
computation of �ETauc, we have selected this interval to be
within the interval [(1 − �)f Wtot,f Wtot], where Wtot is the
total width of the spectrum.
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