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Magnetic properties of graphene quantum dots
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Using the tight-binding approximation we calculated the diamagnetic susceptibility of graphene quantum dots
(GQDs) of different geometrical shapes and characteristic sizes of 2–10 nm, when the magnetic properties are
governed by the electron edge states. Two types of edge states can be discerned: the zero-energy states (ZESs),
located exactly at the zero-energy Dirac point, and the dispersed edge states (DESs), with the energy close but
not exactly equal to zero. DESs are responsible for a temperature-independent diamagnetic response, while ZESs
provide a temperature-dependent spin paramagnetism. Hexagonal, circular, and randomly shaped GQDs contain
mainly DESs, and, as a result, they are diamagnetic. The edge states of the triangular GQDs are of ZES type.
These dots reveal the crossover between spin paramagnetism, dominating for small dots and at low temperatures,
and orbital diamagnetism, dominating for large dots and at high temperatures.
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I. INTRODUCTION

In past years special attention has been paid to the
fabrication of graphene quantum dots (GQDs),1,2 susceptible
to be used for magnetic-field-controlled spin-electronic logic
gates.3 The recently studied orbital4–9 and spin10–12 magnetism
of such structures is actually a hot topic. However, the origin of
the orbital diamagnetism, its relation with the edge-localized
states, and its interplay with spin-paramagnetic effects require
a more detailed study. This concerns, in particular, the
dependence of the diamagnetic response on the size and shape
of a GQD.

Landau diamagnetism in a perfect infinite graphene sheet
was first studied by McClure13,14 and Sharma et al.15 and
more recently in Refs. 16–20, where a singular behavior of
susceptibility was found when the Fermi energy approaches
the Dirac point at zero temperature. This peculiar behavior
around zero energy also takes place in the cases in which
a disorder-provided band is present for infinite graphene and
ribbons.21–25 On the other hand, the presence of the edge states
with energy around zero is a signature of graphene nanoflakes
with various terminations and most notably with zig-zag edges.
Note that for nanoflakes with armchair termination the edge
states are absent, since the two sublattices that form the
honeycomb lattice are locally and globally balanced.26–28

The number and the properties of edge states are sensitive
to the geometry of the GQD.29–31 Since diamagnetism of
graphene occurs due to the electronic states with energy
near the Dirac point, it is natural to assume that the edge
states should make a dominant contribution to magnetism
of graphene nanoflakes, and the geometry of GQDs will
play an important role in the diamagnetic response of the
nanostructure.

In this paper we study the hexagonal, circular, triangular,
and random GQDs with zigzag termination, and we identify
two types of edge states. First, there are the dispersed edge
states (DESs) whose energies are distributed in the range
of 2� around the Dirac point, with the value of � being
inversely proportional to the size of the GQD. Second, there
could be highly degenerate exactly-zero-energy states (ZESs).

The DESs are appropriate to the hexagonal, circular, and
random GQDs. Their energies are sensitive to an applied
field that induces edge currents. These states provide the
orbital diamagnetic response of the nanoflakes. The number
of ZESs, which are mostly present in triangular GQDs, can
be found exactly from graph theory.32 Their origin is purely
geometric, and their location does not change as a function of
the applied magnetic field. Therefore, ZESs do not contribute
to the diamagnetism of GQDs, but they can be occupied by
electrons with unpaired spins and provide the paramagnetism
of the system.11 Studying the edge-state-provided orbital-
diamagnetic and spin-paramagnetic response of GQDs we
predict the possibility of crossover between paramagnetic and
diamagnetic response of GQDs as a function of their shape,
size, and temperature.

After this work was completed, we became aware of
the work33 in which similar research was done. The main
difference between our results is that we consider dots of
smaller size and at low temperatures kBT � �, where the
edge-states-provided diamagnetic peak is broadened by size
effects and is temperature independent. Reference 33 mainly
addresses temperature effects relevant for GQDs with bigger
sizes and small values of � when diamagnetism is mainly of
the bulk origin.

II. THE MODEL OF GRAPHENE QUANTUM DOTS

We use the simplest nearest-neighbor tight-binding approx-
imation. The properties of conducting π -electrons of graphene
are described by the Hamiltonian

H =
∑

i

εic
†
i ci +

∑
〈ij〉

tij c
†
i cj , (1)

where c
†
i and ci are the creation and annihilation electron

operators, respectively, and εi is the on-site energy. In what
follows we do not consider any on-site disorder and set εi = 0.
The hopping matrix elements tij between nearest-neighbor
carbon atoms account for the magnetic field via the Peierls
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substitution:

tij = γ0 exp

{
e

h̄c

∫ rj

ri

A · dl
}
, (2)

where A = (0,Bx,0) is the vector potential of the magnetic
field and the zero-field hopping was taken as γ0 = 3.0 eV.

Graphene flakes were selected of hexagonal, circular,
triangular, and random shapes with mostly zig-zag edges. The
contour of the random shape nanostructures has been defined
in polar coordinates by

r(θ ) = r0 +
kmax∑
k=1

[Ak cos(kθ ) + Bk sin(kθ )], (3)

where r0 is the constant average radius that defines the
typical size of the flakes and Ak and Bk are random numbers
with amplitude not exceeding r0/3. In order to have realistic
variation of the flake edge on the scale of the lattice constant,
the maximum number of harmonics kmax has been chosen to be
of the order of r0/a, where a = 2.461 Å is the lattice constant.
Typically, this number was about 25.

Direct numerical diagonalization of Hamiltonian Eq. (1)
gives the field-dependent energy levels En(B) and correspond-
ing on-site amplitudes ϕn,i of the wave function. The orbital
energy of the π electrons at zero temperature as a function of
the chemical potential μ and magnetic field B is given by

U (B,μ) = 2
En<μ∑

n

En(B), (4)

where the factor of 2 is the spin degeneracy of the levels. The
low-temperature diamagnetic susceptibility per unit area has
been calculated as

χ (μ) = − 1

σ

[
∂2U (B,ε)

∂B2

]
B=0

, (5)

where σ = √
3a2N/4 is the area of a graphene flake containing

N carbon atoms.

III. BULK AND EDGE STATES

In what follows it will be convenient to distinguish
between the bulk and the edge electronic states using the
following geometrical criterion. For a given state with en-
ergy En we ascribe the intensity I (b)

n = ∑
ri<R |ϕn,i |2 of the

electronic states located within the circle of radius R to
the bulk part of the total wave-function intensity, whereas
the outer part I (e)

n = ∑
ri>R |ϕn,i |2 = 1 − I (b)

n will be due
to the edge contribution. The radius R has been chosen to
be about one lattice constant smaller than the radius of the
maximum circle that can be inscribed in a given GQD. Then,
the state will be referred to as an edge state if I (e)

n > I (b)
n .

Otherwise, we refer to it as a bulk state. Wave functions of the
typical edge and bulk states are illustrated in Fig. 1.

The bulk and edge states distinguished by the above
criterion are also separated in energy. Namely, the edge states
normally possess the energy |E| < �, while the energy of
bulk states |E| > �. We will refer to the energy interval of
2� around the Dirac point as the edge-states energy domain.
It turns out that the value of the edge-states energy domain is

(a) E/Γ0=0.37 (b) E/Γ0=0.21

(c) E/Γ0=0.24 (d) E/Γ0=0.2

(e) E/Γ0=0.01 (f) E/Γ0=0

(g) E/Γ0=0 (h) E/Γ0=0

FIG. 1. (Color online) Amplitude of the wave function for bulk
(a–d) and edge (e–h) states in GQDs of different shapes. We also
show the maximal inscribed circles that have been used to discern
between bulk and edge states.

approximately equal for all GQDs, characterized by the same
inner radius R (see Fig. 2). The edge-states energy domain
scales as � ∝ γ0/

√
N ∝ γ0a/R.

Two types of edge states can be discerned: (i) the zero-
energy states (ZESs) that are degenerate and located exactly
at E = 0, i.e., in the middle of the edge-states domain; and
(ii) the dispersed edge states (DESs) that have nonzero
energies, are symmetrically distributed with respect to E = 0,
and fill the edge-states domain.

As has been shown by the graph theory32 the total number
of ZESs is related to the imbalance between the A- and B-type
atoms in the graphene flake:

η0 � |NA − NB |, (6)
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FIG. 2. (Color online) Electronic density of states and the
difference of the edge and the bulk contributions intensities I (e)

n − I (b)
n

(see text) as a function of energy for the hexagonal (a), circular (b),
triangular (c), and random (d) GQDs. The shaded region indicates
the edge-states domain where the edge states are located. The
levels have been artificially shown as Gaussian peaks with the
dispersion 0.05 eV.

where equality takes place for the geometry of equilateral
polygons. For hexagons η0 = 0, there are no ZESs and
all edge states are of the DES type. In contrast, for the
equilateral triangles all the edge states are of ZES type and
their degeneracy number is given by6,7

η�
0 = √

N + 3 − 3. (7)

Usually, there are only a few ZESs for circular and randomly
shaped GQDs.

The number and positions of ZESs do not depend on
magnetic field, and therefore these levels do not contribute
to the orbital part of the susceptibility Eq. (5) within the
simple tight-binding approximation Eq. (1). (Note, however,
that the degeneracy of ZESs is lifted when one accounts
for the next-nearest-neighbor hopping in the tight-binding
Hamiltonian; in this case, applied magnetic field would also
affect the position of these levels, and some ZES-related
contribution to diamagnetism can appear.) In contrast, they are
responsible for the spin-provided superparamagnetic response
of an ensemble of clusters in the case of a half-filled π

band when the Fermi energy is pinned at μ = 0. Indeed,
according to the Hund theorem, the number of single occupied
states of a degenerate level should be maximal, providing the
total uncompensated spin defined by Lieb’s rule11,12 S = 1

2η0,
which brings a substantial contribution to the temperature-
dependent spin-Curie paramagnetism.

On the other hand, the location of DESs in hexagonal,
circular, and random GQDs depends on the applied field,

and therefore these levels are responsible for diamagnetism
of graphene clusters, as calculated below.

IV. HEXAGONS, CIRCLES, AND RANDOM QUANTUM
DOTS

The susceptibility was calculated for zig-zag edge hexagons
and circles of about ten different sizes, having an inner radius in
the range of 2–7 nm. For random quantum dots, the averaging
has been performed over three different ensembles, charac-
terized by mean inner radii R1 = 2.6 nm, R2 = 3.65 nm, and
R3 = 4.69 nm, with the standard deviation for each ensemble
being σ1 = 39.1, σ2 = 75.1, and σ3 = 152.2, respectively. The
magnetic field varied between 0 and 5 T, a range in which the

FIG. 3. (Color online) Susceptibility for triangular (a), random
(b), circular (c), and hexagonal (d) GQDs; we show three different
sizes ranging from 2–7 nm. The shaded region indicates the edge-
states domain, and the thickness of the line increases as the size of
the GQD decreases.
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susceptibility remained approximately constant. All the plots
are presented for B = 5 T. Figure 2 shows the density of states
as a function of the Fermi energy for hexagonal and random
shape GQDs. The shaded area indicates the region where the
edge states are located.

Figure 3 shows the magnetic susceptibility per unit of area
as a function of the Fermi energy for GQDs of different
sizes. As was qualitatively explained above, the diamagnetic
peak of width 2� appears when the chemical potential
crosses the edge-states domain. This peak becomes wider with
decreasing of the GQD size. Beyond this zone, the orbital
susceptibility is a highly fluctuating function of the Fermi
energy that oscillates between paramagnetic and diamagnetic
signs. These oscillations have been recently interpreted for
graphene ribbons, as a result of the sub-band structure.25

As mentioned above, the number of ZESs for these geome-
tries is vanishingly small and the spin Curie-type paramag-
netism is absent. Note, however, that electron-electron correla-
tion can provide the site-alternating ordering of localized spins
along the GQD edges,11 giving the paramagnetic contribution.
Such an effect, which can be discerned experimentally by
electron-spin-resonance measurements, is beyond the scope
of our article.

V. TRIANGULAR QUANTUM DOTS

All the edge states in triangular GQDs with zig-zag edges
are of ZES type, which does not change its energy as a
function of the field and does not contribute to the diamagnetic
susceptibility. The ZESs for GQDs of different sizes are
located in the middle of the gap 2�, as shown in Fig. 4.
We note that 2� indicates the real gap in the spectrum for
the triangular GQDs, and the value of this gap is inversely
proportional to the number of ZESs η�

0 :

� = ζγ0

η�
0

= ζγ0√
(N + 3) − 3

, (8)

where the numerical constant is ζ � 5.56.
The magnetic susceptibility of triangular GQDs χ�

orb is
shown in Fig. 3 for nine inner sizes of 2.5–7 nm. It is provided
by the out-of-gap delocalized electronic states and does not
depend on μ within the gap 2� because of the absence
of DESs. These results match the analytical calculations of

N 781 N 958 N 1597

0.4

0.2

0

0.2

0.4

eigenvalue index

E
ne

rg
y
Γ o

FIG. 4. (Color online) The band gap for triangular GQDs with
different numbers of atoms N .

Refs. 20 and 24 for an infinite graphene sheet with the band
gap 2�, according to which the diamagnetic susceptibility per
unit area is

χ�
orb(μ) = −α

θ (� − |μ|)
2�

, α = e2γ 2
0 a2

2πh̄2c2
, (9)

where θ (x) is the step function.
Although ZESs give no contribution to the orbital suscepti-

bility, they can be responsible for the huge paramagnetism
provided by η0 uncompensated electron spins located on
the degenerate ZES levels. This happens in the case of
small positive chemical potentials if the energy of electron-
electron repulsion in each zero-energy state Ue−e > μ, so
that these levels remain half filled. The corresponding Curie-
type temperature-dependent paramagnetic susceptibility for
noninteracting electrons is evaluated per unit area as

χ�
spin = η�

0

σ

(gμB)2

3

s(s + 1)

kBT
= η�

0 μ2
B

σkBT
, (10)

where μB is the Bohr magneton and g � 2 is the g factor of
the electrons with spin s = 1/2.

In the opposite case of the strong Coulomb electron
correlations, according to the Lieb theorem,34 all η�

0 � 1 ZES
electrons form the total spin of the cluster S = η0/2. The
superparamagnetic susceptibility of an ensemble of triangular
GQDs becomes even stronger:

χ ′�
spin = 1

σ

(gμB)2

3

S(S + 1)

kBT
� (η�

0 μB)2

3σkBT
. (11)

It should be noted that in the limit of strong electron-electron
correlations the electron-hole symmetry might be broken. This
would affect the total magnetism of the system, especially
when the chemical potential is moved away from the Fermi
energy.35 The actual value of paramagnetic susceptibility must
be somewhere between χ�

spin and χ ′�
spin.

Using Eqs. (15) and (11) we compare the spin-paramagnetic
and orbital-diamagnetic contributions at μ = 0, presenting
their ratio for the case of strongly correlated electrons as∣∣∣∣∣

χ ′�
spin

χ�
orb

∣∣∣∣∣ � 7.1 eV√
NkB T

. (12)

It follows that varying the size and temperature of the triangular
quantum dots we can expect the paramagnetic-diamagnetic
crossover. In particular, for a temperature of T = 77 K, we
predict that triangular quantum dots will be paramagnetic for
the inner radius below R � 97 nm.

VI. SIZE DEPENDENCE

We calculated the diamagnetic susceptibilities, given by the
gap-zone-integral,

∫ �

−�
χ (μ)dμ (the shaded area in Fig. 3).

We found that, as the size of a GQD increases, the area is
conserved and 2� vanishes. In the limit of an infinite cluster
with � → 0 this gives the McClure δ peak of graphene orbital
susceptibility:13

χ (μ) = −αδ(μ). (13)

The gap � vanishes as the number of atoms increases.36 Here,
we found that the dependence of � is similar for all shapes
(see Fig. 5) and follows Eq. (8).
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FIG. 5. (Color online) � dependence on the number of atoms in
GQDs of different geometry.

The size dependence of the orbital susceptibility for
hexagonal, circular, and random GQDs at μ = 0 is shown
in Fig. 6. It satisfies an empirical relation:

χorb = βNλ, (14)

with λ = 0.4 and β = 0.31α/γ0. Although the orbital
diamagnetism originates from the edge currents of the
low-energy DES, their perimeter contribution ∼N1/2 can
be reduced by the armchair- and/or zigzag-type boundary
irregularities as well as by the wave function vanishing at
the corners of GQDs, which explains the reduction of the
exponent index λ slightly below 1/2.

For triangular GQDs the size dependence of the orbital
susceptibility can be obtained by substituting the value of �

from Eq. (8) into Eq. (9) at μ = 0:

χ�
orb = − α

γ0

√
N + 3 − 3

2ζ
. (15)

This estimation agrees with our numerical calculations, as
shown in Fig. 6.

So far, there are no experimental measurements of mag-
netism of GQDs, but the susceptibility we obtained is in
the range of the measured values for carbon nanotubes
and buckyballs.37 For convenience, we also presented the
susceptibilities in units of emu/g, in Figs. 3 and 6.

VII. CONCLUSIONS

Magnetism of GQDs is provided by the edge states whose
energy is located within the finite-size energy interval around
the Dirac point: the edge-states energy domain. The structure
of the edge-state spectrum and magnetic response of GQDs is
strongly dependent on the geometric shape of the cluster.
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FIG. 6. (Color online) Dirac-point orbital susceptibility at μ = 0.
The solid lines correspond to the fit according to Eqs. (15) and (14).

For hexagonal, circular, and random GQDs the edge states
are dispersed within the edge-states energy domain. Their
position depends on the applied field, providing substantial
diamagnetic response of GQDs. The diamagnetic susceptibil-
ity as a function of the chemical potential presents a peak
of constant intensity, centered around μ = 0. The maximum
of the peak increases with the GQD size, whereas its width
decreases, approaching the δ function of McClure13 for an
infinite sheet of graphene.

For triangular GQDs the edge states are located exactly at
the middle of the gap with high degeneracy factor η�

0 given
by Eq. (8) that increases with the size of the cluster. The
zero-energy positions of these levels do not change with the
field, and the diamagnetic response of triangular GQDs χ�

orb is
expected to be small. In contrast, the uncompensated spins of
electrons localized at ZESs can provide a huge paramagnetic
temperature-dependent contribution χ�

spin of the Curie type.
By comparison of susceptibilities χ�

orb and χ�
spin, Eq. (12), we

expect to have the crossover from paramagnetic to diamagnetic
response in an ensemble of triangular clusters with increasing
temperature and/or GQD size.

The strong dependence of magnetic properties of GQDs on
their geometry, size, and temperature provides a natural way to
separate graphene clusters according to their shape and size by
application of an appropriately designed nonuniform magnetic
field and temperature cycle that can trap different GQDs in
different points of space. It would be interesting also to study
specially cut nanoclusters of highly ordered pyrolytic graphite,
which can contain separate graphene sheets with a Dirac-like
spectrum38 and therefore can have a similar magnetic behavior.
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