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Scalable kernel polynomial method for calculating transition rates

Chen Huang, Arthur F. Voter,* and Danny Perez†

Theoretical Division, T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 26 February 2013; revised manuscript received 24 May 2013; published 24 June 2013)

We present an efficient method for calculating the prefactors of harmonic transition state theory rates. We
reformulate the prefactors in terms of the density of states (DOS) of the Hessian matrices at the basin minimum
and the saddle point. The DOS is then approximated using the kernel polynomial method as an expansion in
terms of Chebyshev polynomials. The cost of the calculation scales linearly with the number of atoms, in contrast
with the cubic scaling of the direct method. This approach hence greatly facilitates the investigations of kinetic
processes in very large systems. We demonstrate the method by calculating the prefactors of the transition rates
for two processes in bulk silver: vacancy hopping and Frenkel pair formation.
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I. INTRODUCTION

Transition rates of kinetic processes in materials are
essential ingredients in our understanding and prediction of
material properties. For example, the dislocation nucleation
rate controls yield, and hence determines how much strain
pristine materials can sustain. Similarly, thermal creep is
limited by dislocation climb rates, and pinning/depinning of
dislocations controls plastic deformation in materials that
contain defects,1 for example, in the Portevin-LeChatelier
effect.2 Computational capabilities enabling calculations of
rates for various processes occurring in materials is therefore
of prime importance to model materials behavior on long time
scales.

While rates can be systematically computed at different
levels of approximation for small systems, unfavorable scaling
limits the system sizes that can be investigated. For example, a
popular formalism to estimate transition rates is the harmonic
approximation to transition state theory (HTST).3 In HTST,
the potential energy surfaces near the initial minimum and the
saddle point for the transition are approximated by harmonic
potentials, which allows for explicit calculation of the rate.
However, this calculation involves the diagonalization of the
Hessian matrices involved in the harmonic expansions, which
entails a computational cost that scales cubically with the
number of atoms in the system. In cases where large simulation
cells are required, e.g., for transitions that strongly couple to
long-range strain fields, such as dislocation nucleation, glide,
or climb,4–7 massively parallel calculations,7 or sampling-
based approaches, such as thermodynamic integration,8 have
to be employed. Alternatively, other levels of theory can be
used to estimate the free energy barrier for the transition,
e.g., using the finite-temperature string method9 or umbrella
sampling,10 in order to get at the transition rate.

In this work, we present a scalable approach for calculating
HTST rates using the kernel polynomial method (KPM),
a powerful technique developed to compute properties of
large matrices in a range of settings.11–15 In order to avoid
diagonalizing Hessian matrices, we reformulate the transition
rate in terms of density of states (DOS), which are then
expanded in terms of Chebyshev polynomials using the KPM.
The coefficients in the expansion, i.e., the moments, are
obtained by stochastic sampling of the trace of appropriate
polynomials. The efficient implementation of this technique

enables the calculation of HTST rates at a cost that scales only
linearly with the number of atoms in the system.

The paper is organized as follows. In Sec. II, we formulate
HTST within the KPM formalism. We discuss the scaling
of the algorithm and propose different strategies to speed up
convergence. The accuracy and efficiency of the method are
demonstrated in Sec. IV by the computation of the prefactors
for vacancy hopping and Frenkel pair formation in bulk silver.

II. THEORY

One of the most common formalisms used to estimate
transition rates in the canonical ensemble is transition state
theory (TST).16–19 In TST, the transition rate between two
states is given by the canonical expectation of the flux through
the dividing surface (defined in configuration space) between
these two states. The main assumption that underpins TST
is that each crossing of the dividing surface corresponds
to a reactive event, i.e., that every trajectory that crosses
the dividing surface from the initial state will commit to
the final state. In general, this does not have to be the
case as so-called correlated recrossing, where a trajectory
recrosses the dividing surface before having committed to
the final state, does occur in reality; TST rates are therefore
upper bounds on true transition rates. The missing factor,
the dynamical correction factor,20,21 can be computed by
simulating dynamical trajectories launched from the dividing
surface. In the solid state, that correction factor is often close to
unity, so that TST alone can provide a very good approximation
to the true transition rate.

Within TST, the transition rate is given by

kTST = kBT

h

Z‡
Zmin

, (1)

where Zmin is the partition function of the (initial) basin
and Z‡ is the partition function of the dividing surface that
separates the initial and final basins. While formally simple,
this definition is seldom used directly because of the high
cost of numerically estimating partition functions with high
accuracy.

A simple approximation to the partition function can be
obtained by expanding the Hamiltonian of the system to second
order around a local mechanical equilibrium state. The system
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then reduces to an ensemble of uncoupled harmonic oscillators
and the partition functions can be evaluated explicitly as

Zmin = exp[−βVmin]∏D
i=1 βh̄ωmin,i

, (2)

Z‡ = exp[−βV‡]∏D−1
i=1 βh̄ω‡,i

, (3)

where Vmin and V‡ are the potential energies at the minimum
and the saddle point for the transition, respectively, and the
ω are the real, positive, vibrational angular frequencies of the
phonon modes of the system. Here D is the total number of
vibrational degrees of freedom (excluding free translations and
rotations). The angular frequencies are the square roots of the
eigenvalues λ of the mass-weighted Hessian matrix Hi,j =
(∂2V/∂xi∂xj )/

√
mimj that locally describes the curvature of

the potential.
Inserting into Eq. (1), one obtains

kHTST = 1

2π

∏D
i=1 ωmin,i∏D−1
i=1 ω‡,i

e−β�V , (4)

where �V = V‡ − Vmin is the energy barrier for the transition,
or in terms of the eigenvalues of the mass-weighted Hessian
matrices:

kHTST =
⎡
⎣ 1

2π

√√√√∏D
i=1 λmin,i∏D−1
i=1 λ‡,i

⎤
⎦ e−β�V . (5)

This is the celebrated harmonic approximation to TST.3 In the
last expression, the term in square brackets is the so-called
prefactor. The calculation of the energy barrier for a given
transition can be carried out with a number of well established
and scalable methods, such as the dimer method22 or the
nudged elastic band method.23 In the following, we therefore
focus exclusively on the calculation of the prefactor.

While formally simple, the evaluation of Eq. (4) requires
the diagonalization of D × D matrices, which entails a com-
putational cost proportional to D3. This unfavorable scaling
limits the size of systems that can be investigated in practice.
To overcome this limitation, we reformulate the problem in
terms of a quantity that can be approximated in a scalable
way. Consider the product of the real positive eigenvalues of a
matrix. Taking the natural logarithm, one gets

log
∏
j

λj =
∑

j

log λj =
∫ +∞

0+
dλ

∑
j

δ(λ − λj ) log λ

=
∫ +∞

0+
dλ ρ(λ) log λ. (6)

This expression now involves an integral over the eigenvalue
density function ρ(λ), i.e., the DOS, of the Hessian matrix.
The key is to accurately approximate the DOS in such a way
that diagonalization of H is not required.

A possible approach is to expand the DOS in terms of
a rapidly convergent series, for example, using orthogonal
polynomials; on bounded domains, Chebyshev polynomials
Tn(x) are a common choice. For matrix arguments, this cor-
responds to the so-called KPM.11 Without loss of generality,
we first rescale H so that its spectrum falls within (−1,1).
This can be done simply by forming H̃ = (H − bI )/a with

a = (λmax − λmin)/(2 − ε) and b = (λmax + λmin)/2, where ε

is a small positive number. The DOS of this rescaled matrix
can then be expanded in Chebyshev polynomials as

ρ̃(x) = 1

π
√

1 − x2

[
μ0 + 2

∞∑
n=1

μnTn(x)

]
, (7)

where the moments μn are given by the trace of the matrix-
valued Chebyshev polynomials Tr[Tn(H̃ )].12,24–26

A direct evaluation of the traces would be expensive, but
they can be approximated efficiently through a stochastic
evaluation of the form12,25,27

Tr[Tn(H̃ )] � 1

R

R∑
r=1

〈r|Tn(H̃ )|r〉. (8)

Here {|r〉} is a set of random vectors that satisfy 〈〈ξrj 〉〉 = 0
and 〈〈ξriξr ′j 〉〉 = δrr ′δij , where ξri ∈ R (an extension of our
method to working with complex random vectors is also
straightforward, see Ref. 11) denotes the ith element of a vector
|r〉 and 〈〈· · ·〉〉 denotes the statistical average with respect to
different realizations of random vectors. To be more specific,
the average 〈〈ξriξr ′j 〉〉 corresponds to lim

R→∞
1

R2

∑R−1
r,r ′=0 ξriξr ′j ,

where the sum extends over different realizations of random
vectors. In the present context, Dirac’s bra/ket notation denotes
the usual matrix/vector and vector/vector products.

An efficient evaluation of Eq. (8) relies on two key
properties. First, one does not need to form Tn(H̃ ) explicitly,
but simply has to compute its projection on a vector. Sec-
ond, Chebyshev polynomials possess a three-term recurrence
relation, which for matrix arguments takes the form

Tn(H̃ )|r〉 = 2H̃Tn−1(H̃ )|r〉 − Tn−2(H̃ )|r〉. (9)

Computing the product of Tn on a vector thus reduces to a
sequence of products with H̃ . In turn, this can be efficiently
computed with finite differences as (for monoatomic systems)

H̃ |y〉 = (H − bI )|y〉
a

=
1

mξ
[
g(
x + ξ 
y) − 
g(
x)] − b|y〉

a
,

(10)

where 
g is the gradient of the potential energy evaluated at 
x,
which is the coordinate of either the minimum or the saddle
point. The whole process can therefore be carried out using
only interatomic forces, each of which can be obtained at a
cost that scales as O(D) for short-ranged potentials. ξ is a
small parameter (10−7 in the present study). In this work,
we varied ξ from 10−2 to 10−8 to study the dependence of
prefactors on ξ . We found that prefactors converged very
quickly once ξ was smaller than 10−4. We also tested the
centered difference formula for evaluating Eq. (10), and found
that the improvement in accuracy is marginal for small enough
ξ . The interatomic potential used in the present study is
evaluated using interpolation arrays; the dependence on ξ may
be different (probably less sensitive) for an analytical form of
potential.

When computing traces with Eq. (8), one should only
consider contributions from eigenmodes that have positive
eigenvalues. Therefore, we need to remove the unwanted
modes, such as the unstable mode at the saddle point or the
free translation (rotation) modes that arise when the energy is
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translation (rotation) invariant. Before performing the trace in
Eq. (8), the vectors |r〉 are orthogonalized against the subspace
spanned by these unwanted modes, i.e.,

|r〉 = |r〉 −
∑

i

〈r|ui〉|ui〉,

where the {|ui〉} form an orthogonal basis of that subspace, and
can be obtained using a Gram-Schmidt procedure. Note that
orthogonality against this subspace might be lost during the
calculation of the different moments due to numerical errors;
in practice such orthogonalization is therefore repeated after
each application of H̃ on a vector.

Coming back to the original problem, Eq. (6) becomes

log
∏
j

λj =
∫ 1

−1
dx ρ̃(x) log(ax + b). (11)

We then have:

log

[∏D
j=1 λmin,j∏D−1
j=1 λ‡,j

]

=
∫ 1

−1
dx

log(ax + b)

π
√

1 − x2

(
�μ0 + 2

∞∑
n=1

�μnTn(x)

)

= c0�μ0 + 2
∞∑

n=1

cn�μn, (12)

where we have assumed the same scaling (i.e., the same a and
b) for the Hessian matrices at the minimum and the saddle
point so that both spectra of the scaled matrices are contained
within [−1,1]. cn and �μn in Eq. (12) are given by

cn =
∫ 1

−1
dx

log(ax + b)

π
√

1 − x2
Tn(x), (13)

�μn = μmin,n − μ‡,n = Tr[Tn(H̃min) − Tn(H̃‡)], (14)

from which the HTST prefactor is directly obtained.
To evaluate Eq. (14), one could sample the traces of

Tn(H̃min) and Tn(H̃‡) separately. Due to the stochastic nature
of the evaluation, the variance of the estimates of �μ will
in general be larger than that of each of the terms. As
demonstrated below, using matched random numbers (the
same vectors |r〉) to estimate both μmin,n and μ‡,n leads to
a significant reduction of the variance in estimating �μn,28

and hence of the computational cost. This is caused by the
positive covariance between the samples of μmin,n and μ‡,n.

The random vectors can be further constrained to exactly
impose certain conditions. For example, �μ0 should be exactly
equal to 1, as it corresponds to the norm of the difference in
DOS between the minimum and saddle points. This condition
can be satisfied exactly by normalizing the random vectors to
D and D − 1 at the minimum and saddle point, respectively.
This procedure is known to also significantly reduce sampling
errors.29

In practice, the sum in Eq. (12) is truncated at a finite
number of moments (M), usually on the order of hundreds,
depending on the complexity of the DOS difference between
the minimum and the saddle point. In the regime where
the prefactor depends weakly on system size, changes in
DOS, and hence in moments, can also be expected to be

small. Therefore, the required number of moments is not
expected to signficantly increase with system size, for large
enough systems. The same is true for the number of random
numbers (R, typically of the order of a thousand) required
to converge the results to a desired accuracy. Therefore, the
cost of our method is expected to scale as O(DMR), i.e.,
linearly with respect to the number of atoms in the system,
which is a significant improvement over the O(D3) scaling of
the direct method. Below, we give numerical evidence that
this scaling is indeed achieved in practice and hence that
the method can be used to efficiently investigate very large
systems.

III. NUMERICAL DETAILS

In the following, we demonstrate the method for two
processes in bulk silver: vacancy hopping and Frenkel pair
formation. While we don’t expect the prefactors for these
transitions to be strongly size dependent, they are simple and
well understood processes, and hence provide good test cases
for our method. The interactions between atoms are modeled
with an EAM potential taken from Ref. 30. Saddle points
are located using the string method.31 The unstable mode at
the saddle point and the largest and smallest eigenvalues of
the Hessian matrices (required for rescaling the Hessians)
are obtained with the Lanczos method,32 whose cost also
scales linearly with respect to the number of atoms. The
elements of the random vectors |r〉, i.e., normal random
numbers with zero mean and unit variance, are generated with
the Box-Muller scheme,33 in which uniform random numbers
are generated by the RAN3 algorithm.34 The coefficients cn

[Eq. (13)] are integrated with the QUADPACK code.35 The
Jackson kernel11,36,37 is used to regularize the expansion.

IV. RESULTS

A. Vacancy hopping

We first demonstrate our method by computing the rate
prefactor for vacancy hopping in bulk silver. The saddle point
configuration is shown in Fig. 1: atom A is moving towards

FIG. 1. Saddle point configuration for vacancy hopping in bulk
silver. Atom A is moving to vacancy B and creating a new vacancy
C. For clarity, only non-face-centered-cubic (fcc) atoms are shown
(as determined by a common-neighbor analysis).
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FIG. 2. (Color online) Comparison of the convergence of prefac-
tors for the vacancy hopping with respect to the number of random
vectors for a system of 5 × 5 × 5 unit cells, for four different
schemes: (a) exact zeroth moments and matched random vectors
(red crosses); exact zeroth moments and non-matched random vectors
(blue triangles); inexact zeroth moments and matched random vectors
(green circles). (b) Inexact zeroth moments and non-matched random
vectors. Exact prefactors are shown by black dashed lines. All results
are calculated with 400 moments.

vacancy B, leaving a new vacancy C behind. The transition
can therefore be seen as an exchange of the position of the
vacancy with that of one of its neighbors. The energy barrier
for this transition is 0.65 eV.

We first explore the impact of the properties of the
random vectors on the quality of the results. We compare
four distinct schemes: (1) exact zeroth moments and matched
random vectors, (2) exact zeroth moments and non-matched
random vectors, (3) inexact zeroth moments and matched ran-
dom vectors, and (4) inexact zeroth moments and non-matched
random vectors. The results, shown in Fig. 2, indicate that
unnormalized and non-matched random vectors yield very
poor results: the prefactor varies wildly, by many orders of
magnitude, as the number of random vectors is increased.
In contrast, imposing normalization and matching random
vectors significantly improve the convergence rate. Taken
together, they enable a very fast convergence: the correct order
of magnitude is obtained with fewer than ten random vectors
and the fluctuation with increasing the number of random
vectors is modest. Unless noted otherwise, all results in this
work are obtained with random vectors that are normalized
and matched.
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FIG. 3. (Color online) Convergence of the prefactors for the
vacancy hopping (using 20 000 random vectors) with respect to the
number of moments, for five different cell sizes. With 10, 20, 30, 40,
and 50 moments, the prefactors converge to 8%, 4%, 2%, 0.8%, and
0.6% error, respectively.

The convergence with respect to the number of moments is
extremely rapid for the vacancy hopping. As shown in Fig. 3,
the prefactors converge to within 10% error (with respect to
their converged values) with fewer than ten moments, and
within 1% error with fewer than 40 moments, for all cell
sizes. A similar trend is also observed for the convergence
with respect to the number of random vectors. As shown in
Fig. 4, about 1000 vectors are required to obtain an error at the
10% level, independent of system size. As neither the required
number of random vectors nor the number of moments scales
with system size, the computational cost of the method is linear
in number of atoms, in agreement with the heuristic arguments
discussed above.

Figure 5 compares the prefactors calculated from our
method (with 400 moments and 20 000 random vectors)
with the results obtained from direct diagonalization of the
Hessian matrices. The agreement between our method and the
benchmark is excellent, with the errors below 1.2%. Due to
high computational costs, prefactors for the 19 × 19 × 19 cell
were not obtained with direct diagonalization. It is interesting
to note that even for such a simple transition, very large
cells are required to converge the results to within 1%, as
the prefactor varies by about 10% from the 5 × 5 × 5 cell to
the 11 × 11 × 11 cell.

The convergence of the prefactor with respect to the number
of moments can be understood from the behavior of the |cn|
and �μn, as shown in Fig. 6 for the 15 × 15 × 15 cell. The
results are obtained using 20 000 random vectors. Perhaps
contrary to intuition, convergence of the prefactors do not
follow from the fast decay of the expansion coefficients (the
�μn). Instead, these coefficients fluctuate around zero with
no visible sign of convergence. This can be understood from
the fact that the DOS are not smooth functions but sums of δ

functions. Expanding δ(x) in Chebyshev polynomials yields
μn = cos(nπ/2), which is either −1, 1, or 0, depending on
n. Therefore, the moments of the DOS themselves are not
expected to decay with increasing order. On the other hand,
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FIG. 4. Convergence of the prefactors (s−1) for the vacancy
hopping (using 400 moments) with respect to the number of random
vectors, for five different cell sizes. The dashed horizontal lines show
+/ − 10% error windows from the benchmarks obtained by directly
diagonalizing the Hessian matrices (except for the 19 × 19 × 19 cell,
where the benchmark is taken from the converged KPM results at
20 000 random vectors). Arrows indicate convergence to within 10%
error.

the coefficients cn correspond to the integral of a Chebyshev
polynomial (a strongly oscillatory function at large n) with
a smooth function. Consequently, the magnitude of cn does
decay rapidly with increasing order, as shown in Fig. 6. The
rapid convergence of the prefactor therefore stems from the
rapid decay of the cn combined with the alternating sign
of the �μn.

B. Frenkel pair formation

We now investigate a more complex transition, namely
the nucleation of a Frenkel (vacancy-interstitial) pair from

4.2x1011

4.3x1011

4.4x1011

4.5x1011

4.6x1011

4.7x1011

4.8x1011

4.9x1011

5.0x1011

5.1x1011

5x5x5 7x7x7 9x9x9 11x11x11 15x15x15 19x19x19

P
re

fa
ct

or
s 

(s
-1

)

Cell sizes

Direct diagonalization

KPM

FIG. 5. (Color online) Comparison of the prefactors for vacancy
hopping between the KPM (with 400 moments and 20 000 random
vectors) and the direct diagonalization for different cell sizes. The
relative errors between the KPM and the direct diagonalization are
0.2%, 1.2%, 0.7%, 0.1%, and 0.3% for cell sizes from 5 × 5 × 5 to
15 × 15 × 15.

a perfect bulk crystal. The saddle point configuration and
the fully formed Frenkel pair are shown in Fig. 7. The pair
contains a vacancy (marked “V”) and a dumbbell interstitial
defect (marked “D”). In this case, the energy barrier for the
transition is 4.4 eV.
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FIG. 6. |cn| [Eq. (13)] and �μn [Eq. (14)] with respect to the
moment index. The results are obtained for vacancy hopping, with
the 15 × 15 × 15 cell and 20 000 random vectors.
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FIG. 7. Configurations of (a) the saddle point during the Frenkel
pair formation and (b) the final Frenkel pair. For clarity, only non-fcc
atoms are shown (as determined by a common-neighbor analysis).
New vacancies are marked with “V” and the two atoms that form the
dumbbell interstitial defect are marked with “D.”

The convergence of the prefactor with respect to moments is
shown in Fig. 8 for five different cell sizes and 40 000 random
vectors. For all cell sizes, the prefactor estimate peaks at ∼20
moments, and then monotonously converges. A relative error
of 1% here requires around 220 moments, significantly more
that the 40 that were required in the case of vacancy hopping.
However, as in the former case, this number is independent of
cell size.

The convergence of the prefactor (using 400 moments) with
respect to the number of random vectors is shown in Fig. 9, for
five different cell sizes. As marked by the arrows, the number
of random vectors required for convergence to within 10%
error again does not increase with cell size, and the method’s
cost scales linearly with the number of atoms.

In Fig. 10, we demonstrate the accuracy of our method
compared to the direct diagonalization of Hessian matrices.
The prefactors are obtained with 400 moments and 40 000
random vectors. For all cell sizes, the relative errors are
less than 5%, again indicating that the method provides very
accurate estimates of the prefactors.
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FIG. 8. (Color online) Convergence of the prefactors for Frenkel
pair formation (using 40 000 random vectors) with respect to the
number of moments, for five different cell sizes. For the 15 × 15 × 15
cell, the KPM results converge to within 20%, 10%, 5%, and 1% error
with 60, 80, 110, and 220 moments, respectively.
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FIG. 9. Convergence of the prefactors (s−1) for Frenkel pair
formation (using 400 moments) with respect to the number of random
vectors, for five different cell sizes. The dashed horizontal lines
show the +/−10% error windows from the benchmarks obtained
by directly diagonalizing the Hessian matrices (except for the
19 × 19 × 19 cell, where the benchmark is taken from the converged
KPM results at 40 000 random vectors). Arrows indicate convergence
to within 10% error.

The fact that the prefactor of the Frenkel pair formation
rate requires more moments than that of the vacancy hop
can be traced back to characteristics of their DOSs. As seen
by comparing Figs. 11 and 12, which show their DOSs
at the minima and saddle points, the difference in DOS is
generally smoother for the vacancy hop than for the Frenkel
pair formation. Further, a large number of new peaks appear
in the high energy section of the saddle point’s DOS for the
Frenkel pair formation, as compared to only four new peaks for
the vacancy hop. This is consistent with the observation that
more moments are required to converge the prefactors for the
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FIG. 10. (Color online) Comparison of the prefactors of the
Frenkel pair formation between the KPM and the direct diagonal-
ization, for different cell sizes. The results are obtained with 400
moments and 40 000 random vectors. The relative errors between the
KPM and the direct diagonalization are 4.3%, 0.3%, 2.6%, 3.6%, and
0.5% for the cell sizes from 5 × 5 × 5 to 15 × 15 × 15.

Frenkel pair formation. The complexity of the DOS difference
between the minimum and the saddle point is therefore the
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FIG. 11. (a) Comparison of the DOSs between the minimum and
the saddle point for the vacancy hop. The results are obtained with a
cell size of 15 × 15 × 15, 400 moments, and 20 000 random vectors.
The inset magnifies the new peaks formed in the saddle point’s DOS.
(b) The difference of the DOS between the minimum and the saddle
point.
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FIG. 12. (a) Comparison of the DOSs between the minimum and
the saddle point for the Frenkel pair formation, for the cell size of
15 × 15 × 15. The results are obtained with 400 moments and 40 000
random vectors. The inset magnifies the new peaks formed in the
saddle point’s DOS. (b) The difference of the DOS.

determining factor that controls the required order of the
Chebyshev expansion.

V. DISCUSSION

The results above demonstrate that our method is able
to accurately compute HTST prefectors for large systems
at an affordable cost. To put this in perspective, consider a
system where 1000 moments and 1000 random vectors are
required for high accuracy results. As each moment requires
the calculations of the interatomic forces at the minimum
and saddle point for each random vector, on the order of
106 force calculations are required overall. This corresponds
to the same computational effort as a few nanoseconds of
molecular dynamics (MD) simulation on the whole system, a
non-negligible investment, but still very competitive compared
to what can be expected from MD-based sampling techniques
such as thermodynamic integration.8 Furthermore, calculation
corresponding to different random vectors can be done totally
independently. Our method is therefore trivial to parallelize
and extremely scalable as parallelization can be carried out
over both individual force calculation (using spatial decom-
position techniques) and over random vector realizations. The
wall-clock time required for the calculation of the prefactor
could therefore in principle be reduced to the time needed for,
in this example, 1000 parallel force calculations. Based on the
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examples discussed here, we estimate that the crossover point
where the KPM method requires less computing effort than the
direct diagonalization to be between the 15 × 15 × 15 cell and
the 19 × 19 × 19 cell, assuming 40 000 random vectors, which
provides an error at the level of a few percent. We emphasize
again, however, that the KPM can be massively parallelized
over the different random vector realization with no loss in
efficiency, which enables faster wall-clock time solutions at
even smaller cell sizes. Another strength of our method is that
the level of accuracy is tunable. Based on the results given
above, errors at the 50% levels can be achieved with only tens
of random vectors and moments, which in turn costs only a
few picoseconds worth of MD, a routine calculation even on
systems containing millions of atoms. Finally, this method only
requires interatomic forces, a quantity that is available from
any MD code. Implementation of our method into existing
codes is therefore straightforward.

VI. CONCLUSIONS

Using the kernel polynomial method, we have developed an
efficient technique for calculating the prefactors of transition
rates in large systems within the HTST approximation. The

method is based on the expansion of the vibrational DOS in
terms of Chebyshev polynomials. As the order of the expansion
is a user-tunable parameter, the method offers an adjustable
balance between accuracy and computational cost. Using two
prototypical processes, namely the diffusion of vacancies and
the nucleation of Frenkel pairs in bulk silver, we demonstrated
its high accuracy and efficiency. As the computational cost
scales only linearly with system size for short-range potentials,
it can be used to investigate important kinetic processes in very
large systems.
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