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Phase structure of two-dimensional topological insulators by lattice strong-coupling expansion
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The phase structure of two-dimensional topological insulators under a sufficiently strong electron-electron
interaction is investigated. The effective theory is constructed by extending the idea of the Kane-Melé model
on the graphenelike honeycomb lattice, in terms of U(1) lattice gauge theory (quantum electrodynamics). We
analyze the phase structure by the techniques of strong-coupling expansion of lattice gauge theory. As a result,
we find that the topological phase structure of the system is modified by the electron-electron interaction. There
evolves a new phase with the antiferromagnetism not parallel to the direction pointed by the spin-orbit coupling,
in-between the conventional and the topological insulator phases. We also discuss the physical implication of
the new phase structure found here, in analogy to the parity-broken phase in lattice quantum chromodynamics,
known as the “Aoki phase.”

DOI: 10.1103/PhysRevB.87.205440 PACS number(s): 73.22.Pr, 03.65.Vf, 11.15.Ha, 11.15.Me

I. INTRODUCTION

Topological insulators have recently attracted a great inter-
est in the field of materials physics.1,2 They are characterized
by the gapless modes localized on the surfaces or edges of
the system, while the bulk spectrum is separated by a finite
band gap. The existence of such gapless modes is ensured
by a nontrivial topological invariant (number) defined by the
electron ground state. The gapless boundary modes have the
properties of massless Dirac fermions, which are topologically
protected under any consistent perturbation or disorder with
the symmetry.

The two-dimensional (2D) quantum spin Hall (QSH)
insulator is one of the examples for topological insulators,
where the shift of the topology is given by the spin-orbit
coupling acting on the electrons. It was first observed in
HgTe quantum wells experimentally in 2007,3 which agrees
with the theoretical model proposed previously.4 The band
structure of QSH insulators is effectively described by the
Kane-Melé model, which is based on the effective theory of
graphene on the honeycomb lattice.5 The system possesses a
finite-Z2 topological number, which gives rise to QSH effect
even in the absence of external magnetic field, related by the
so-called Thouless-Kohmoto-Nightingale–den Nijs (TKNN)
formula.6 Its topological phase structure is characterized by
the competition between the topological gap from the spin-
orbit interaction and the nontopological gap from some other
symmetry-breaking effects. Change of the topology occurs
at the phase boundary, where one of the valleys loses its
band gap.

The effect of electron correlation in such an electronic
system has always been an important problem. Even in
nontopological Dirac fermion systems, such as graphene, it
has been proposed that a sufficiently strong electron-electron
interaction can lead to a spontaneous breaking of some
symmetries of the system and a dynamical generation of
band gap.7 In some of the previous studies, the idea of
quantum electrodynamics (QED), such as the Schwinger-
Dyson equation,8 large-N expansion,9,10 exact renormaliza-
tion group analysis,11,12 Monte Carlo simulation,13–15 and

strong-coupling expansion16,17 of lattice gauge theory, has
been applied to study the effect of electron-electron interaction
in graphene (or a graphenelike) system. It has been predicted
that the system can show a rich phase structure depending on
the pattern of symmetry breaking.

In this paper, we study the effect of a sufficiently strong
electron-electron interaction on the topological phase structure
of 2D QSH (topological) insulators. We extend the idea of the
strong-coupling expansion analysis on the lattice gauge theory
of graphene by adding the effect of spin-orbit interaction such
as the Kane-Melé model. The lattice gauge theory description
of the electron-electron interaction enables us to account
for the strong-coupling nature and to derive the series of
effective interaction terms systematically by strong-coupling
expansion. In the strong-coupling limit of the electron-electron
interaction, there appears an antiferromagnetic (AF) order
spontaneously, and we observe the behavior of the order
parameter by varying the amplitude of topological and non-
topological gaps. As a result, we find that the topological
phase structure of the system is modified from that of the
noninteracting system. A new phase, which we call here
the “tilted AF” phase, evolves around the phase boundary
between the topological and nontopological insulator phases,
where the direction of the antiferromagnetic order is different
from that pointed by the spin-orbit interaction in the SU(2)
spin space. In such a phase, we expect that the system can
possess a gapless Nambu-Goldstone mode, in contrast to the
conventional topological and nontopological insulator phases.
We also discuss the analogy between the phase structure found
here and that of lattice quantum chromodynamics (QCD).
It is known that lattice QCD with a certain lattice fermion
formalism possesses a parity-broken phase similar to the tilted
AF phase in the strong-coupling region, which is called the
“Aoki phase.”18 From the analogy between these phases, we
can give a conjecture on the phase structure of topological
insulators to some extent, from the well-known phase structure
of lattice QCD.

This paper is organized as follows. In Sec. II, we review
the band theory and the topological phase structure of
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graphene and the topological insulator (Kane-Melé) model,
in the absence of electron-electron interaction. In Sec. III, we
construct an effective U(1) gauge theory on the honeycomb
lattice to incorporate the electron-electron interaction in terms
of QED. In Sec. IV, we apply the techniques of the strong-
coupling expansion to the gauge theory on the honeycomb
lattice, and the behavior of the AF order is investigated in the
strong-coupling limit of the interaction. As a result, we obtain
the topological phase diagram under the electron-electron
interaction, with a new “tilted AF” phase. In Sec. V, we discuss
the physical properties of the system in the tilted AF phase.
We also compare this phase structure to that of lattice QCD,
and summarize the analogy between them. Finally, in Sec. VI,
we conclude our study and raise several open questions.

II. BAND THEORY OF NONINTERACTING SYSTEMS

Before starting the discussion on the electron-electron
interaction effects, let us briefly review the band theory
and the topological phase structure of graphenelike systems,
including topological insulators, without any interaction. The
honeycomb lattice consists of two triangular sublattices A and
B, both of which are spanned by lattice vectors R1 = s2 − s1

and R2 = s3 − s1, with si=1,2,3 the vectors connecting every
nearest-neighboring (NN) sites [see Fig. 1(a)]. The dynamics
of electrons on the lattice is described by the conventional
tight-binding Hamiltonian HT = −t

∑
rA,σ,i[a

†
σ (rA)bσ (rA +

si) + H.c.], where a(rA),b(rB) are annihilation operators for
A and B sites, respectively, and the sum by σ = ↑,↓ assures
the SU(2) spin symmetry. This Hamiltonian reads as HT =
−t

∑
k∈�[b†(k)�(k)a(k) + H.c.] in the momentum space, so

that the eigenvalue is given as E(k) = ±t |�(k)|, where the
momentum kernel � reads as �(k) = ∑

i e
ik·si . This band

structure reveals the well-known Dirac cone (valley) structure
around two Dirac points K± in the Brillouin zone �.19

One way to open a finite band gap at the Dirac points
is an application of a “staggered magnetic field” HM =
m

∑
[a†σza − b†σzb], which favors the down-spin component

at A sites while up at B sites [see Fig. 1(b)]. This term explicitly
breaks the SU(2) spin symmetry and the sublattice (exchange)
symmetry, serving as a mass term for the (four-component)
Dirac fermion. It opens a band gap |m| at both Dirac points,
keeping the topology of the ground-state wave-function trivial.

(a) (b) (c)

FIG. 1. (Color online) (a) Configuration of the honeycomb lattice
and its sublattice structure. (b) Schematic picture of the staggered
magnetic field. (c) Schematic picture of the Kane-Melé model. The
spin-orbit interaction is introduced in terms of a complex hopping
between next-to-nearest-neighboring sites, depending on its direction
and spin.

On the other hand, the spin-orbit interaction opens a
finite gap accompanied with a topologically nontrivial ground
state. Following Kane and Melé,5 it is given in terms of a
complex hopping term between next-to-NN (NNN) sites on
the honeycomb lattice [see Fig. 1(c)]:

HSO = t ′
∑

〈〈rA,r′
A〉〉

e±iφa†(rA)σza(r′
A)

+ t ′
∑

〈〈rB,r′
B〉〉

e±iφb†(rB)σzb(r′
B), (1)

where the sum is taken over all the pairs of NNN sites 〈〈rA,r′
A〉〉

or 〈〈rB,r′
B〉〉. The phase ±iφ takes the plus sign in the direction

pointed by the arrows in Fig. 1(c), while the minus sign
in the opposite direction. If we fix the phase φ = π/2, the
Hamiltonian reads as

HSO = −
∑
k∈�

2t ′Im�2(k)[a†(k)σza(k) − b†(k)σzb(k)] (2)

in the momentum space, where �2 is defined by �2(k) =
eik·R1 + e−ik·R2 + eik·(R2−R1). Similar to the staggered mag-
netic field, it breaks the sublattice and spin symmetry, while it
also breaks the exchange symmetry of two valleys in addition.
Thus, it opens a band gap with an amplitude |3√

3t ′| for each
valley as an “effective mass” for the Dirac fermion, with its
sign depending on the valley/spin indices. As a result, the
ground-state wave function acquires a nontrivial topology with
a nonzero Z2 topological number given in the momentum
space, leading to a quantized spin Hall conductivity.

The topological phase structure of the system is charac-
terized by the competition between the conventional gap and
the topological gap. Applying both gap-opening effects given
above, one valley obtains a band gap with amplitude m +
3
√

3t ′, while the other m − 3
√

3t ′. When the conventional
gap is dominant over the topological one (|m| > |3√

3t ′|),
both valleys obtain a band gap with the same sign, leaving
the ground state trivial. When the spin-orbit interaction is
dominant (|m| < |3√

3t ′|), the system behaves as a topological
insulator. Two phases are separated by a line m = ±3

√
3t ′, on

which one of the valleys loses its gap while the other remains
gapped. In this paper, we focus on how the electron-electron
interaction alters such a topological phase structure.

III. LATTICE GAUGE THEORY DESCRIPTION

Here, we assume that the electron-electron interaction
is mediated by the electromagnetic field, namely, the U(1)
gauge field Aμ=0,1,2,3. The dynamics of fermions can be
reconstructed in terms of an imaginary-time action on the
honeycomb lattice (see Appendix A for details)

SF = 1

2

∑
rA,τ

[a†(rA,τ )U0(rA,τ )a(rA,τ + �τ ) − H.c.]

+ 1

2

∑
rB,τ

[b†(rB,τ )U0(rB,τ )b(rB,τ + �τ ) − H.c.]

+ t�τ

v
F

∑
rA,i,τ

[a†(rA,τ )b(rA + si ,τ ) + H.c.], (3)
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with the U(1) link variables U0(r,τ ) = exp[ie
∫ τ+�τ

τ

dτ ′A0(r,τ ′)]. The dynamics of the spatial components of
electromagnetic field Ui (or Ai), is neglected, which is
referred to as “instantaneous approximation”10 since the gauge
field propagates much faster than the fermions, so that the
retardation effect becomes considerably small. Here, the
imaginary-time direction is rescaled by the Fermi velocity
v

F
to avoid the space-time anisotropy in the Dirac operator,

and is discretized by the lattice spacing �τ comparable to
the spatial lattice constant a = |si |. Since this discretization
leads to a pair of fermion doublers in the temporal direction,20

here we suppress the spin index σ to attribute the doublers
to the realistic spin degrees of freedom, like in the staggered
fermion formalism.21,22 The lattice action (3) is invariant under
the global U(1) charge transformation a → eiθa, a† →
a†e−iθ , b → eiθb, b† → b†e−iθ , and the U(1) spin trans-
formation

ae → eiθ̃ ae, a†
e → a†

ee
iθ̃ , be → e−iθ̃ be, b†e → b†ee

−iθ̃ ,
(4)

ao → e−iθ̃ ao, a†
o → a†

oe
−iθ̃ , bo → eiθ̃ bo, b†o → b†oe

iθ̃ ,

where the subscript e/o represents whether the discretized
imaginary time τ/�τ is even or odd. It should be noted that
spin SU(2) symmetry is broken down to U(1) subspace due to
the temporal discretization, which is analogous to the intrinsic
flavor (taste) symmetry breaking in the staggered fermion
formulation. Similarly to the staggered fermion, the full spin
symmetry is restored in the continuum limit (τ/�τ → 0).
Since we can choose the spin direction arbitrarily, here we
define the remnant U(1) spin symmetry in the (x,z) plane,
generated by the spin operator σy . Although the full spin
SU(2) symmetry can not be treated within the framework
of this model, we can still rely on the results concerned in
the remnant U(1) subspace, like the U(1) chiral symmetry-
breaking analysis in the staggered fermion formalism.

The spin-orbit interaction term HSO and the staggered
magnetic field HM are reconstructed in the path integral
formalism as

SSO = t ′
�τ

v
F

⎡
⎣ ∑

〈〈rA,r′
A〉〉,τ

±ia†(rA,τ )a(r′
A,τ )

+
∑

〈〈rB,r′
B〉〉,τ

±ib†(rB,τ )b(r′
B,τ )

⎤
⎦ , (5)

SM = m
�τ

v
F

[∑
rA,τ

a†a −
∑
rB,τ

b†b

]
, (6)

where both terms break the sublattice symmetry and the
remnant U(1) spin symmetry explicitly. Hereafter, we suppress
the rescaling factor �τ/v

F
for simplicity, so that we regard the

parameters t , t ′, and m dimensionless.
Dynamics of the gauge field can also be defined on

the honeycomb lattice, in terms of the polynomial of link
variables U0. The gauge kinetic term SG is proportional to the
parameter β = ε0vF

/e2, which corresponds to the inverse of
the (effective) Coulomb coupling strength. When the Fermi
velocity of the electron v

F
is sufficiently small compared

to the speed of light, the effective coupling α = e2/4πε0vF

becomes larger than the usual αQED = e2/4πε0c ∼ 1/137
since a slower electron feels the effect of the electromagnetic
field more strongly. The parameter β becomes quite small in
such a system. For instance, β ∼ 0.04 in vacuum-suspended
graphene, where v

F
is about 300 times smaller than the speed of

light. SG vanishes in the strong-coupling limit β = 0, i.e., the
spatial propagation of the electromagnetic field is completely
suppressed.

IV. STRONG-COUPLING ANALYSIS

A. Antiferromagnetism in the nontopological system

Let us first review the behavior of the nontopological
system, in the absence of the spin-orbit interaction and the
staggered magnetic field, in the strong-coupling limit β = 0.
In this limit, we can rewrite this effective action only in terms of
fermionic field variables by integrating out the gauge degrees
of freedom

S
(0)
F = t

∑
rA,i,τ

[a†(rA,τ )b(rA + si ,τ ) + H.c.]

− 1

4

[∑
rA,τ

nrA (τ )nrA (τ + �τ )

+
∑
rB,τ

nrB (τ )nrB (τ + �τ )

]
, (7)

where nrA (τ ) = a†(rA,τ )a(rA,τ ) and nrB (τ ) = b†(rB,τ )
b(rB,τ ) denote the local charge density at time τ . In the leading
order of the strong-coupling expansion, an onsite interaction
with a temporal lattice spacing is extracted from the long-range
Coulomb interaction, which is similar to the onsite repulsion
term in the phenomenological Hubbard model.

Respecting the sublattice symmetry and the remnant U(1)
spin symmetry, here we take the mean-field ansatz

〈a†(rA,τ )a(rA,τ )〉 = 1
2 [σ1 − i(−1)τ/�τσ2], (8)

〈b†(rB,τ )b(rB,τ )〉 = 1
2 [−σ1 − i(−1)τ/�τσ2], (9)

where σ1,2 are real values. (One should not confuse the mean
fields σ1,2 with the Pauli matrices σx,y,z.) Thus, by integrating
out the fermionic field variables, we obtain the thermodynamic
potential (free energy) of the system per a pair of A and B sites,

Feff(σ ) = 1

2
|σ |2 −

∫
�

d2k ln

[ |σ |2
4

+ |t�(k)|2
]

, (10)

where the momentum integration within the Brillouin zone �

is normalized as
∫
�

d2k = 1. Here, the order parameter σ =
σ1 + iσ2 appears only in the form of |σ |2 = σ 2

1 + σ 2
2 , which

reflects the remnant U(1) spin symmetry σ → σe2iθ̃ . This
symmetry gets broken spontaneously when |σ | takes a finite
expectation value, but the phase of σ can be chosen arbitrarily
unless the symmetry-breaking source SSO or SM is applied.
The arbitrariness results in the emergence of gapless Nambu-
Goldstone boson when the U(1)V symmetry is spontaneously
broken. σ serves as the order parameter for the spontaneous
breaking of the sublattice symmetry and the remnant U(1) spin
symmetry, which corresponds to the spin density wave (SDW)
order, or the antiferromagnetism, on the honeycomb lattice.
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The first term in Eq. (10), which comes from the tree level
of the bosonic auxiliary field σ , becomes dominant for |σ | →
∞, while the second term, which stems from the fermion
one-loop effect, yields a logarithmic singularity around σ = 0.
Therefore, Feff(σ ) possesses a minimum at finite |σ |, so that
there appears a spontaneous antiferromagnetic order with
an arbitrary direction in the remnant U(1) spin space. This
antiferromagnetism opens a finite band gap in terms of a
dynamical “mass term,” while the Z2 topology of the system
remains unchanged.

B. Effect of interaction in the topological system

Let us now investigate how the spontaneous antiferromag-
netism obtained above behaves in the presence of the (Kane-
Melé–type) spin-orbit interaction SSO. We also introduce
the uniform staggered magnetic field SM for convenience
of later analysis. Since the spin-orbit interaction and the
staggered magnetic field explicitly break the remnant U(1) spin
symmetry in the σ1 direction, the order parameter components
σ1 and σ2 should be distinguished here. Here, the effective
potential in the strong-coupling limit reads as

Feff(σ ) = (σ1 − 2m)2 + σ 2
2

2
−

∫
�

d2k ln[E(σ1,σ2,t
′; k)]2,

(11)

where we have shifted the order parameter σ1/2 +
m → σ1/2, which serves as the “modified” source m

due to the electron-electron interaction. E(σ1,σ2,t
′; k) =√

[σ1/2 − 2t ′Im�2(k)]2 + (σ2/2)2 + |t�(k)|2 denotes the en-
ergy of an electron in the conduction band. The minimum of
this effective potential (σ̃1,σ̃2) satisfies the gap equations

∂Feff

∂σ1

∣∣∣∣
(σ̃1,σ̃2)

= σ̃1 − 2m −
∫

�

d2k
σ̃1/2 − 2t ′Im�2(k)

[E(σ̃1,σ̃2,t ′; k)]2 = 0,

(12)

∂Feff

∂σ2

∣∣∣∣
(σ̃1,σ̃2)

= σ̃2 −
∫

�

d2k
σ̃2/2

[E(σ̃1,σ̃2,t ′; k)]2 = 0. (13)

Since the potential is even in σ2, the solution should satisfy
either σ̃2 = 0, where the antiferromagnetic order is aligned in
the σ1 direction, or (1/σ̃2)(∂Feff/∂σ2)|(σ̃1,σ̃2) = 0, where it is
tilted toward the σ2 direction.

First, we consider the case in the absence of the staggered
potential m, where the effective potential becomes even both
in σ1 and σ2. In this case, the potential minimum satisfies
σ1 = 0, so that the antiferromagnetic order points in the σ2

direction, i.e., it is confined in the xy plane (see Appendix B
for detail). Here, it should be noted that, even though the
spin-orbit interaction explicitly breaks the remnant U(1) spin
symmetry in the σ1 direction, the antiferromagnetic order is
aligned in the σ2 direction, orthogonally to σ1.

The quantitative behavior of σ2 is obtained by minimizing
the effective potential

Feff(σ2) = σ 2
2

2
−

∫
�

d2k ln[E(0,σ2,t
′; k)]2 (14)

by σ2. Since the finite band gap 3
√

3t ′ from the spin-orbit
interaction at each Dirac point moderates the logarithmic

FIG. 2. (Color online) The behavior of the order parameter σ2 as a
function of the amplitude t ′ of the spin-orbit interaction, in the absence
of explicit mass m. σ2 vanishes at the critical value t ′

C = 0.0538t .

singularity in the loop integral, it suppresses the expectation
value of σ2. Second-order phase transition occurs at the critical
value t ′C = 0.0538t , as shown in Fig. 2.

Next, we fix the spin-orbit interaction t ′ and introduce the
uniform staggered magnetic field SM . For instance, by fixing
t ′ = 0.5t ′C , we can observe the behavior of the order parameters
σ1,2 as a function of m, as shown in Fig. 3. Since SM serves as
a source term for the AF order in the σ1 direction, it eventually
tilts the direction of σ from the σ2 axis toward the σ1 axis.
Path of the solution (σ1,σ2), with t ′ fixed and m varied, is
displayed in Fig. 4 (see Appendix C for details). Starting from
σ1 = 0 at m = 0, σ1 monotonically increases as a function
of m. For t ′ < t ′C , the AF order gets tilted from the σ2 axis
to the σ1 axis, and finally σ2 vanishes at some critical value
of m depending on t ′. On the other hand, if t ′ > t ′C , the path
starts from σ1 = σ2 = 0, and σ1 evolves with the staggered
magnetic field m. In both cases, when m reaches a sufficiently
large value, the electron-electron interaction can be neglected

FIG. 3. (Color online) Behavior of the order parameters σ1,2 as
a function of m, with the amplitude of spin-orbit interaction fixed at
t ′ = 0.5t ′

C . The staggered magnetic field m monotonically enhances
σ1 as its external source, while it suppresses the orthogonal order
parameter σ2.
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FIG. 4. (Color online) The path of order parameter (σ1,σ2), with
the spin-orbit interaction t ′ fixed and the staggered magnetic field
m varied. The path starts from σ1 = 0 at m = 0, and evolves to
σ1 → ∞ monotonically as m → ∞ since the staggered magnetic
field m serves as the external source for the antiferromagnetic order
in the σ1 direction.

compared to the explicit gap m, so that the AF order σ is
aligned in the σ1 direction, parallel to the spin-orbit interaction
and the staggered magnetic field.

Thus, we can map the phase diagram of this system in
the parameter space (t ′,m). Since σ1 monotonically increases
as a function of m (depending on t ′), here we take σ1 as a
control parameter instead of m. There are two branches of
phase boundary between the phase with finite σ2 and that with
σ2 = 0: one is present for the whole range of t ′, while the
other is restricted in the region t ′ � t ′C . When the explicit band
gap from t ′ and m is extremely large compared to the scale
of the electron-electron interaction, the logarithmic singularity
in the fermion-loop integral becomes dominant only around
the the topological phase boundary σ1/2 = 3

√
3t ′, where one

of the Dirac cones loses its band gap. Therefore, the σ2 �= 0
phase shrinks to the topological phase boundary in this limit,
so that the phase boundaries characterized by σ2 discussed
above approach asymptotically along the topological phase
boundary. As a consequence, the phase structure of this system
is classified into three phases, as shown in Fig. 5:

(i) “Topological” phase (σ1/2 < 3
√

3t ′ and σ2 = 0): The
AF order, aligned in the σ1 direction, is rather small compared
to the explicit gap given by the spin-orbit interaction. Thus,
the system becomes a Z2 topological insulator, yielding the
quantum spin Hall effect even under the electron-electron
interaction.

(ii) “Normal AF” phase (σ1/2 > 3
√

3t ′ and σ2 = 0): The
commensurate AF order σ1 exceeds the explicit gap given
by the spin-orbit interaction t ′, so that the system becomes a
conventional (nontopological) insulator.

(iii) “Tilted AF” phase (σ2 �= 0): The AF order is tilted from
the σ1 axis toward the σ2 axis.

One should be careful of the tilted AF region at t ′ = 0. This
region can be reached at t ′ = m = 0, where the remnant U(1)
spin symmetry is not explicitly broken. Since (σ1,σ2) can be
chosen arbitrarily with keeping |σ |2 = σ 2

1 + σ 2
2 constant, here

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t ′

(a-1)(b-1)
(b-2)

(a-2)

Tilted  AF
(Aoki phase)

Normal  AF

Topological

topological phase boundary

FIG. 5. (Color online) The phase diagram of this system in the
(t ′,σ1) space. Here, we use the “modified” mass σ1 instead of the bare
mass (staggered magnetic field) m since there is a unique one-to-
one correspondence between m and σ1, depending on t ′. As a
consequence of the interplay between the electron-electron inter-
action and the spin-orbit interaction, there appears a new “tilted
antiferromagnetic (AF)” phase (σ2 �= 0) between the normal AF
phase (σ2 = 0 and σ1/2 > 3

√
3t ′) and the topological phase (σ2 = 0

and σ1/2 > 3
√

3t ′).

the ground state can take any point within this region. If we map
it by the original parameter set (t ′,m), as shown in Fig. 6, such
a region corresponds to the original point of the phase diagram.

As a result, in the presence of the electron-electron
interaction, the phase structure of the system is altered
from the noninteracting system, with the emergence of the
“tilted AF” phase between the topological phase and the
conventional insulator phase. In other words, the topological
phase “boundary” in the noninteracting system evolves into
the tilted AF “region” by the effect of the electron-electron
interaction. We shall discuss the physical properties of this
phase in the next section.

FIG. 6. (Color online) The phase diagram in Fig. 5 mapped in the
(t ′,m) plane. The dashed line corresponds to the topological phase
boundary σ̃1/2 = 3

√
3t ′. The tilted AF phase converges to a point at

(t ′,m) = (0,0).
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My

Normal AF
Tilted AF

NG mode?

FIG. 7. (Color online) Schematic picture of the order parameters
derived in this study. σ1 and σ2 are antiferromagnetic (AF) orders
corresponding to two directions in the remnant U(1) spin space, which
we denote Mz and Mx here. The staggered magnetic field m explicitly
breaks this symmetry to the σ1 direction. When 〈σ2〉 �= 0, the AF order
is tilted to the σ2 direction to some extent. If we extend this argument
to the full SU(2) spin space, another direction My is restored, so
that the tilted AF acquires U(1) degree of freedom in choosing its
direction, which may result in a massless Nambu-Goldstone mode.

V. DISCUSSION

A. Physical properties of the tilted AF phase

What does the emergence of the “tilted AF” phase physi-
cally imply? We should recall that the order parameters σ1 and
σ2 correspond to the AF order in the z and x (or y) directions,
respectively, breaking the remnant U(1) spin symmetry. In the
tilted AF phase, the direction of the AF order is tilted from the
z axis, pointed by the spin-orbit interaction and the staggered
magnetic field, to the xy plane, by the interplay between the
electron-electron interaction and the spin-orbit interaction, as
sketched in Fig. 7. In the absence of the staggered magnetic
field m, σ is completely tilted to the σ2 direction, which is
consistent with the “XY antiferromagnetic insulator” phase
found in the analysis of the Kane-Melé-Hubbard model.23–25

If we restore the spin space from remnant U(1) to full
SU(2), there appears a U(1) degree of freedom in choosing the
direction of the AF order within the xy plane, which results
in the appearance of a gapless Nambu-Goldstone (NG) mode,
while the fluctuation in the z direction becomes massive. Thus,
although the fermion spectrum is gapped, it is possible that
the system possesses a gapless excitation mode, turning the
system back from insulator into a (semi)metal. On the other
hand, when the antiferromagnetic order is aligned in the z

direction (“normal AF” phase), the phase fluctuation of the
order parameter will result in two massive modes, so that
the system remains an insulator. Phase transition between the
topological insulator (QSH phase) and the metallic phase has
also been suggested in quantum Hall systems, driven by a
disorder.26 The phase structure found there is similar to that
found in our work, characterized by several cusps of metallic
states separated by (topologically) insulating states. Although
the properties of the NG modes can not be examined in detail
here due to the lattice artifact, from the analogy of those
phase structures, we can conjecture that such a metal-insulator
transition may also be related to the appearance of NG modes.

In the phase diagram obtained here, the phase transition
between the topological phase and the conventional insulating
phase occurs without closing the band gap of fermions. This
behavior appears to contradict the previous studies in the
noninteracting Dirac fermion system, where the gap closing is
essential for the topological phase transition.27,28 In this study,
however, one should note the appearance of a gapless NG mode
in the tilted AF phase, which is not taken into account in the
noninteracting system. The qualitative properties and physical
effects of this NG mode, which can not be investigated within
our analysis due to the restriction of the spin space as a lattice
artifact, remains a future problem.

B. Analogy with the phase structure of lattice QCD

The phase structure of two-dimensional topological in-
sulators observed here can be understood in analogy with
that of lattice QCD, which has been thoroughly studied
by the strong-coupling expansion, Monte Carlo simulations,
etc. In order to avoid the doubling of quarks arising from
the lattice discretization, one can take the Wilson fermion
formalism, where a momentum-dependent mass term (Wilson
term) is employed in addition to the uniform mass term, to
shift the degeneracy of doublers.29 One can extract a single
species of fermion with the lowest effective mass out of the
doublers by taking the Wilson parameter sufficiently large.
This mechanism is analogous to the spin-orbit interaction on
the honeycomb lattice, which shifts the degeneracy of two
valleys in the Brillouin zone �. Of course, the continuous
chiral symmetry of the quarks, which corresponds to the
remnant U(1) spin symmetry in our graphene model, is
explicitly broken by this effective mass term.

It is known that lattice QCD with the Wilson fermion
formalism has a characteristic phase structure. In the strongly
coupled QCD, the chiral symmetry is spontaneously broken
with a finite chiral condensate 〈ψ̄ψ〉, dynamically generating
a mass of quarks. The mass term mψ̄ψ serves as a source term
for the chiral condensate. In lattice QCD with a single-flavor
Wilson fermion, on the other hand, there appears a finite
pion condensate 〈ψ̄iγ5ψ〉, which is orthogonal to the chiral
condensate 〈ψ̄ψ〉 in the chiral symmetry space.18 This phase
is called the “Aoki phase,” where the parity symmetry is
spontaneously broken by the pion condensation. In the two-
flavor theory, the Aoki phase is characterized by a neutral pion
condensate 〈ψ̄i(γ5 ⊗ τz)ψ〉, where the parity-flavor symmetry
is broken instead of the parity symmetry itself (τz is a Pauli
matrix with respect to the “isospin,” corresponding to the
flavor of quarks). If we fix the Wilson parameter and give a
sufficiently large mass term uniformly to all the doublers, the
pion condensate disappears, and only the chiral condensate
acquires a finite expectation value. It is known that the
transition between the Aoki phase and the normal phase is
a second-order phase transition around the strong-coupling
limit. On the other hand, in the weak-coupling regime, the
Aoki phase is split into several cusps and shrinks to the
poles corresponding to the doublers; between these poles,
the topology of the system remains nontrivial as in the free
Hamiltonian.

Since the spin-orbit interaction on the honeycomb lattice
and the Wilson term of lattice fermions have the similar
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TABLE I. Analogy between the Kane-Melé model (two-dimensional topological insulators) and lattice QCD with Wilson fermion.

Kane-Melé model Lattice QCD

Nontopological source staggered magnetic field (m) mass term
Topological source spin-orbit interaction (t ′) Wilson term
Splits the degeneracy of valleys doublers
Explicitly breaks remnant U(1) spin symmetry continuous chiral symmetry
Interaction is mediated by photons (electromagnetic field) gluons
Induced phase tilted AF phase Aoki phase
Order parameter 〈σ2〉(∼〈a†σxa − b†σxb〉) 〈ψ̄iγ5ψ〉 (pion condensation)

topological features as we have seen, we can relate the “tilted
antiferromagnetic (AF)” phase observed in two-dimensional
topological insulators here to the Aoki phase in the lattice
QCD with the Wilson fermion with the following analogy (see
Table I). The tilted AF phase is characterized by the nematic
AF order 〈σ2〉 �= 0 in the U(1) remnant spin symmetry space,
while the Aoki phase is characterized by the pion condensation
〈ψ̄iγ5ψ〉 �= 0 in the continuous chiral symmetry space. In
both cases, the emergent order parameter is orthogonal to the

0 ’t3√3’t3√3-
m

Normal AFNormal AF Tilted AF
(Aoki phase)

Topological

g2

∞

(i) t < tC

Topological

Tilted AF

Normal AFNormal AF

0 ’t3√3’t3√3-

g2

m

∞ (Aoki phase)

(ii) t > tC

FIG. 8. (Color online) The schematic phase structure of a
graphenelike system with the spin-orbit interaction, conjectured in
analogy to that of lattice QCD with the Wilson fermion formalism.
Here, we fix the spin-orbit interaction t ′, and vary the electron-
electron interaction strength g2 and the uniform mass (staggered
magnetic field) term m. From the strong-coupling limit (g2 = ∞)
investigated in our study, the phase structure evolves to the weak-
coupling region differently, depending on whether t ′ is below or
above the critical value t ′

C = 0.0538t .

direction pointed by the external source, namely, the staggered
magnetic field SM and the mass term mψ̄ψ , respectively.
Relying on this analogy, we can make some conjecture about
the phase structure of the graphenelike system from strong
coupling to weak coupling, as shown schematically in Fig. 8:

(i) When t ′ < t ′C , the system reveals the tilted AF (Aoki)
phase around m = 0 in the strong-coupling limit. Going
down to the weak-coupling region, this phase splits into two
branches, and shrinks to two points corresponding to the
topological phase boundary in the free limit. The topological
(QSH) phase with a finite spin Hall conductivity appears when
the coupling strength reaches a sufficiently small value.

(ii) When t ′ > t ′C , the system reveals the topological phase
around m = 0 even in the strong-coupling limit, while the tilted
AF phase appears at intermediate m. Here, the tilted AF phase
is already split into two branches, corresponding to the sign of
mass. Going down to the weak-coupling region, the tilted AF
phase shrinks to two points corresponding to the topological
phase boundary.

Here, we have assumed that the phase boundary is contin-
uous from the strong-coupling limit to the free regime. The
phase transition around the strong-coupling limit is second
order as shown in our study, while it remains unclear in the
weak-coupling region whether it is first order or second order,
as it has been argued in lattice QCD.30

VI. CONCLUSION

In this paper, we have observed the effect of the electron-
electron interaction on the phase structure of two-dimensional
topological insulators, extending the idea of previous works
with respect to the spontaneous symmetry breaking in
graphene. The Kane-Melé model on the honeycomb lattice
is extended by introducing the effect of electron-electron
interaction mediated by electromagnetic field [U(1) gauge
field]. By the techniques of strong-coupling expansion of
lattice gauge theory, we have observed the behavior of the
spontaneous antiferromagnetic (AF) order in the strong-
coupling limit of the interaction. As a result, we have found
that the topological phase structure is modified from that
of the noninteracting system by the emergence of a new
“tilted AF” phase in-between the normal insulator and the
topological insulator phases. The AF order is not parallel
to the direction pointed by the spin-orbit interaction and the
staggered magnetic field in the spin SU(2) space in this phase,
which will result in the emergence of a gapless Nambu-
Goldstone mode corresponding to the in-plane rotation. We
have also shown the analogy between the phase structure of
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topological insulators shown here and that of the strongly
coupled lattice QCD with the Wilson fermion formalism. The
tilted AF phase is similar to the so-called “Aoki phase” in
lattice QCD in that both of them are characterized by an
order parameter orthogonal to the external source term in
the continuous symmetry space. Such an analogy may help
us understand the behavior of topological insulators with an
electron-electron interaction from the strong-coupling to the
weak-coupling regime.

There remain several open questions to be solved. One is
the restriction of the SU(2) spin symmetry space down to U(1),
due to the lattice discretization in the imaginary-time direction.
Such a lattice artifact obscures the details of the NG mode
appearing in the tilted AF phase, so that its quantitative effect
on the charge/spin transport properties is left to be calculated.
It also excludes the spin-singlet orders, such as a charge
density wave and Haldane flux state, which induce the quantum
anomalous Hall effect.31–33 Such effects should be taken into
account by the models with an exact symmetry structure, such
as the extrapolation to a (hypothetical) multiflavor theory, or by
other techniques that do not require any lattice regularization
process. The relation to the physics in the realistic topological
insulators would be another problem. Comparison of our
findings to the similar strong-coupling analysis in the effective
model of three-dimensional topological insulators,34 such as
Bi2Se3 or Bi2Te3, would give us some clues. The interaction
effect on the quantum Hall states and the gapless surface (edge)
states would be experimentally of a great importance, which
should be verified with realistic topological insulators as well
as with cold fermionic atoms.35
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APPENDIX A: CONSTRUCTION OF LATTICE ACTION

Here, we provide a rigorous description about the derivation
of path integral formalism on the honeycomb lattice, and give
a physical interpretation to the doubling problem arising from
the lattice discretization. In the Hamiltonian formalism, the
dynamics of electrons and the electromagnetic field is given
by the Hamiltonian

HF = t
∑
rA

∑
s=±

∑
i=1,2,3

s[a†
s (rA)Ui(rA,0)b†s (rA + si) + H.c.],

(A1)

HG =
√

3a3

2

∑
z∈aZ

{∑
rA,i

[Ei(rA,z)]2 + 3

4

∑
r∈A∪B

[Ez(r,z)]2

}

− 1

ae2

∑
P

[P + P †], (A2)

where the gauge field operator A and its conjugate
momentum (electric field) E are defined on the lattice

links as

Ai(rA,z) ≡ 1

a

∫ rA+si

rA

dr · A(r,z), (A3)

Ei(rA,z) ≡ 1

a

∫ rA+si

rA

dr · E(r,z), (A4)

Az(r,z) ≡ 1

a

∫ z+a

z

dz′A(r,z′), (A5)

Ez(r,z) ≡ 1

a

∫ z+a

z

dz′E(r,z′), (A6)

and P is a plaquette operator constructed of link variables
Ui = exp[ieaAi] and Uz = exp[ieaAz]. The summation

∑
P

is taken over all the plaquettes (both honeycomb and square)
on the lattice. It should be noted that the gauge field operators
are defined in the three-dimensional space (r,z). As for the
fermions, we have performed a Bogoliubov transformation
defined by

a↑ → a+, a↓ → a
†
−, b↑ → b

†
+, b↓ → b−, (A7)

where we should note that the labels ↑ and ↓ represent the
eigenvalue of an arbitrarily chosen spin operator. Here, we
take it as the Pauli matrix σy for later convenience.

By splitting the inverse temperature β by an infinitesimal
time slice �τ as

Z = Tre−βH = Tr[e−�τH . . . e−�τH ] (A8)

and inserting complete sets of states between every e−�τH , we
obtain the Euclidean action on the honeycomb lattice

SF = �τ

[∑
rA,τ

a†
s ∂τ as +

∑
rB,τ

b†s∂τ bs

]
+ �τ

∑
τ

HF (τ ),

(A9)

SG =
√

3a3�τ

2

[ ∑
rA,i,z,τ

(∂τAi)
2 + 3

4

∑
r,z,τ

(∂τAz)
2

]

− �τ

ae2

∑
P,τ

[P + P †], (A10)

where the derivative ∂τ is defined as ∂τf (τ ) ≡ [f (τ + �τ ) −
f (τ )]/�τ . If we go back to the original spin representation,
Eq. (A9) reads as

SF = �τ
∑
rA,τ

[a†
σ ∂τ aσ + (�τ )(∂τ a

†
↓)(∂τ a↓)]

+�τ
∑
rB,τ

[b†σ ∂τ bσ + (�τ )(∂τ b
†
↓)(∂τ b↓)]

+�τ
∑

τ

HF (τ ). (A11)

Therefore, the lattice action does not preserve the global
spin SU(2) symmetry unless the continuum limit �τ → 0
is taken, but it is still invariant under the remnant U(1) rotation
generated by σy .

Here, we fix the lattice anisotropy a/�τ ≡ v
F
, to reproduce

the ratio between the intrinsic cutoffs of energy and momentum
given by the Dirac cone structure. If we take the physical value
in monolayer graphene, the ratio reads as �τ/a = v−1

F
� 1, so
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that we can apply a saddle-point approximation to the second
line of Eq. (A10), yielding

P = 1, i.e., ∇ × A = 0. (A12)

Thus, we can take the scalar potential φ(r,z,τ ), which satisfies
the relations

Ui(rA,z,τ ) = eieaAi (rA,z,τ ) = ei[φ(rA+si ,z,τ )−φ(rA,z,τ )], (A13)

Uz(r,z,τ ) = eieaAz(r,z,τ ) = ei[φ(r,z+a,τ )−φ(r,z,τ )]. (A14)

This approximation drops off the retardation of the electro-
magnetic field, which is referred to as the “instantaneous ap-
proximation.” Such an approximation enables us to reconstruct
the gauge action only in terms of its temporal component. By

the local gauge transformation

as(r,τ ) → e−isφ(r,0,τ )as(r,τ ), bs(r,τ ) → eisφ(r,0,τ )bs(r,τ ),

(A15)

and taking a new link variable

U0(r,z,τ ) ≡ e−i[φ(r,z,τ+�τ )−φ(r,z,τ )] ≡ e−iθ(r,z,τ ), (A16)

we can set the spatial link variables to unity. Due to this
definition, the Polyakov loop obeys the constraint∏

τ

U0(r,z,τ ) = 1, i.e.,
∑

τ

θ (r,z,τ ) = 0. (A17)

As a result, the lattice action reads

SF = �τ
∑

rA,s,τ

a†
s (rA,τ )

[U0(rA,τ )]sas(rA,0,τ + �τ ) − as(rA,τ )

�τ

+�τ
∑

rB,s,τ

b†s (rB,τ )
[U †

0 (rB,0,τ )]sbs(rB,τ + �τ ) − bs(rB,τ )

�τ
+ �τ

∑
τ

HF (τ ), (A18)

SG =
√

3

2e2

a

�τ

∑
rA,i,z,τ

[θ (rA,z,τ ) − θ (rA + si ,z,τ )]2 + 3
√

3

2e2

a

�τ

∑
r∈A∪B,z,τ

[θ (r,z + a,τ ) − θ (r,z,τ )]2 . (A19)

The kinetic term of the gauge field in Eq. (A19) is given in the noncompact form. In the continuum limit (�τ → 0), it can be
regularized by the compact form

SG = −
√

3β
∑

rA,i,z,τ

Re[U0(rA + si ,z,τ )U ∗
0 (rA,z,τ )] − 3

√
3β

∑
r∈A∪B,z,τ

Re[U0(r,z + a,τ )U ∗
0 (r,z,τ )]. (A20)

Let us prove that the fermionic action in Eq. (A18) is
equivalent to the “staggered fermion” formalism, which has
been naively given in Eq. (3). Since as and bs are not operators
but just Grassmann variables, we can propose the following
change of integration variables in the path integral:

a+(τ ) → α(τ ), a
†
+(τ ) → ᾱ(τ + �τ ′),

a−(τ ) → ᾱ(τ ), a
†
−(τ ) → α(τ + �τ ′),

(A21)
b+(τ ) → β̄(τ ), b

†
+(τ ) → β(τ + �τ ′),

b−(τ ) → β(τ ), b
†
−(τ ) → β̄(τ + �τ ′),

with a finer time slice �τ ′ ≡ �τ/2. The spin degrees of
freedom are absorbed in the temporal lattice mesh. The
antiperiodicity in the temporal direction

α(τ ′ + β) = −α(τ ′), β(τ ′ + β) = −β(τ ′) (A22)

also holds for the new fermionic fields. By this transformation,
the fermionic action reads as

SF =
∑
rA,τ ′

[ᾱV0α
′ − ᾱ′V †

0 α] +
∑
rB,τ ′

[β̄V0β
′ − β̄ ′V †

0 β]

− 2t�τ ′ ∑
rA,i,τ ′

[ᾱβ + β̄α], (A23)

where χ ′ ≡ χ (τ ′ + �τ ′) for χ = ᾱ,β̄,α,β. The new link
variable V0 is defined by

V0(r,τ ′) ≡
{

1 (τ ′/�τ ′ = even),

U0(r,τ ′ − �τ ′) (τ ′/�τ ′ = odd).
(A24)

This fermionic action is invariant under the global rotation
corresponding to the remnant U(1) spin symmetry defined in
Eq. (4). It agrees with the staggered honeycomb lattice action
in Eq. (3) if we renormalize α and β by the factor 1/

√
2 and

interpolate V0,e by a dynamical U(1) link variable. Therefore,
the change of variables in Eq. (A21) gives the correspondence
between the true spin degrees of freedom and the staggered
fermions on the honeycomb lattice.

APPENDIX B: ABSENCE OF ORDER PARAMETER
σ1 AT m = 0

In this Appendix, we show how the order parameter σ1 gets
suppressed in the absence of the staggered magnetic field m,
by solving the gap equations (12) and (13). Let us assume the
solution σ̃1 �= 0. Since the potential Feff is even both in σ1 and
σ2 at m = 0, we can set σ̃1 > 0 without losing generality. The
solution of Eq. (13) is twofold:
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(i) If σ̃2 = 0, the convexity around (σ̃1,σ̃2) in the σ2

direction reads as

∂2Feff

∂σ 2
2

∣∣∣∣
(σ̃1,0)

= 1 −
∫

�

d2k
1/2

[E(σ̃1,0,t ′; k)]2

= 1

σ̃1

[
σ̃1 −

∫
�

d2k
σ̃1/2

[E(σ̃1,0,t ′; k)]2

]

= − 1

σ̃1

∫
k∈�

d2k
2t ′Im�2(k)

[E(σ̃1,0,t ′; k)]2 , (B1)

where we have used Eq. (12). Since �(−k) = �∗(k) and
�2(−k) = �∗(k), we can separate the Brillouin zone � into
two regions �± corresponding to the sign of 2t ′Im�2(k),
which yields

∂2Feff

∂σ 2
2

∣∣∣∣
(σ̃1,0)

= − 1

σ̃1

∑
±

∫
�±

d2k
2t ′Im�2(k)

[E(σ̃1,0,t ′; k)]2

= − 1

σ̃1

∫
�+

d2k
{

2t ′Im�2(k)

[E(σ̃1,0,t ′; k)]2

+ −2t ′Im�2(k)

[E(σ̃1,0,−t ′; k)]2

}
. (B2)

Since σ̃1 > 0 and 2t ′Im�2(k) > 0 in �+, [E(σ̃1,0,t ′; k)]2 =
(σ̃1/2 − 2t ′Im�2(k))2 + |t�(k)|2 is smaller than [E(σ̃1,0,

−t ′; k)]2 = (σ̃1/2 + 2t ′Im�2(k))2 + |t�(k)|2. Therefore, the
convexity ∂2Feff/∂σ 2

2 becomes negative, which disagrees with
the assumption that (σ̃1,σ̃2) is the minimum.

(ii) If (1/σ̃2)(∂Feff/∂σ2)|(σ̃1,σ̃2) = 0, we have

1 −
∫

�

d2k
1/2

[E(σ̃1,σ̃2,t ′; k)]2 = 0. (B3)

Using this relation, the derivative in the σ1 direction becomes

∂Feff

∂σ1

∣∣∣∣
(σ̃1,σ̃2)

= σ̃1 −
∫

�

d2k
σ̃1/2 − 2t ′Im�2(k)

[E(σ̃1,σ̃2,t ′; k)]2

=
∫

�

d2k
2t ′Im�2(k)

[E(σ̃1,σ̃2,t ′; k)]2 , (B4)

which becomes nonzero unless σ̃1 = 0, as shown in the case
(i). It disagrees with the gap equation in Eq. (12).

Therefore, we can conclude that the assumption σ̃ �= 0 is
incorrect, i.e., the order parameter σ̃ is completely tilted to the
σ2 direction.

APPENDIX C: EVOLUTION OF THE
ORDER PARAMETER σ

In this Appendix, we investigate how the order parameter
(σ̃1,σ̃2) evolves as a function of t ′ and m in detail, and discuss
how the modified topological phase structure is related with
that of the noninteracting system. Here, we fix the spin-orbit
coupling amplitude t ′ and vary the staggered magnetic field
m. In order to find the potential minimum in the (σ1,σ2) plane,
first we fix σ1 and check the sign of

∂Feff

∂
(
σ 2

2

) = 1 −
∫

�

d2k
1/2

[E(σ1,σ2,t ′; k)]2 (C1)

instead of ∂Feff/∂σ2 [because Feff(σ1,σ2) is always even in σ2].
Since the right-hand side of Eq. (C1) monotonically increases

and asymptotically reaches toward unity as a function of
σ2(>0), we have to consider two cases depending on its sign
at σ2 = 0:

(a) If ∂Feff/∂(σ 2
2 )|σ2=0 � 0, the effective potential is mini-

mized at σ̃2 = 0.
(b) If ∂Feff/∂(σ 2

2 )|σ2=0 < 0, the effective potential is min-
imized at finite σ̃2, which satisfies ∂Feff/∂(σ 2

2 )|σ̃2 = 0. Here,
we fix σ̃2 to be positive.

We can regard σ̃2 as a function of σ1. The curve composed
of the set of points {[σ1,σ̃2(σ1)]|σ1 � 0} in the (σ1,σ2) plane,
which we call here C(t ′), is uniquely determined by the
parameter t ′, and continuous in σ1 because of the analyticity
of Eq. (C1).

Along this curve C(t ′), the overall potential minimum shall
be found by varying σ1. By solving the equation

∂Feff

∂σ1

∣∣∣∣
(σ̃1,σ̃2(σ̃1))

[≡f (σ̃1)]

= σ̃1 − 2m −
∫

�

d2k
σ̃1/2 − 2t ′Im�2(k)

[E(σ̃1,σ̃2(σ̃1),t ′; k)]2 = 0, (C2)

we obtain the potential minimum [σ̃1,σ̃2(σ̃1)], as a function of
the parameters t ′ and m.

First, we show that there is a unique one-to-one correspon-
dence between σ̃1 and m, when t ′ is fixed to a finite value.
We can easily see that σ̃1(m = 0) = 0. On the other hand,
f (σ̃1) asymptotically becomes σ̃1 − 2m as σ̃1 → ∞ (note that
σ̃2 = 0 in this limit), so that we obtain the asymptotic solution
σ̃1(m → ∞) ∼ 2m.

Now that the boundaries of m and those of σ̃1 are matched,
we check whether σ̃1 monotonically increases between these
boundaries as a function of m or not. By differentiating both
sides of Eq. (C2) by m, we have the relation

∂σ̃1

∂m
f ′(σ̃1) = 2. (C3)

Thus, what we have to show is that the factor f ′(σ̃1) � 0 for
any value of σ̃1(>0). Here, we consider again the regions (a)
and (b) given above:

(a) In the region where σ̃2(σ̃1) = 0, we have the relation

∂Feff

∂
(
σ 2

2

) ∣∣∣∣
(σ̃1,0)

= 1 −
∫

�

d2k
1/2

[E(σ̃1,0,t ′; k)]2 � 0, (C4)

FIG. 9. (Color online) The behavior of the function g(t ′,σ1) for
several values of t ′. This function shows logarithmic divergence at
σ1/2 = 3

√
3t ′, where one of the valleys totally loses its spectral gap.
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from the definition of this region. This relation yields

f ′(σ̃1) = 1 −
∫

�

d2k
1/2

[E(σ̃1,0,t ′; k)]2 +
∫

�

d2k
[σ̃1/2 − 2t ′Im�2(k)]2

[E(σ̃1,0,t ′; k)]4
� 0. (C5)

(b) In the region where σ̃2(σ̃1) �= 0, we have the relation

∂Feff

∂
(
σ 2

2

) ∣∣∣∣
(σ̃1,σ̃2)

= 1 −
∫

�

d2k
1/2

[E(σ̃1,σ̃2(σ̃1),t ′; k)]2 = 0. (C6)

By differentiating both sides of this relation by σ̃1, we obtain a new relation∫
�

d2k
σ̃1/2 − 2t ′Im�2(k) + σ̃ ′

2σ̃2/2

[E(σ̃1,σ̃2(σ̃1),t ′; k)]4 = 0, (C7)

where σ̃ ′
2 ≡ ∂σ̃2(σ̃1)/∂σ̃1. Using these two relations, we can simplify f ′(σ̃1) as

f ′(σ̃1) = 1 −
∫

�

d2k
1/2

[E(σ̃1,σ̃2(σ̃1),t ′; k)]2 +
∫

�

d2k

[
σ̃1
2 − 2t ′Im�2(k)

] [
σ̃1
2 − 2t ′Im�2(k) + σ̃ ′

2σ̃2/2
]

[E(σ̃1,σ̃2(σ̃1),t ′; k)]4

=
∫

k
d2k

[σ̃1/2 − 2t ′Im�2(k) + σ̃ ′
2σ̃2/2]2

[E(σ̃1,σ̃2(σ̃1),t ′; k)]4
� 0. (C8)

Therefore, σ̃1(m) monotonically increases for any m ∈
[0,∞).

Due to this one-to-one correspondence between m and σ̃1,
the solution (σ̃1,σ̃2) moves continuously along the path C(t ′),
starting from σ̃1(m = 0) = 0 toward σ̃1 → ∞ as shown in
Fig. 4, when t ′ is fixed and m is varied. Thus, as shown in Fig. 3,
the order parameter σ1 monotonically increases as a function
of m, while σ2 shows a transition between σ2 �= 0 and σ2 = 0.
From here on, we employ the “modified” effective mass σ̃1/2
as the parameter characterizing the system, instead of the bare
mass m, to discuss the phase transition characterized by σ2.
[When σ̃1 is given, we can derive the value of m by Eq. (C2).]

The phase structure of the system is related to the behavior
of the curve C(t ′). The curve leaves from the σ1 axis, namely
σ̃2 �= 0, in the region (b), which corresponds to the “tilted
antiferromagnetic” phase shown in Fig. 5. On the other hand,
the curve coincides with the σ1 axis in the region (a), which

can be classified into the conventional or topological insulator
phases. According to the definition of the regions (a) and (b),
the phase structure of the system is characterized by the sign
of the factor

g(t ′,σ̃1) ≡ ∂Feff

∂
(
σ 2

2

) ∣∣∣∣
(σ̃1,0)

= 1 −
∫

�

d2k
1/2

[E(σ̃1,0,t ′; k)]2
. (C9)

The behavior of g(t ′,σ̃1) for several values of t ′ is shown in
Fig. 9. This function shows a negative logarithmic divergence
at σ̃ /2 = 3

√
3t ′ for any value of t ′( �= 0) since one of the valleys

becomes gapless at this point. Therefore, the system under an
electron-electron interaction shows the tilted AF phase around
the topological phase boundary originally given in the nonin-
teracting system. When t ′ and m become dominant compared
to the electron-electron interaction, two phase boundaries
around the tilted AF phase approach asymptotically to the
original topological phase boundary.
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