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Quasistatic stick-slip of a dislocation core and the Frenkel-Kontorova chain
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Stick-slip phenomenon is generally associated with a wide range of dynamical systems. Here we report a unique
quasistatic form of the stick-slip characterized in terms of bursts in structural relaxation. This is demonstrated
for the case of a dislocation core and its one-dimensional representation, namely, the Frenkel-Kontorova chain.
The correspondence between these two is also established through the technique of dimensionality reduction.
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I. INTRODUCTION

Many processes proceed through the modality of stick-
slip,1–7 where one or more measurable parameters exhibit
jerky dynamics. Events like avalanches and stick-slip are
commonly associated with nonlinear systems, and hence,
the celebrated Frenkel-Kontorova (FK) model,8,9 which is a
simple one-dimensional system incorporating discreteness and
nonlinearity, is often studied to understand such events.10–12

Nevertheless, such phenomena are always viewed in perspec-
tive of dynamics of the systems, whereas their quasistatic
responses remain obscure.

During a quasistatic process, a system moves from one
state to another such that it is always at the local ground
state along the path of transition. For instance, in order to
measure the Peierls barrier13 for a dislocation, which is defined
at T = 0 K, atomistic simulations14–16 have been performed
to obtain the ground state evolution of the dislocation core as
it quasistatically moves from one Peierls valley to another.
Similar to the existence of a critical Peierls stress for a
dislocation, the FK chain, which was originally envisaged8 to
represent the dislocation core as a kink in the chain, shows
the existence of a threshold force required17 to move the
kink. Thus, the FK model thematically depicts the mechanism
of crossing the Peierls barrier in perspective of discreteness
and nonlinearity intrinsic to the lattice. Nevertheless, it
is unrevealed whether this simplified model is capable of
providing finer details of the process. A closer look into
this issue is worthwhile as it would not only highlight the
extent of resemblance between the realistic physical system
and the representative model, but also enable us to extend
the applicability of the model to explore quasistatic evolution
of the system. In this paper, we study the molecular statics
simulation of forcing a dislocation core out of its Peierls
valley to obtain the atomic trajectories at sub-Burgers vector
resolution. Interestingly, the simulations reveal the occurrence
of intermittent relaxation bursts at such fine scale. Aiming to
unfold the underlying mechanism, we apply the appropriate
boundary conditions to a simple one-dimensional FK chain
to let it mimic the boundary conditions used in the atomistic
simulation. Even though the FK model is regarded merely as a
conceptual tool, it also exhibits the abrupt bursts of structural
relaxation, similar to the dislocation core. In what follows, we
shall argue that such a striking feature can be perceived as
the unique quasistatic counterpart of the stick-slip dynamics,
which has not been explored so far. In addition, the technique

of principal component analysis (PCA)18 has been used in an
innovative way to establish the correspondence between a real
physical system and its ideal model of lower dimensionality.

II. ATOMISTIC SIMULATIONS: OBSERVATION
OF STICK-SLIP

The Peierls stresses have been computed here19 for the
four metals, molybdenum, iron, aluminium and copper, where
the simulation scheme is akin to that used in the earlier
measurements.14,16 An edge dislocation is introduced in
a slab of finite thickness with periodic boundaries along
the directions of dislocation line and Burgers vector. The
x, y, and z dimensions of the bcc simulation cells are
90.5a〈111〉/2, 40a〈1̄01〉, and 5a〈12̄1〉, where a is the lattice
constant. The Burgers vectors and the dislocation lines are
along the x and z directions, respectively [see the inset of
Fig. 1(a)]. Corresponding cell dimensions for the fcc systems
are 90.5a〈101〉/2 × 20a〈1̄11〉 × 5a〈121̄〉, where the perfect
dislocations splits into Schockley partials on account of the
Frank’s criterion.20 Shear strain in the system is increased in
small steps by tilting the vertical boundary of the simulation
cell. At each step, the system is relaxed to the minimum
energy configuration using the conjugate gradient method,14

while the top and bottom surfaces are kept fixed during the
relaxation. The potential energy of the system is recorded
and the crossover of the dislocation core to the next Peierls
valley is marked by a drastic drop in the total potential energy
profile. Detailed analysis of the simulation output involves the
region only up to the crossover points, as shown in Fig. 1(a).
The dislocation core atoms are identified by using suitable
centrosymmetric deviation parameter (CSD) windows.14 For
bcc Mo and Fe, the CSD window of range 1.4–10 Å2 has been
used, while the ranges 3–20 Å2 and 3–16 Å2 are employed for
Al and Cu, respectively.21

As the process of applying incremental shear strain is
followed by relaxation, the atomic structure tends to recon-
figure so that the potential energy of the system is minimized.
The core structure can be specified by a set of nc vectors,
say {ri} (i = 1,2, . . . ,nc), where nc is the number of atoms
in the dislocation core. We can now quantify the extent of
aggregate core displacement at the nth step of incremen-
tal shear strain with respect to the previous step as � =√∑nc

i=1 |ri(n) − ri(n − 1)|2. These differential displacements
of the dislocation cores are plotted with the shear strains in
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FIG. 1. (Color online) (a) Rise in potential energy of the Mo crystal with a typical simulation cell in the inset. Note the sudden drop marking
the instant of crossover to the adjacent Peierls valley. The differential displacement profiles for the dislocation core atoms are shown in (b) Mo,
(c) Fe, (d) Al, and (e) Cu.

Figs. 1(b)–1(e). Surprisingly, one can identify the intermittent
relaxation bursts characterized by narrow peaks in the profiles.
Obviously, a small value of � means that ri(n) ≈ ri(n − 1),
implying only a small structural change in the dislocation
core from the previous step of applied strain, whereas a large
value is indicative of drastic structural rearrangement. This
proves that instead of exhibiting a continuous response to the
incremental strain, the dislocation core structure remains al-

most locked in between two successive bursts. This quasistatic
phenomenon is apparently analogous to the stick and slip states
of dynamic variables in many physical processes of interest.

III. STICK-SLIP IN THE FRENKEL-KONTOROVA MODEL

In this study, the bcc metals Mo and Fe are simulated
using the modified Finnis-Sinclair interatomic potential,22
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whereas the glue potential23 and an embedded atom model24

are used for Al and Cu, respectively. In spite of a variety of
potentials used in these computations, the relaxation bursts can
be observed in all the studied systems. This suggests that the
origin of these bursts lies rather in a more fundamental physical
phenomenon than in the complexities of the potential models
employed in the simulations. In this context, the possibility of
closely investigating the FK model arises as it reflects the basic
features of a dislocation core, namely, the nonlinear nature of
interactions and discreteness of the lattice. The FK model
consists of a linear chain of particles connected by springs and
placed over a substrate potential. In its most elementary form,
the springs are assumed to be Hookean, while a sinusoidal
substrate potential is considered. Thus, the potential energy
of a finite FK chain with N connected particles is given by
U = ∑N

i=1[ κ
2 (xi+1 − xi − l)2 + E(1 − cos 2πxi

b
)], where the

first term denotes the harmonic spring potential with xi the
position of the ith particle, l the equilibrium length of each
spring, and κ the spring constant. The second term represents
the substrate potential where b and E are the periodicity and
magnitude of the potential, respectively. Here we assume the
natural length of the springs connecting the adjacent atoms
to be equal to the periodicity of the substrate potential (i.e.,
l = b = 1 arb. unit). At this point, it should be noted that
despite its success in demonstrating the origin of the Peierls
barrier, the FK chain does not exhibit a direct correspondence
to the dislocation core in all aspects. For instance, the long
range interactions between two dislocations20 is in clear
contrast to the exponential short range kink-kink interactions in
the FK chain.9 Thus, a judicious choice of boundary conditions
and parameters of the FK chain is necessary so that the system
can distinctly show the features of interest. In the atomistic
simulations, the top and bottom surfaces of the crystalline slabs
were kept fixed during the relaxation process so that the system
could not revert back to the previous state of shear strain.
To implement this on our FK chain, we fix both of its ends,
thereby yielding a fixed length and fixed density condition.
We accommodate N particles in Nv valleys so that the coverage
parameter N/Nv is close to ∼ 3

2 to approximately resemble
the local coverage due to the extra half-plane of atoms at
the core of an edge dislocation. The chain is gradually shifted
in small steps of δ and relaxed after each shift keeping the first
and the last particles rigid during the relaxation process. Hence,
the net shift of the chain at the nth step can be represented by
the coordinates of the fixed end particle as � = x1 = nδ, where
the incremental shift (δ) should have been infinitesimally small
for the ideal quasistatic process. However, due to the tradeoff
between computational time and resolution, a small value of
δ = 10−2 (arb. units) is chosen and found to be sufficient
to produce the requisite spatial resolution. Moreover, in the
present case of smooth periodic substrate potential, the simple
steepest-descent algorithm14 reasonably yields the relaxed
states.

The differential displacements (�) are now computed for
the particles of the FK chain for different E/κ ranging from
0.01 to 0.1. Figure 2(a) shows the differential displacement
for E/κ = 0.01 as a function of the shift �, imparted to the
chain where a continuous wavy nature can be observed (see
the supplementary movie clip.25) In addition, the change in the
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FIG. 2. (Color online) (a) Differential displacement and (b)
change in the length of springs for the FK chain accommodating
N = 91 particles in Nv = 60 valleys with E/κ = 0.01. (c) At
E/κ = 0.035, the differential displacement profile shows intermittent
relaxation bursts (P1–P8) along with three small humps (H1, H2, H3).
(d)–(g) Changes in the lengths of the 90 springs showing the stick
[(d),(e)] to slip [(f)] transition at peak P4, followed by another stick
state [(g)] corresponding to the instants indicated by the four arrows in
(c). (h) Variation in � as a function of �. The features corresponding
to the humps and peaks in (c) are marked here as well. The peaks in
(c) always coincide with discontinuous jumps in �.

lengths of the connecting springs in between two successive
steps is shown in Fig. 2(b), where the change is noticed along
the entire chain. With an increase in the value of E/κ , this
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FIG. 3. (Color online) Schematic representation of discontinuous rise in the order parameter �, as the sudden broadening of the forbidden
region. This causes the particle in the FK chain to abruptly cross the potential hill.

wavy nature changes to relaxation bursts characterized by the
intermittent peaks,25 which can be seen from Fig. 2(c) for
E/κ = 0.035. Remarkably, these peaks which demonstrate
the phenomenon of quasistatic stick-slip are present here also,
similar to those in Figs. 1(b)–1(e). Corresponding changes in
the length of springs, which are confined to the regions near
the fixed ends of the chain [Fig. 2(f)] are also intermittent and
synchronized with the occurrence of relaxation bursts.25

IV. GROUND STATE AND ORDER PARAMETER

For the FK chain in its ground state, the minimum distance
of the particle from the nearest maximum of the substrate
potential has been used as an order parameter by Coppersmith
and Fisher26 to characterize the Aubry-transition and breaking
of analyticity.9 For the plot shown in Fig. 2(c), E/κ is large
enough to cause the breaking of analyticity. However, in
this study we encounter another variable �, denoting the
extent of shift in the chain, which determines the ground
state configuration of the entire chain. Therefore, the order
parameter given by � = min |xi(mod1) − 0.5|i �=1,N has been
computed and displayed in Fig. 2(h) as a function of �. A finite
nonzero value of � signifies the span of region around the top
of the substrate potential where the presence of a particle is
forbidden. It is noticeable that despite the apparently sudden
occurrences of relaxation bursts, the instant of peak in Fig. 2(c)
is always preceded by a gradual drop in � [Fig. 2(h)] during
the stick state, thereby indicating the gradual narrowing of
the forbidden region. Thereafter a discontinuous jump in �

coincides with the transition to slip state at which the relaxation
burst occurs.25 This is indicative of abrupt broadening of
the forbidden regions, and consequently, we expect at least
one particle to suddenly cross over the peak of the substrate
potential (see the schematic in Fig. 3) thereby causing a
steep rise in the differential displacement profile. In addition,
Fig. 2(h) also shows three instances where � drops and reaches

values close to zero, and then rises continuously. Because of
this continuous change in the order parameter, we observe
small humps in the differential displacement profile which is
in sharp contrast to the abrupt peaks, where the rise in � is
discontinuous. This can be somewhat difficult to identify, for
example, during the second hump (H2), where it coincides with
the occurrence of the fifth peak (P5) in the observed profile.

Typical ground state configurations of the FK chain are
given in Fig. 4(a), where most of the particles follow a
structural pattern associated with a highly stable energy state
and attempt to maintain it despite the incremental change in
�. As a result, the local configurations near the two fixed ends
are out of skew with the rest of the chain, and the total energy
of the system increases until the next relaxation burst. During
this stick state the differential displacements of particles are
found to be negligibly small, and hence, the coordinates of the
particles, xi(mod1) after relaxation, when plotted with respect
to the coordinates before energy minimization show the linear
behavior [Fig. 4(d)]. However, during a relaxation burst some
of the coordinates are knocked out of the straight line pattern,
as shown in Fig. 4(c). As predicted earlier, there is always one
or more particles which cross the peak of the substrate potential
corresponding to xi(mod1) = 0.5 as marked in the figure.25

V. PRINCIPAL COMPONENT ANALYSIS

The FK chain presented here is a 1D model of an essentially
3D atomic structure of a dislocation in crystal. Each and
every relaxation burst always drives the chain in a forward
direction as both ends are shifted in the same direction.
Similarly, it must be ascertained that the relaxation bursts as
observed in the atomistic simulation of dislocation core also
drive the core in an effectively forward direction. The notion
of directionality is trivial in the FK model because of the
inherent single dimensionality associated with the structure.
However, the motion of a dislocation can be perceived only on a
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FIG. 4. (Color online) (a) Two typical ground state configurations
of the FK chain (� = 0, 0.9) with N = 91 particles in Nv = 60
valleys for E/κ = 0.035. The relaxed coordinates of the particles
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in Fig. 2(c) plotted with respect to the unrelaxed coordinates. The
particles which have crossed the maxima of the substrate potential,
i.e., xi(mod1) = 0.5 (shown by dotted horizontal line), are identified
in the rectangular frame.

coarse scale of length, where the dislocation hops from one
lattice site to another. On a sub-Burgers vector scale of length,
it is difficult to associate a sense of unidirectional motion to
the self-assembly of core atoms within the same Peierls valley
unless a specific directionality is ascribed to it. Clearly, the
conventional technique of describing the core position as the
center of mass of all the core atoms (Refs. 14, 27, and 28,
for example) lacks the requisite resolution, and an alternative
data mining tool needs to be explored. In this scenario, we
opt to use the PCA18 as a prolific tool capable of providing a
high degree of compressibility of high dimensional data and
furnish its projection on a hyperspace of reduced effective
dimensionality. The versatility of the PCA is reflected in its
successful applications across a wide range of studies.29–33

In the present case of atomistic simulations, the coordinates
of core atoms are recorded at each step of incremental shear
strain and this strain series data is arranged as a ns × 3nc

matrix, where ns denotes the number of strain steps and nc

is the number of core atoms. Now each of the 3nc columns
is separately mean centered34 and the mean-deviation matrix
thus formed is used to generate the covariance matrix.18 Di-
agonalization of the covariance matrix yields the eigenvalues
and the corresponding eigenvectors. Interestingly, for all the
metals under study, the largest normalized eigenvalues are
always found to be in excess of 90%. Such large values
conclusively prove a high compressibility intrinsic to these
sets of multidimensional data. The projections of the datasets
along the principal directions corresponding to the largest
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eigenvalues are presented in Fig. 5 for Mo and Al, for example.
The sudden jumps present in these devil’s staircaselike profiles
are synchronized with the occurrence of peaks in Figs. 1(b)
and 1(d) and are typical signatures of the stick-slip process (see
the first and second panels of Fig. 4 in Ref. 6). Moreover, one
can also observe that each monotonic jump in the projected
profile always causes a translation in the same direction,
thereby offering a ground for comparison with the FK model.

VI. CONCLUSION

To conclude, we have shown that the events of stick-slip,
which are well known in the context of dynamic processes, can
also be found during the quasistatic structural rearrangements
of dislocation cores. Similar features are observed for the
simple one-dimensional FK chain as well. This is attributed
to a transition of the system from an effective stick to
slip state on account of abrupt broadening of the forbidden
region around the peak of the substrate potential. Furthermore,
the projections of the atomic trajectories on the principle
directions corroborate the efficacy of the one-dimensional
FK chain in revealing the quasistatic behavior of a complex
three-dimensional structure. However, one issue is yet to be
resolved. Although the simplicity of the FK chain permits us to
fathom the underlying mechanism of the stick-slip, it would be
challenging to establish its direct link with a realistic system of
interest, like the dislocation. As the FK chain has been used to
model a large variety of physical systems besides dislocation
cores, the quasistatic responses of other such systems merit
further extensive investigations.
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