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Elastic and inelastic scattering at low temperature in low-dimensional phononic structures
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A technique is described for modeling the low-temperature thermal behavior of phononic components patterned
into amorphous dielectric membranes, such as SixNy . Ballistic, elastic diffusive, localized, and inelastic diffusive
transport are included. The model is well suited to studying components where heat is carried by a discrete set
of large-scale acoustic modes. The scheme gives not only the average fluxes of components having statistically
characterized microstructure, but also the spread in behavior of notionally identical devices. It is applicable to a
wide range of geometries. The method is illustrated by simulating the behavior of a number of simple structures
and studying the interactions between the different transport mechanisms. A single-stage Fabry-Perot resonator
is used to identify likely operating characteristics of phononic filters.
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I. INTRODUCTION

The emergence of precision techniques for patterning
dielectric membranes has led to the possibility of manu-
facturing low-dimensional phononic structures that suppress
low-temperature (<1 K) thermal conductance and thermal
fluctuation noise. Components such as these would find
widespread use in ultralow-noise detector and sensor tech-
nology, thermometry, and microrefrigeration.1–3 For work to
proceed, it is necessary to devise a model that can be used
to design experiments, interpret data, and provide conceptual
insights into the physical processes involved. It must be
possible to include the properties of imperfect materials and to
calculate the spread in behavior of notionally identical devices.

To date, most work has considered uniform microbridges
whose widths 0.5 < b < 4 μm and thicknesses 0.1 < t <

0.5 μm are either comparable with or smaller than the
characteristic phonon wavelengths, and whose lengths are
either much larger, l > 50 μm,4–9 or much smaller, l <

0.5 μm,10 than the acoustic attenuation length. In the case
of very short samples, the conductance is quantum limited and
is determined solely by the number of propagating modes;11,12

in the case of very long samples, the conductance falls as some
function of l due to scattering.13

The scattering lengths of the microscopic processes respon-
sible for absorption depend on the nature of the material.
Acoustic attenuation in crystalline dielectrics is determined
fundamentally by thermoelastic damping,14 where the anhar-
monicity of the lattice couples the acoustic wave to a back-
ground of diffuse thermal excitations. At low temperatures
in highly disordered dielectrics, such as low-stress SixNy ,
the thermoelastic effect is swamped15 by the excitation of
two level systems (TLSs) associated with the reconfiguration
of loosely bound atoms.16–20 We have measured the specific
heat of our own SixNy on many occasions, and it is two
orders of magnitude larger than the Debye value, which is a
known feature of TLSs. In addition to these inelastic processes,
surface roughness, defects, and voids lead to elastic scattering
and to a reduction in thermal flux.

Linear chains of elastically coupled masses with damped
Langevin terminations have been used to study the effects of
disorder on heat transport in low-dimensional crystals.21 Also,
the nonequilibrium Greens function (NEGF) method has been

used to look at the effect of isotopic disorder on heat flow
in carbon and boron-nitride nanotubes.22,23 In all cases, the
transport changes from ballistic, to elastic diffusive, and to
localized as the length of the sample is increased. Both of
these approaches require physical models to be established at
the atomic level and are not suitable for patterned mesoscopic
structures where heat is carried by a small number of acoustic
modes comprising the collective behavior of a large number of
atoms. To model mesoscopic structures it is better to determine
the dispersion relationships of the low-energy phonon modes
by using an elastic continuum model, and then to include
scattering through perturbation techniques. Procedures have
been reported for incorporating imperfections such as surface
roughness4,24,25 and TLSs,26 but they treat scattering as a
surface-reflection phenomena and do not include localization,
inelastic diffusive transport, or the effect of inelastic scattering
on localization. Traditional Boltzmann transport formulations
can be modified to include ballistic phonons,27 but they do
not accommodate resonant interactions and so do not account
for localization and cannot be used for modeling patterned
components such as Fabry-Perot resonators. These omissions
are restrictive because thermal conductivity, heat capacity, and
ultrasonic measurements on bulk samples show that glassy
materials are strongly localized and exhibit high levels of
acoustic loss.28,29

Against this background, we recently described a scheme30

for modeling low-temperature heat flow in amorphous di-
electric microbridges having acoustic loss. The loss absorbs
and reradiates energy incoherently to yield an inelastic
diffusive process. The model shows how the conductance
changes smoothly from being ballistic to diffusive, with a 1/l

dependence as the length of the sample is increased beyond
the acoustic attenuation length. The approach emphasizes
the difference between the physical scattering length and the
acoustic attenuation length and points to the possible role of
saturation.

In this paper, we show how elastic and inelastic scattering
can be incorporated simultaneously into a multimode acoustic-
wave model of patterned components. By combining a directed
flow-graph technique to describe macroscopic elastic pro-
cesses with a power balancing technique to describe inelastic
absorption and reradiation, it is possible to accommodate
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ballistic, inelastic-diffusive, elastic-diffusive, and localized
transport. Moreover, it is suited to mesoscopic components,
where the forms and dispersion relationships of the acoustic
modes can be calculated easily. The use of directed flow graphs
has a good heritage, because they are used extensively for
short-wavelength electromagnetic calculations, often involv-
ing hundreds of traveling and evanescent waves and hundreds
of scattering elements. They are used to describe waveguide
components having complex profiles,31 giving results that are
in close agreement with high-dynamic-range measurements.

In our model, the dielectric structure being studied is
divided into elements, each of which transmits, scatters,
absorbs, and reradiates acoustic waves in the form of discrete
modes. There are many techniques for calculating the forms
and dispersion relationships of modes on mesoscopic dielectric
bars having arbitrary cross sections,32,33 including multilayers.
The dynamical processes responsible for the losses are not
modeled individually but are represented collectively through
a local temperature that quantifies the occupancy of the
extraneous degrees of freedom. In the case of amorphous
dielectrics, TLSs interact through near-field effects, creating
a heat reservoir to which the propagating phonon modes can
couple. In principle, the model can be applied to any lossy
system where there are local degrees of freedom that interact
over short distances, including localized electron transport.

The elements of the structure may be uniform bars, steps in
width, defects, etc. The behavior of each element is described
by a scattering matrix that relates the incoming to the outgoing
complex traveling-wave amplitudes. The losses may radiate
acoustic waves, and so independent sources must be included
for each element. The structure is terminated at each end
by heat baths, which can also scatter and radiate acoustic
energy. The linear relationship between all of the the sources
and all of the traveling-wave amplitudes at every plane can
be used to establish an equation that relates the correlations
between the sources and traveling-wave amplitudes at every
plane. At the outset, the temperature distribution along the
structure is not known, but in the steady state the total power
flow at every plane must be the same, and this condition
can be used to find the temperature distribution that gives
a self-consistent solution. Once the temperature distribution
of the losses is known, many other aspects of behavior can be
calculated.

A desirable feature of the scheme is that the material
is characterized by elastic constants, including loss, which
can be regarded as parameters when modeling and fitting
experimental data, regardless of the specific mechanisms
responsible for the loss. The origin of losses varies widely
between materials and is highly dependent on the deposition
and patterning processes used.

II. MICROBRIDGE THEORY

The transmission and scattering of waves on a dielectric bar
can be represented as a linear process by the directed graph
shown in Fig. 1. More complicated multiport arrangements,
representing more complicated thermal structures, are possi-
ble. The complex acoustic-wave spectral amplitudes an and bn

traveling to the right and left respectively at reference plane n
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21

S1
12

S1
22S1

11Γl Γr

ao a1 aN
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na1 naN
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FIG. 1. (Color online) Directed flow graph of a microbridge. The
hot load na0 is on the left (red), and the cold load nbN is on the right
(blue). na1 to naN , and nb0 to nb(N−1), are the noise waves (green)
injected by losses. The shaded area shows element 1 having scattering
matrices S1

ij and noise sources nb0 and na1.

can be assembled into a column vector v:

v = [a0,a1,a2,an,aN ; b0,b1,b2,bn,bN ]T . (1)

an and bn are themselves vectors because a number of forward-
and backward-traveling modes are present at each plane in
the structure. T denotes the transpose. It is straightforward to
include evanescent waves, but we shall not do so here. Each
element represents some physical feature of the component:
uniform bar, step discontinuity, void, junction, etc. The mode
amplitudes are analytic signals and are normalized so that the
square amplitude is the power traveling in the given direction
at the associated plane. It is not necessary to use the same
number of modes for each element, but if the same number is
used, say M , then v ∈ C2(N+1)M .

For each element there is a block scattering matrix S that
describes the linear relationship between the incoming and
outgoing waves. For the nth element,[

bn−1

an

]
=

[
Sn

11 Sn
12

Sn
21 Sn

22

]
︸ ︷︷ ︸

Sn

[
an−1

bn

]
, (2)

where subscripts distinguish the blocks. Sn
11 and Sn

22 represent
the reflections from the input and output ports of element
n, respectively, and Sn

21 and Sn
12 represent the forward- and

backward-scattering processes. There are many techniques
based on elasticity theory for calculating these matrices.
The ends of the microbridge are terminated by one-port
components, which constitute the heat baths. a0 = �lb0,
where �l is the scattering matrix of the left termination, and
bN = �raN , where �r is the scattering matrix of the right
termination. In the perfectly absorptive case, �l = �r = 0.

To develop the model it is necessary to include the
acoustic noise waves radiated by the terminations and by
the losses in the elements themselves. The waves radiated
by an element are temporally phase incoherent with respect
to the incoming and elastically scattered waves and can be
represented on the directed graph as independent sources. The
complex amplitudes of these sources can be assembled into a
vector n,

n = [na0,na1,na2,nan,naN ; nb0,nb1,nb2,nbn,nbN ]T , (3)

where na1 should be interpreted as the acoustic noise waves
that effectively combine with a1 at node 1, etc.
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It is convenient to distinguish explicitly between internal
noise waves ni , which originate from acoustic losses, and
external noise waves ne, which are injected by the warm
terminations: n = ni + ne. For the microbridge shown in
Fig. 1,

ni = [0,na1,na2,nan,naN ; nb0,nb1,nb2,nbn,0]T ,
(4)

ne = [na0,0,0,0, . . . ,0; 0,0,0,0, . . . ,nbN ]T .

Given a set of internal and external sources, ni and ne,
it is possible to calculate the complex amplitudes of the
traveling-wave amplitudes at every plane. One might imagine
that it is best to solve the problem by using a cascade of
transmission matrices as is done in multimode electromagnetic
calculations,31 but this approach is not suitable here. The
difference is that in electromagnetic calculations all of the
sources are at one end of the system and it is only necessary
to calculate the dependent variables at the other; in thermal
calculations, sources are present along the whole length of
the structure, and it is necessary to calculate the dependent

variables everywhere. The latter problem can be solved by
establishing a block matrix P that contains information about
all of the interconnections in the system. Each entry is the
complex transmission matrix connecting the respective nodes.

When no sources are present, the dependencies are de-
scribed by v = Pv, but when sources are included

v = Pv + ni + ne, (5)

which can be written

[I − P] v = ni + ne, (6)

where I is the identity matrix. Equation (6) can be inverted
through Q = [I − P]−1, where the pseudo-inverse may be
used, and then

v = Q[ni + ne], (7)

which allows the traveling-wave amplitudes v to be calculated
if all of the sources ni and ne are known.

For a single-mode microbridge, P can be written down
easily through inspection of Fig. 1, and I − P becomes

I − P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −�1 0 0 0
−S1

21 1 0 0 0 0 −S1
22 0 0 0

0 −S2
21 1 0 0 0 0 −S2

22 0 0
0 0 −Sn

21 1 0 0 0 0 −Sn
22 0

0 0 0 −SN
21 1 0 0 0 0 −SN

22

−S1
11 0 0 0 0 1 −S1

12 0 0 0
0 −S2

11 0 0 0 0 1 −S2
12 0 0

0 0 −Sn
11 0 0 0 0 1 −Sn

12 0
0 0 0 −SN

11 0 0 0 0 1 −SN
12

0 0 0 0 −�2 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

In this case, P is sparse because only a small fraction of all
possible connections are present. Nevertheless, for flexibility,
because of the ease of setting up the connection matrix
of any general system, and because sparse-matrix inversion
techniques are readily available, we adopt this approach.

A complicating factor is that we must describe the process
in terms of the correlations between the traveling-wave
amplitudes because the complex values of the sources are
not known. To handle partial coherence, form the correlation
matrix of the nodal variables, V = 〈vv†〉, then according to
Eq. (7)

V = Q〈[ni + ne][ni + ne]†〉Q†

= QNiQ† + QNeQ†, (9)

where the second line follows because the external and internal
sources are uncorrelated. V can be expressed as a block matrix
to distinguish the correlations:

V ≡
[

A C
C† B

]
. (10)

A, B, and C carry information about the correlations between
the forward-traveling waves, backward-traveling waves, and
forward- and backward-traveling waves, respectively. These
matrices can also be expressed in terms of blocks: A11 =
〈a1a†1〉, B11 = 〈b1b†

1〉, etc., which give the correlations between
the complex wave amplitudes at different planes.

For constant-temperature thermal sources, the correlations
are statistically stationary, different frequency components
are uncorrelated, and the net fluxes are found by integrating
with respect to frequency. The expectation value of the net
backward-traveling power at plane i is

Pi =
∫

Tr [Bii(ν) − Aii(ν)] dν, (11)

where spectral dependence is shown explicitly. It follows that
for any external noise-source correlation matrix Ne(ν) and any
assumed internal noise-source correlation matrix Ni(ν), it is
possible, through Eqs. (9)–(11), to determine the power flow
at each plane. In the steady state, however, the power flow
at every plane must be the same, P = Pi ∀ i ∈ {0, . . . ,N},
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where P is the net equilibrium power flow at every point on
the structure.

Two questions remain: (i) How can the noise-source
correlation matrices Ni be found once the scattering matrices
are known? (ii) How can the temperatures of the internal
degrees of freedom that constitute the losses be found?

Consider (i). From Eqs. (2) and (3), for element n,[
〈bn−1b†

n−1〉 〈bn−1a†n〉
〈anb†

n−1〉 〈ana†n〉

]

= Sn

[
〈an−1a†n−1〉 〈an−1b†

n〉
〈bna†n−1〉 〈bnb†

n〉

]
Sn†

+
[

〈nb(n−1)n
†
b(n−1)〉 〈nb(n−1)n

†
an〉

〈nann†
b(n−1)〉 〈nann†

an〉

]
, (12)

where the internal sources associated with the losses have been
included. Equation (12) can be written[

Bn−1,n−1 C†
n,n−1

Cn,n−1 An,n

]
= Sn

[
An−1,n−1 Cn−1,n

C†
n−1,n Bn,n

]
Sn†

+
[

Nbn−1,n−1 Nc†n,n−1
Ncn,n−1 Nan,n

]
. (13)

Now imagine that element n is isolated and illuminated on both
sides by incoming uncorrelated waves from perfectly matched
thermal sources having the same temperature Tn as the element
itself, [

An−1,n−1 Cn−1,n

C†
n−1,n Bn,n

]
= U (Tn,ν)

[
I 0
0 I

]
, (14)

where U (Tn,ν) is the Planck distribution:

U (Tn,ν) = hν

ehν/kTn − 1
. (15)

Because the element and sources are at the same physical
temperature, it is not possible to distinguish between the
radiation produced by the external sources and the radiation
produced by the internal sources. The outgoing waves must be
uncorrelated and have the same radiative temperature:[

Bn−1,n−1 C†
n,n−1

Cn,n−1 An,n

]
= U (Tn,ν)

[
I 0
0 I

]
. (16)

Equations (13) to (16) then give[
Nbn−1,n−1 Nc†n,n−1)
Ncn,n−1) Nan,n

]
= [I − SnSn†]U (Tn,ν). (17)

In electromagnetic-systems analysis, this approach is known
as Bosma’s theory,34,35 and it is equally applicable here. Thus,
once the scattering parameters are known, and the temperature
of the element is known, the internal source correlation matrix
can be found. The only restriction is that the overall structure
must be sampled finely enough to ensure that the temperature
distribution is represented accurately.

The same reasoning allows the external noise-source
correlation matrices of the heat baths to be found:

Na0,0 = [I − �l�l†]U (Th,ν), (18)

and

NbN,N = [I − �r�r†]U (Tc,ν), (19)

where Th and Tc are the temperatures of the hot and cold
terminations, respectively. Thus, if the temperatures of the
terminations and elements are known, Eqs. (9), (17), (18), and
(19) can be used to calculate the net heat flow at every plane.
In fact, it is possible to calculate the correlations between any
pair of the traveling-wave amplitudes.

Turning to (ii). The temperatures of the elements are
not known in advance and must be found. In the case of
a single-mode microbridge there are N + 1 unknowns: the
temperatures T1 to TN , and the net heat flow P . Likewise,
there are N + 1 equations: the net heat flow at each of the
planes, which are not equal if the temperature distribution
differs from that of the steady state. To find a solution, make a
first guess at the element temperatures, assemble them into a
vector t, and calculate the vector-valued function s(t) that gives
the frequency-integrated power flow at every plane: t ∈ RN ,
s(t) ∈ RN+1. At equilibrium P s0 = s(t), where s0 is a column
vector of ones, because the power flow at every plane must be
the same. Generally, the first guess is wrong, the net flux into
each cell is not zero, and an error vector results:

�(x) = P s0 − s(t). (20)

The error �(x) is a function of the unknown state vector x,
which comprises P and t. �(x) has dimension N + 1, where
each entry is a nonlinear function of the (N + 1)-dimensional
state vector x. This function has the same number of equations
as unknowns and in principle can be solved uniquely, although
its conditioning is not known.

It is necessary to solve �(x) = 0, which can be achieved
through the iterative Newton procedure

xk+1 = xk − χ [J(xk)]−1�(xk), (21)

where χ is a convergence parameter between zero and unity,
typically 0.8. Its actual value does not change the result, only
the speed and stability of convergence. The elements of the
Jacobian J(x) are the rates of change of the elements of the
error vector �(x) with respect to the elements of the state vector
x. The sequence (21) has a quadratic rate of convergence near
the solution and is highly efficient.

The only remaining question is what temperature distribu-
tion t, and what flux P , should be used as the starting guess?
Often, it is sufficient to assume that all quantities are zero, or
that the temperatures are distributed linearly between the two
end temperatures. When performing a series of simulations,
say when sweeping one of the termination temperatures, it is
beneficial to use the solution of the previous calculation as the
starting guess of the next.

We have been cavalier when comparing the number of
equations with the number of unknowns. Consider a structure
comprising a number of uniform bars having different widths
separated by discontinuous steps. Each of the bars and steps
is represented by a scattering matrix, but whereas the bars
generally exhibit loss, the steps do not. Therefore, it does
not make sense to allocate temperatures to those elements
that are lossless. In fact, Eq. (17) returns a zero result for
the noise-source correlation matrix. In the case of lossless
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elements, the net flux traveling across the input plane is equal
to the net flux traveling across the output plane, and only one
of the two planes needs to be included in the iterative analysis,
reducing the number of available equations by one. Likewise,
the temperature of the cell does not enter, reducing the number
of unknowns by one. The number of unknowns is still equal to
the number of equations regardless of the number of lossless
elements. Generally, any connected lossless elements can be
lumped together and not allocated a temperature. If the whole
system is lossless, an iterative calculation is not needed at all.
When the iterative routine is needed, we have found that it
converges reliably over a wide variety of structures, taking
only 5–10 iterations to achieve errors of less than 0.1% on all
variables.

III. SCATTERING MATRICES

The model can incorporate any number of modes hav-
ing different characteristics and, by using modal scattering
calculations based on continuum mechanics, can take into
account mode conversion at steps, along profiled structures,
and at defects.36–38 At very low temperatures, only acoustic
phonon modes are important, and just four modes continue to
propagate as ν → 0: longitudinal, torsional, in-plane flexure,
and out-of-plane flexure. For illustration we shall consider
the modes and reflections at a step change in width of a
rectangular bar.39 A change in thickness is straightforward
to accommodate.

Longitudinal. The longitudinal mode has a linear dispersion
relationship ω = clk where cl = √

E/ρ is the longitudinal
sound speed, E is Young’s modulus, and ρ is the density.
The wave impedance is Zl = √

EρA, where A = bt is the
cross-sectional area, b is the width, and t is the thickness. A
discontinuity in impedance can occur because of changes in
the density, elastic constants, or cross section. If we attribute
every discontinuity to a change in width, the scattering matrix
becomes

Sl =
[

(1 − h)/(1 + h) 2
√

h/(1 + h)
2
√

h/(1 + h) (h − 1)/(h + 1)

]
, (22)

where h = b2/b1, and b1 and b2 are the widths of the bars
on the input and output sides, respectively. Equation (22) has
been normalized so that the square-magnitudes of the mode
coefficients give the power flow on each side of the step. If h

is large or small the reflection coefficients tend to ±1, which
occurs because large-area bars are stiff.

Torsional. The lowest-order torsional mode has the dis-
persion relationship ω = 2ct (t/b)k, where ct = √

μ/ρ is
the transverse sound speed and μ is the shear modulus.
The torsional mode has the impedance Zt = √

μρA2/6,
where it is assumed that one dimension is much smaller than
the other, t < b. The scattering matrix for the normalized mode
coefficients is

St =
[

(1 − h2)/(1 + h2) 2h/(1 + h2)
2h/(1 + h2) (h2 − 1)/(h2 + 1)

]
. (23)

Flexural. The two flexural modes, which are degenerate
for a square bar, have quadratic dispersion relationships.
For out-of-plane flexure, ω = cl

√
t2/12k2, whereas for in-

plane flexure ω = cl

√
b2/12k2. For out-of-plane flexure, the

complex reflection r and transmission t parameters are found
through⎡

⎢⎣
r

t

d−
d+

⎤
⎥⎦ =

⎡
⎢⎣

1 −1 1 −1
1 1 i i

1 −h −1 h

1 h −i −ih

⎤
⎥⎦

−1 ⎡
⎢⎣

−1
1

−1
1

⎤
⎥⎦ , (24)

where d− and d+ are the amplitudes of the evanescent waves
on either side of the junction, which are needed to satisfy the
boundary conditions39 but which are not taken into account
further. In order to calculate the normalized scattering matrix,
we must multiply the forward-transmission parameter t21

by
√

Z2/Z1 and the reverse transmission parameter t12 by√
Z1/Z2, where Z1 and Z2 are the characteristic impedances

on each side of the step. The impedance of the out-of-plane
flexural mode is given by Zof = √

Eρ(A/
√

12)tk, which
depends on frequency through k, but in this case k1 = k2

because t1 = t2, and therefore

Sof =
[

r11 t12h
−1/2

t21h
1/2 r22

]
. (25)

The quantities r11 and r22 have the same sign for large changes
in width and are both purely imaginary as a consequence of
the energy stored in the evanescent fields.

For in-plane flexure, the complex reflection and transmis-
sion parameters are found through⎡

⎢⎣
r

t

d−
d+

⎤
⎥⎦ =

⎡
⎢⎢⎣

1 −1 1 −1
1 h−1/2 i ih−1/2

1 −h2 −1 h2

1 h3/2 −i −ih3/2

⎤
⎥⎥⎦

−1 ⎡
⎢⎣

−1
1

−1
1

⎤
⎥⎦ . (26)

The impedance of the in-plane flexural mode is given by Zif =√
Eρ(A/

√
12)bk, which depends on frequency through k, but

now k1 	= k2 because b1 	= b2, and therefore

Sif =
[

r11 t12h
−3/4

t21h
3/4 r22

]
. (27)

Again, r11 and r22 are both purely imaginary for large changes
in width.

All of the characteristic impedances are real, none of
the scattering matrices depend on frequency, and all of the
scattering matrices are lossless and therefore unitary. Figure 2
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FIG. 2. (Color online) Dispersion relationships of the (a) longitu-
dinal, (b) torsional, (c) in-plane flexural, and (d) out-of-plane flexural
modes of SixNy . The bar is 0.2 μm thick and 1 μm wide. The dashed
line corresponds to 2kT /h̄ at T = 0.1 K.
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FIG. 3. (Color online) Power transmission (dashed) and reflection
(solid) of different modes as a function of the ratio of output width
to input width of a step discontinuity. The dotted lines show the sum
of the two, indicating that steps are lossless. The colors correspond
to those of Fig. 2.

shows the dispersion relationships of the (a) longitudinal, (b)
torsional, (c) in-plane flexural, and (d) out-of-plane flexural
modes of a SixNy microbridge, 0.2 μm thick and 1 μm
wide. We have used cl ≈ 10 300 km/s and ct ≈ 6200 km/s.
The dotted line shows 2kT /h̄ at 0.1 K, which indicates a
typical level of excitation. Note that the torsional and out-
of-plane flexural modes have low phase and group velocities
compared with the longitudinal and in-plane flexural modes,
indicating their relative compliance. Figure 3 shows the power
transmission (dashed) and reflection (solid) coefficients of a
step discontinuity as a function of the ratio h of the output width
to the input width. The four plots correspond to the longitudinal
(black), torsional (red), out-of-plane flexural (green), and
in-plane flexural (red) modes. The dotted lines show the sum
of the reflected and transmitted power, confirming that the
discontinuity is lossless. The plots have certain features in
common as a consequence of the reflection coefficient tending
to unity for extreme steps, the need for the reflection to be
zero when there is no step, and for the plots to be unchanged
when the step is viewed from the other side h → 1/h. There
are, however, differences: the out-of-plane flexural mode is
only reflected weakly for steps of modest size, whereas the
torsional mode is very sensitive to steps. Although it would be
straightforward to take into account mode conversion at steps,
we shall not do so here.

To complete the scheme, we require the scattering matrices
of uniform bars. For a single mode,

Sb =
[

0 G(ν) exp[ik�l]

G(ν) exp[ik�l] 0

]
, (28)

where �l is the length of the section, and a frequency-
dependent transmission factor G(ν) has been included to
represent the acoustic loss. Only frequency dependence has
been shown explicitly, but other dependencies can be included.
For multimode systems, more terms can be added, but the
principle remains the same.

IV. SIMULATIONS

Consider a uniform, single-mode microbridge. To eventu-
ally allow for step discontinuities, 100 bars and 200 scattering
matrices were used. The transmission per bar was G = 0.9,
which corresponds to having inelastic, but no elastic, scatter-
ing. The matched terminations were held at Th = 0.3 K and
Tc = 0.1 K, and ν = 5 GHz. The routine adjusted 100 temper-
atures to calculate the correlations between 400 traveling-wave
amplitudes. Figure 4 shows the expectation values of the
forward and backward fluxes, and the temperatures of the
internal degrees of freedom that constitute the losses, as a
function of position. The top and bottom solid (black) lines
show the powers flowing to the right and left, respectively.
The difference between the two, indicated by the dotted line,
is the net power, which must be everywhere the same in the
steady state. Each of the solid (black) lines comprises two
parts: a decaying ballistic part (red), and a growing radiated
part (green). The ballistic and radiated fluxes combine to
form the total forward and backward fluxes, which are linear
functions of position. Because the ballistic and radiated waves
are phase incoherent, it is appropriate to add the fluxes in this
way. The diffusive nature of the process is clear because the
ballistic parts are attenuated severely, but there is a flow of
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FIG. 4. (Color online) Simulation of a uniform, single-mode
microbridge. The structure has inelastic, G = 0.9, but no elastic,
scattering. Th = 0.3 K, Tc = 0.1 K, and ν = 5 GHz. Top: The top
and bottom black lines show the power flowing to the right and left
respectively. The dotted line shows the net power flowing along the
structure. The red and green lines indicate the ballistic and diffusive
contributions. Bottom: The temperature distribution of the losses.
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FIG. 5. (Color online) Top: Width, in normalized units, as a
function of position. The structure had elastic but no inelastic
G = 0.999 999 scattering. Th = 0.3 K, Tc = 0.1 K, and ν = 10 GHz.
Middle: The top and bottom black lines show the power flowing to
the right and left, respectively. The dotted line shows the net power.
The remaining (red) lines show the ballistic parts of the forward- and
backward-traveling waves. Bottom: The temperature distribution of
the poorly coupled losses.

power due to heating and reradiation. The ballistic-diffusive
theory of heat conduction makes a similar distinction, but
with the transport described in terms of the carrier distribution
function.27 The bottom plot in Fig. 4 shows the temperature of
the losses as a function of position. The distribution is slightly
curved, because the internal source flux has to be a linear
function of position, but the source flux is not linearly related
to temperature.30 Certain features, such as the discontinuities
at the ends, have been observed previously in the context of
solutions of the Boltzmann transport equation.27,40–42

Figure 5 shows the behavior of a nonuniform, essentially
lossless microbridge, G = 0.999 999. The matched termina-
tions were held at Th = 0.3 K and Tc = 0.1 K. To demonstrate
the effects of elastic scattering, the cross section was varied
by drawing widths from a random Gaussian population having
b = 1.0 ± 0.1. Because the widths enter only through ratios h,
units are not specified. The number of bars used was 100, each
having a length of �l/λ = 0.02 at 1 GHz. In the case of SixNy ,
the parameters correspond to a 20-μm-long sample having a
surface-roughness correlation length of 0.2 μm. In practice, the
discontinuities might be due to edge and surface roughness,
changes in material properties, internal defects, etc., but for
presentation purposes we attribute them to edge roughness

and show the cross section as a symmetrical change in width.
Other statistical models could be used. ν = 10 GHz, which
equates to having five bars per wavelength, with a roughness
correlation length of 0.2 wavelengths. The top and bottom solid
(black) lines of the middle plot show the powers traveling to
the right and left, respectively. They combine to form the net
flux, shown as a dotted line. The remaining (red) lines show the
ballistic parts of the two oppositely directed fluxes. Only the
ballistic flux traveling to the right is nonzero because Tc = 0 K.
The ballistic fluxes were calculated by setting the reflective
elements S11 and S22 of all of the cell scattering parameters to
zero. It does not make sense to show scattered fluxes, because
the scattered waves are phase coherent with respect to the
incident waves, and so the fluxes do not add. This aspect of our
model is different from the ballistic-diffusion equations.27 The
forward-traveling ballistic flux falls as a function of position
due to scattering by individual discontinuities.

There are regions where the forward flux is higher than the
flux injected at the hot end, and the backward flux is nonzero
despite the cold termination being at 0 K. The resonant trapping
of energy, or equivalently the localization of phonons, has
appeared in a natural way.43–45 When the model is run many
times, using different profiles taken from the same statistical
distribution, the behavior varies markedly. It is not usually
possible to identify specific features in the profile that are
responsible for the trapping seen. The bottom plot in Fig. 5
shows the temperature of the losses as a function of position.
An identical simulation, but of a uniform microbridge, gives
a temperature distribution that is constant at 0.22 K. This
situation occurs because the internal losses are only lightly
coupled to the two counter-propagating acoustic waves and so
drift up to an intermediate temperature.30 A similar effect is
seen in Fig. 5, but with additional structure due to localization.

Matrix V in Eq. (10) contains the correlations between
the traveling-wave amplitudes at different planes. Figure 6
shows the magnitudes of the correlation coefficients between
the forward-traveling waves when plane 150 was used as the
reference. The bottom (red) line corresponds to Fig. 4. In
this case, phase-incoherent reradiation leads to decorrelation
on the scale size of the acoustic attenuation length. The top
(green) line corresponds to Fig. 5. In this case, the waves in
both directions and at all planes are fully correlated, even
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FIG. 6. (Color online) Magnitude of the correlation coefficients
between the forward traveling waves at different positions, referenced
to plane 150. The bottom (red) line corresponds to the inelastic case
of Fig. 4, the top (green) line to the elastic case of Fig. 5, and the
middle (blue) line to an elastic case having Th = Tc = 0.3 K.
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FIG. 7. (Color online) Transmission as a function of frequency
for a single-mode microbridge having elastic scattering only. Th =
0.3 K and Tc = 0.0 K. The profile was chosen randomly from a
Gaussian distribution having b = 1.0 ± 0.1. The dotted line shows
the transmission of a single sample. The central (red) line show the
average of 200 similar calculations having different profiles. The top
and bottom (green) lines show the one-standard-deviation limits.

though a complex sequence of scattering events is taking
place. The middle (blue) line corresponds to a fully elastic
calculation, similar to that of Fig. 5, but with Th = Tc = 0.3 K.
Decorrelation occurs because, upon moving along the struc-
ture, the relative contributions from the uncorrelated hot and
cold terminations change. On the left, the probability that the
flux traveling to the right originates from the source on the left
is higher than the probability of it originating from the source
on the right; on the right, the opposite is true.

Figure 7 shows the normalized transmission of a single-
mode microbridge as a function of frequency. The dotted line
shows the behavior of a single sample having Th = 0.3 K
and Tc = 0 K. Only elastic scattering was included, with the
position-dependent width drawn from a Gaussian population
having b = 1.0 ± 0.1. In this case, it was not necessary to
perform an iterative calculation, and the fluxes were found
directly by solving Eq. (9) with Ni = 0. The middle solid
(red) line shows the average of 200 similar calculations, with
profiles drawn from the same population. The sample behaves
almost ballistically at 1 GHz because the defect length is only
λ/50. The sample also behaves ballistically at 25 GHz, where
the defect length is λ/2. The average transmission is at a
minimum at 12.5 GHz, where the defect length is λ/4. In
the parlance of localization, this frequency corresponds to the
Ioffe-Regel criterion kξ = 1, where the structure correlation
length ξ is some fraction of the phonon wavelength λ = 2π/k.
In the context of transmission-line theory, localization is
greatest when kξ = π/2 because, upon moving along the
structure and looking back along the structure, the variation
in impedance is greatest when the defect length is λ/4. At
this frequency, the proportionate uncertainty in transmission
is large, as evidenced by the top and bottom (green) lines,
which show the one-standard-deviation limits.

The effect of localization in bulk glassy materials has been
studied extensively in recent years. It is believed to be the cause
of a plateau in thermal conductivity and a peak in heat capacity
over 1–10 K. This temperature range implies a structure
correlation length of 20–50 Å,46 which is consistent with the
microstructure of disordered dielectrics.47 Care is required,
however, because the deposition and processing conditions

affect the properties and microstructure of SixNy greatly, and
other materials can be very different. In addition, resonant
scattering is influential even when the wavelength is 10 times
larger than the Ioffe-Regel criterion would suggest, and defects
in microbridges are proportionately more significant than
defects in bulk. Thus, resonant scattering is likely to play a
role in determining the behavior of microbridges. In our own
experimental work, the variation in the thermal conductances
of notionally identical samples having t = 0.2 μm, b = 1.0
to 5.0 μm, and l = 200 to 600 μm is around ±15%, which
cannot be accounted for by nonlocalized calculations based on
surface-roughness measurements. Although Fig. 7 indicates
that on average resonant scattering forms a low-pass filter, in
reality, the transmission of a single sample varies rapidly with
frequency, and it is the rapid frequency variation that leads to
a reduction in the frequency-integrated flux. For temperatures
below 0.5 K, there is little power in the Planck spectrum above
25 GHz, and the filtering effect of the disorder is great. If
the structure correlation length is much smaller than the value
used, 0.2 μm, then the effective passband extends to higher
frequencies. It is also possible to allow the cell lengths to vary
randomly according to some distribution, but we shall not do
so here.

Although we have used the word “localization,” it has not
been shown that the model produces the characteristics of
localized transport. Figure 8 shows, as solid (black) lines, flux
as a function of length for microbridges having b = 1.0 ± 0.1,
1.0 ± 0.2, 1.0 ± 0.3 and 1.0 ± 0.4. Th = 0.3 K, Tc = 0 K, the
defect length was set to �l/λ = 0.02 at 1 GHz, and ν = 5 GHz.
In each case, the behavior of 200 randomly chosen samples
were averaged to give a mean flux. Each length constitutes a
complete new calculation because, when resonant scattering
is present, it is not appropriate to infer the behavior of a set
of short samples by simulating the behavior of a single long
sample. The flux of a single sample does not even decrease
monotonically with length. Each curve comprises 20 000 sim-
ulations. Figure 8 shows evidence of three kinds of transport:
(i) For very short samples, the flux limits to the ballistic
value I = I0 = 2.7 fW/GHz. (ii) As the samples are made
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FIG. 8. (Color online) Flux through a series of microbridges hav-
ing elastic scattering only. Th = 0.3 K, Tc = 0.1 K, and ν = 5 GHz.
200 randomly chosen samples were averaged in each case. The solid
(black) lines, top to bottom, correspond to Gaussian populations
having b = 1 ± 0.1, 1 ± 0.2, 1 ± 0.3, 1 ± 0.4. The dotted lines show
the one-standard-deviation limits in the b = 1 ± 0.3 case. The dashed
lines show the diffusive (red) and localized (green) models described
in the text.
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longer, there is a region of elastic diffusive behavior, which
decreases in extent as the roughness is increased. The dashed
(red) lines correspond to the models I = Io[1.0 + L/Ldif]−1,
with Ldif = 1050, 240, 71, 28 cells, respectively. Models that
describe the behavior of short samples fail to describe the
behavior of long samples. (iii) The dashed (green) lines show
the models I = Io exp[−L/Lloc], with Lloc = 1050, 240, 94,
38, which corresponds to localized transport. The localization
length Lloc decreases as the roughness increases. It is not
possible to fit the data with diffusive or localized models alone.
There is evidence of a diffusive-to-localized transition, where
the crossover length depends on frequency and the statistics
of the edge profile. In this simulation, the wavelength was
five times the defect length, corresponding to 2.5 GHz in
Fig. 7. Thus, although the effects seem small in the frequency
response, they can lead to localized behavior in long samples.
These observations suggest that localization can be significant
in SixNy microbridges having lengths of a few microns. The
dotted lines in Fig. 8 show the one-standard-deviation limits for
the case b = 1.0 ± 0.3. The proportional uncertainty in flux
increases markedly with length, showing that the behavior
of a long sample is less predictable than the behavior of
a short sample. The spread in behavior indicates that it
would not be possible to observe the diffusive to localized
transition in measurements taken on single samples having
different lengths. These are known characteristics of localized
transport.21

Figure 9 explores the effect of inelastic scattering on local-
ization. The top plot shows the cross section of a microbridge
taken from a Gaussian population having b = 1 ± 0.2. Th =
0.3 K, Tc = 0 K, the defect length was �l/λ = 0.02 at 1 GHz,
and ν = 10 GHz. The top solid (black) line of the middle
plot shows the forward-traveling flux for G = 0.999 999,
essentially elastic scattering only. Because the behavior is
undamped, there is appreciable resonant scattering near the
hot termination. The net flux is 2.9 × 10−3 fW/GHz. Other
samples drawn from the same population show a variety of
behavior, but there is a tendency for energy to be stored near
the exciting termination, leading to an increase in local heat
capacity. It is very difficult to attribute trapping to specific
features in the profile. The bottom solid (red) line of the
middle plot shows the flux with G = 0.9, corresponding to the
introduction of inelastic scattering. The dotted red line shows
the net flux, which is 98.3 × 10−3 fW/GHz. When inelastic
scattering is introduced, resonant scattering is damped, and the
stochastic filter starts to leak due to inelastic diffusive transport.
The forward- and reverse-traveling fluxes, not shown, become
near-linear functions of position, as in Fig. 4, but with steps
at positions of greatest reflection. The bottom plot in Fig. 9
shows the temperature distributions. In the nearly lossless case,
the temperature changes abruptly at about half way along the
sample, whereas in the heavily damped case, the temperature
changes smoothly with position, reflecting the form of the
Planck function.

Consider the behavior of macroscopically patterned compo-
nents when ballistic, elastic diffusive, localized, and inelastic
diffusive scattering are present. Figure 10 shows the profile
of an acoustic Fabry-Perot resonator having a normalized
width of 4.0 and length of 10 bars. The top plot in each
case shows the profile used. It was simulated at the 2λ
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FIG. 9. (Color online) Top: Width as a function of position, taken
from a Gaussian distribution having b = 1 ± 0.2. Th = 0.3 K, Tc =
0 K, and ν = 10 GHz. Middle: The top solid (black) and bottom
(red) lines show the forward-traveling fluxes as a function of position
for G = 0.999 999 and G = 0.9, respectively. The dotted (red) line
shows the net flux for the inelastic case. Bottom: The corresponding
temperature distributions.

resonant frequency ν = 20 GHz, with the terminations held
at Th = 0.3 K and Tc = 0 K. Although we have modeled
more complicated components, including multi-element filters
and tapers having a variety of edge profiles and random
distributions of cell losses, lengths, and widths, here we discuss
a simple structure in order that the main features of the method
can be appreciated. Initially, G = 0.99. The left-middle plot
shows the fluxes traveling to the right [upper (green) line]
and left [lower (red) line] as a function of position. The dashed
(black) line is the net flux, which must be the same everywhere
at equilibrium. At the cold end there is no backward flux
because the termination is matched. There is a circulating flux
in the resonator, corresponding to the Debye heat capacity of
the central section. The presence of inelastic scattering and
associated reradiation by losses causes a linear gradient in the
fluxes, and a backward-traveling flux at the hot termination.
Because the attenuation length is greater than the length of
the central section, the structure retains the characteristics of a
resonator. The bottom plot shows the temperature distribution
of the losses. In the right column, G = 0.5. The attenuation
length is now much smaller than the length of the resonator,
and resonant behavior is lost. The losses accrue a temperature
gradient, and the diffusive process that results is essentially the
same as if the resonator were not present. Diffusion causes a
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FIG. 10. (Color online) Left column, top: Width profile of a
Fabry-Perot resonator. Th = 0.3 K, Tc = 0 K, ν = 20 GHz, and
G = 0.99. Middle: The top (green) and bottom (red) lines show the
flux traveling to the right and left, respectively. The dashed (black)
line is the net flux. Bottom: The temperature distribution of the losses.
Right column: The same as the left column, but with G = 0.5.

lowering of transmission in band, and a leakage of power out
of band.

Figure 11 shows the behavior of the same resonator, again at
ν = 20 GHz, but with elastic scattering only, G = 0.999 999,
brought about by a random edge profile: ±0.1. There is phonon
trapping approximately 10 cells to the left of the leading edge
of the resonator, which corresponds to a few wavelengths.
We often see an enhancement of resonant trapping between
the edges of patterned features and random variations in
microstructure. This observation shows that the local heat
capacity is also enhanced. The right column of Fig. 11 shows
the effect of introducing inelastic scattering, G = 0.9. The
loss suppresses localization, and diffusive transport becomes
dominant, causing the component to behave as an ordinary
thermal conductor.

Figure 12 shows the frequency response of the Fabry-Perot
resonator shown in Fig. 10. The top solid (red) line shows
the transmitted power when G = 0.999 999, corresponding
to resonant ballistic transport. The middle solid (green) line
shows the case when G = 0.999, but with no diffusive trans-
port; whereas the dashed (green line) shows the transmitted
power when diffusion is allowed. The curves are similar,
because the attenuation over the length of the resonator is
small, maintaining the same loaded Q, but the diffusive case
shows a higher flux due to diffusive transport along the legs
outside of the resonator. The bottom solid (blue) line shows
the response when G = 0.99, with no diffusion, whereas the
bottom dashed (blue) line shows the response when diffusion
is allowed. Again, the total flux is higher due to diffusion. It
is clear that when considering the behavior of lossy phononic
filters, it is necessary to distinguish between the characteristics
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FIG. 11. (Color online) Left column, top: Width profile of a
Fabry-Perot resonator having an edge roughness of ±0.1. Th = 0.3 K,
Tc = 0 K, ν = 20 GHz, and G = 0.999 999. Middle: The top (green)
and bottom (red) lines show the flux traveling to the right and left,
respectively. The dashed (black) line is the net flux. Bottom: The
temperature distribution of the losses. Right column: The same as the
left column, but with G = 0.9.

being degraded by the reduction of Q, and the degradation
caused by inelastic diffusion,

Now turn to multimode simulations. Figure 13 shows the
forward-traveling fluxes in the longitudinal (black), torsional
(blue), out-of-plane flexure (green), and in-plane-flexure (red)
modes as a function of position for a 0.2-μm-thick sample
of SixNy . We ignore higher-order modes for simplicity. The
forward-traveling fluxes at plane 200 also correspond to the
next fluxes in the individual modes. Elastic scattering was
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FIG. 12. (Color online) Frequency response of the Fabry-Perot
resonator shown in Fig. 10. Th = 0.3 K, Tc = 0 K. The top
solid (red) line shows the transmitted power when G = 0.999 999,
corresponding to ballistic resonant transport. The middle solid (green)
line shows the case when G = 0.999, but with no diffusive transport.
The dashed (green line) shows the transmitted power when diffusion
is introduced. The bottom solid (blue) line shows the case with
G = 0.99, but without diffusion, and the bottom dashed (blue) line is
with diffusion.
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FIG. 13. (Color online) Forward flux as a function of position for
a multimode SixNy microbridge having elastic scattering only. The
width was taken from a Gaussian population having b = 1.0 ± 0.1.
Th = 0.2 K, Tc = 0 K, ν = 1.6 GHz, and the length of each cell
was 0.39 μm, giving a total length of 39 μm. The individual
curves correspond to the longitudinal (black), torsional (blue),
in-plane flexure (red), and out-of-plane flexure (green) modes.

included in the form of a randomly varying width drawn
from a Gaussian population having b = 1.0 ± 0.1. Th = 0.2 K,
Tc = 0 K, and ν = 1.6 GHz. The cell length was 0.39 μm,
giving a total length of 39 μm. Although intermodal scattering
was not included, the results were calculated simultaneously
using the multimode model, and intermodal scattering could
have been easily included. By inspecting Figs. 2 and 3, the
results of the multimode simulation shown in Fig. 13 can
be understood as follows: (i) The torsional mode (blue) is
sensitive to step changes in width and has a wavelength of
4.0 cells at 1.6 GHz. Each cell is therefore λ/4 long, and
the mode is localized, with a severely attenuated flux. (ii)
The out-of-plane flexural mode (green) has a wavelength of
4 cells but is insensitive to changes in width and therefore
behaves ballistically. (iii) The longitudinal mode (black) has a
wavelength of 16.5 cells and has a moderate sensitivity to step
changes in width. It shows some trapping, but the position
dependence of the flux suggests an elastic-diffusive form.
(iv) The in-plane flexural mode has a wavelength of 9.0 cells
and a moderate sensitivity to width. It, too, shows a diffusive
form. Although not explicit in this plot, we have found that
localization does not occur in the flexural modes when the
structure correlation length is λ/4 because the imaginary parts
of the reflection coefficients modify the condition at which
resonance takes place. The ballistic nature of the out-of-plane
flexural mode is a recurrent theme in many simulations. It
seems that a phononic filter should have patterned changes
in both thickness and width if the in-plane and out-of-plane
flexural modes are to be attenuated. Interestingly, step changes
in width and thickness can be made at different planes, in
order to take into account the different modal wavelengths.
Experimental work on membranes has shown that heat flux
is sensitive to micromachined surface features.48 Although
not studied here, we would expect intermodal scattering to
reduce localization in a way that is consistent with the generic
characteristics of localization in two and three dimensions.

Figure 14 shows the situation where a resonant section is
placed in the multimode transmission structure of Fig. 13.
The central resonator was 31 bars long, corresponding to
31.39 μm, and b = 4.0 wide. We do not include a higher

0 50 100 150 200
0

1

2

3

4

Plane number

F
lu

x 
 (

fW
/G

H
z)

0 50 100 150 200
0

5

10

Plane number

F
lu

x 
 (

fW
/G

H
z)

FIG. 14. (Color online) Top and bottom: Two statistical realiza-
tions, drawn from a Gaussian population having an edge roughness
of ±0.1, of a multimode Fabry-Perot interferometer. The same
parameters were used as for Fig. 13, Th = 0.2 K, Tc = 0 K, ν =
1.6 GHz, but with a central resonator 31 bars long, corresponding to
31.39 μm, and b = 4.0 wide. The individual curves correspond to
the longitudinal (black), torsional (blue), in-plane flexure (red), and
out-of-plane flexure (green) modes.

number of propagating modes in the central section, or
evanescent modes, which would contribute to the heat capacity.
The individual curves correspond to the longitudinal (black),
torsional (blue), in-plane flexure (red), and out-of-plane flexure
(green) modes. The top plot has a number of features. The
cavity is resonant in the in-plane flexural mode (red), leading
to high transmission. The out-of-plane flexural mode also
shows high transmission, because large steps in width only
result in small reflection coefficients. The longitudinal mode
(black) is off resonancebecause of its different wavelength
and shows a lower overall transmission factor. The modes
show varying degrees of localization, which depend on the
degree to which edge roughness introduces scattering. The
torsional mode (blue) is scattered so strongly that the flux is
very low once the wave reaches the resonator, showing almost
no stored energy in the resonator itself. The bottom plot shows
a calculation having the same parameters, but using a different
sample from the same statistical population. The flexural and
longitudinal modes behave in much the same way as before
(note the change in scale), with a tendency for energy to be
stored to the left of the leading edge, which is due to resonant
interaction between the edge of the resonator and localized
cells. The strongly scattered torsional mode shows a high level
of localization to the left of the leading edge, and low overall
transmission. It seems that the existence of sharp edges can
lead to a higher heat capacity than would be calculated purely
on the basis of the resonator alone.

Although the behavior is complicated, the prospects for
using patterned structures to minimize heat flow are good.
Those modes that are strongly elastically scattered, giving
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FIG. 15. (Color online) Frequency response of Fabry-Perot filter
of Fig. 14. The top plot shows the modal powers for a structure with
perfectly smooth edges, whereas the bottom plot shows the modal
powers for the same structure, but with an edge roughness chosen
from a Gaussian population having ±0.1. Th = 0.2 K, Tc = 0 K. The
individual curves correspond to the longitudinal (black), torsional
(blue), in-plane flexure (red), and out-of-plane flexure (green) modes.

localized transport, tend to result in small fluxes, or they
are scattered strongly at edges, resulting in a reduction in
flow either by Fabry-Perot resonances or by scattering at
discontinuities. Those modes that are weakly scattered can
be filtered by resonators. Diffusive transport can cause filters
to leak, but if the leads, as distinct from the resonator, are made
long enough, diffusive transport can be put to good benefit.

Figure 15 shows the frequency response of the Fabry-Perot
filter of Fig. 14. The top plot shows the modal powers for a
structure with perfectly smooth edges, whereas the bottom plot
shows the modal powers for the same structure, but with an
edge roughness chosen from a Gaussian population having a
width of ±0.1. Th = 0.2 K, Tc = 0 K. The individual curves
correspond to the longitudinal (black), torsional (blue), in-
plane flexure (red), and out-of-plane flexure (green) modes.
The total flux, not shown, is the sum of the four curves. In the
top plot notice that the Fabry-Perot effect is most pronounced
for the torsional mode, and least pronounced for the out-of-
plane flexural mode. The positions of the resonances reflect
the dispersion relationships of Fig. 2. Even for this simple
structure, where the individual modes behave differently, there
is an overall filtering compared with the blackbody spectrum
at Th = 0.2 K, which is traced by the upper envelope of the

curves. The bottom plot of Fig. 15 shows the behavior of the
same resonator, but with a variation in width of ±0.1 along the
whole length of the structure. The out-of-plane flexural mode
(green) is affected little by the roughness, whereas the in-plane
flexure (red) and longitudinal (black) modes show that certain
of the peaks are shifted due to resonant trapping. Nevertheless,
on average a significant amount of filtering takes place. The
torsional mode (blue) is heavily attenuated by localization, and
the interaction between the localized cells and the edges of the
resonator.

A number of generic factors should be borne in mind when
designing thermal filters. The filtering may not be due to a
single order of a resonator, but averaged over many periods.
Even when the acoustic modes have different dispersion
relationships, the overall flux can still be reduced significantly,
particularly if resonators are defined in terms of width
and thickness to take into account the different dispersion
relationships of the in-plane and out-of-plane flexural modes.
Localization may limit the contributions of certain modes,
but patterning can still be used to resonantly filter the highly
transmissive modes. The heat capacity may be seen to increase
unexpectedly due to interactions between patterned edges
and defects. Filtering may take place through nonresonant
or resonant scattering, depending on whether the scale size of
the patterned features is greater or smaller than the acoustic
attenuation length. An interesting idea is to use short resonators
separated by large distances to achieve phase isolation through
diffusive conduction.

V. CONCLUSIONS

A model has been described for simulating the low-
temperature thermal behavior of low-dimension components
patterned into amorphous dielectric membranes. The model
uses directed flow graphs together with a nonlinear root-
finding algorithm to accommodate ballistic, elastic diffusive,
localized, and inelastic diffusive scattering. Different statistical
models can be used to represent the microstructure. A
parametric dependency of acoustic loss on frequency30 can
be incorporated. The technique not only gives the average
behavior of structures, but also the spread in behavior of
notionally identical devices. Our intention is to use the method
to devise experiments that allow material parameters to be
determined and to attempt to design microscopic structures
that minimize heat flow and thermal noise. Many extensions
are possible: For example, the technique could be used to
model multiport components, such as several microbridges
supporting a central island, or cast into other basis sets to
allow cross-plane heat calculations in superlattices.49 The next
phase of the work is to use elasticity theory to calculate the
dispersion relationships of microbridges having different cross
sections, to include evanescent waves, and to create a library
of scattering parameters for discontinuities of various kinds.
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