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The conductance, the transmission, and the reflection probabilities through rectangular potential barriers and
p-n junctions are obtained for bilayer graphene taking into account the four bands of the energy spectrum. We
have evaluated the importance of the skew hopping parameters y; and y, to these properties and show that
for energies E > /100 their effect is negligible. For high energies two modes of propagation exist and we
investigate scattering between these modes. For perpendicular incidence both propagation modes are decoupled,
and scattering between them is forbidden. This extends the concept of pseudospin as defined within the two-band
approximation to a four-band model and corresponds to the (anti)symmetry of the wave functions under in-plane
mirroring. New transmission resonances are found that appear as sharp peaks in the conductance which are absent
in the two-band approximation. The application of an interlayer bias to the system (1) breaks the pseudospin
structure, (2) opens a band gap that results in a distinct feature of suppressed transmission in the conductance,
and (3) breaks the angular symmetry with respect to normal incidence in the transmission and reflection.
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I. INTRODUCTION

Bilayer graphene (BLG) is a system consisting of two
Bernal' stacked graphene monolayers.”> Whereas monolayer
graphene has a linear electronic spectrum in the vicinity of each
corner of the Brillouin zone (K and K’ points, also known as
Dirac points), bilayer graphene has four hyperbolic bands.
Two of these bands touch in the K point at zero energy,
making BLG a gapless semiconductor; the other two bands
are displaced by an energy of y; = 377 meV with respect
to the touching bands.* The application of a potential that
breaks the interlayer symmetry can, however, create a tunable
band gap.>”’ Often, a low-energy approximation® is made
that is valid for electron kinetic energy much smaller than
the interlayer hopping parameter y;. This so-called two-band
approximation has a quadratic dispersion and is only valid near
the Dirac point.

In monolayer graphene Klein tunneling results in a 100%
probability for perpendicular transmission through potential
barriers, as predicted® and observed experimentally.”'® For
bilayer graphene, due to the conservation of pseudospin,
no Klein tunneling is expected and this was confirmed
theoretically within the two-band approximation.®!! In this
case there are electronic states available that are not accessible
for penetration into the potential barrier, which was called a
cloaking of those states.'?

Previous work was based on the two-band approximation
which we extend here to the four-band model. This allows us
to investigate the electronic properties at higher Fermi level,
i.e., beyond y, and for a higher electrostatic potential. Recent
experimental progress has allowed to access this energy region
and measurements of the electronic transport in this region is
expected.'3>"'> We calculate the transmission and reflection
probabilities within the same band and between the two bands
for electrons impinging on a rectangular potential barrier (p-
n-p junction) and a potential step (p-n junction) at different
angles of incidence and investigate the effect of the application
of an interlayer bias to the transport properties. Furthermore we
compare the energy dependence of the conductance calculated
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within the two-band and four-band models and point out major
differences.

Our findings show that at low energy and low potential the
same phenomena occur as those predicted by the two-band
model and that the existence of pseudospin is related to
the (anti)symmetry of the wave functions. This relation is a
consequence of the symmetry of the crystal and is therefore
also valid when the skew hopping parameters are taken
into account. Outside the range of validity of the two-band
approximation, however, we predict several new phenomena:
(1) for high potential barriers new resonances are found that
are absent in the two-band model, (2) the use of four bands
introduces a new mode of propagation, (3) we investigate a
new form of cloaking and calculate the scattering between
the two modes of propagation, and (4) the newly discovered
resonances and the second mode of propagation lead to
distinctive features in the conductance that are absent in the
two-band calculation. We also justify the use of only the
nearest-neighbor interlayer hopping parameters. Finally, we
show that the application of an interlayer bias not only opens a
band gap and therefore suppresses the transmission in this
region, it also unexpectedly breaks the angular symmetry
with respect to normal incidence when only one valley is
considered.

The paper at hand is organized as follows. In Sec. II
we present the formalism, indicate the different propagating
modes, define the eight different transmission and reflection
probabilities for the four-band model and explain the transition
from the four-band model to the two-band model at low
energy. The effect of the skew hopping parameters on our
results is critically examined. In Sec. IIl we analyze the
symmetries of the system to explain the transmission for
normal incidence and the surprising occurrence of angular
asymmetry at non-normal incidence. The numerical results for
the conductance, transmission, and reflection at non-normal
incidence for p-n junctions and potential barriers with and
without interlayer bias are discussed in Sec. IV, and we show
the effect of the skew hopping parameters on the transmission.
In Sec. V we summarize the main points of this paper.
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II. THE PROPAGATING MODES

In this section we discuss the dispersion relation of BLG
and the resulting propagating modes. It turns out that electrons
in BLG can propagate via two different modes and we find that
when electrons impinge perpendicularly on a potential barrier,
it is not possible to scatter between those modes.

We model the BLG crystal as two hexagonal monolayer
flakes with in-plane interatomic distance'® @ = 0.142 nm, each
consisting of two nonequivalent sublattices with atoms A
and B; for the top layer and A, and B, for the bottom one.
These two layers are stacked according to Bernal stacking
which places the A, atom just above the B; as schematically
shown in Fig. 1(a). In both layers, each A atom is surrounded
by three B atoms and vice versa. The intralayer coupling
between these atoms is yy & 3 eV. Between the A, and B
atoms the interlayer coupling is y; &~ 0.4 eV while the skew
hopping energies between the other two sublattices are denoted
as y3 ~ 0.3 eV and y4 = 0.1 eV. These interatomic coupling
parameters are depicted in Fig. 1(a). The contribution of the
skew hopping parameter y; results in the so-called>!” trigonal
warping, an effect occurring only at very low energy (E <
4 meV). The other parameter, y4, has an even lower impact
on the electronic properties, as discussed later. Therefore, we
often neglect these two y parameters, allowing for a more
comprehensive discussion.

Following the continuum nearest-neighbor tight-binding
formalism, the effective Hamiltonian near the K point and
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FIG. 1. (Color online) (a) Schematic presentation of the sublat-
tices in bilayer graphene. The arrows indicate the different interatomic
hopping parameters. (b) Energy spectrum of bilayer graphene near
one of the Dirac points for low energy. The dotted curve corresponds
to the spectrum accounting for all interatomic hopping parameters,
and the solid curve accounts only for y, and y;. (c) Total energy
spectrum of bilayer graphene for (left) an unbiased system and
(right) a system with interlayer bias § = 0.3y;. The dotted curves
also account for the skew hopping parameters while the solid curve
considers only nearest-neighbor interlayer hopping. The dashed curve
corresponds to the spectrum of the two-band approximation. All
bands in (b) and (c) are colored according to their relation to the
(anti)symmetric states.
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the corresponding eigenstates are given by'®!”
V438 vpr! —uvrt V3T Va,
_|vemr VS Vi —vgrr! _ | Vs
Ha=| um  m V=5 ven Va= |y,
vl —wm vpm V=38 Vg,
(1)

Here, vp = % 37“ ~ 10° m/s is the Fermi velocity for electrons
in monolayer graphene and v3 4 = vry3.4/ )0 are related to the
skew hopping parameters; 7 = py +ip, = h(k, + ik,) is the
in-plane momentum relative to the Dirac point, V is a general
potential term, and & corresponds to an externally induced
interlayer potential difference. Due to the dimensionality of the
Hamiltonian, the eigenstate of the system is a four-component
spinor. Neglecting the skew hopping parameters, the energy
spectrum of this Hamiltonian is given by

2 2 Flz 2 2 2 1"12
e=1| [kK2+A —i—?:I: k(rl+4A)+7 , (2

where I = £1 and k = \/k{ + k;. We have used the reduced
variables I'y = y;/hvp, A = §/hvp, and ¢ = (E — V) /hvp
with E the energy of the electrons. For a system without
interlayer potential bias §, this result reduces to the one
previously found by Snyman and Beenakker'® The energy
spectra corresponding to these systems are displayed in
Fig. 1(c). In Fig. 1(b) we show the dispersion relation when
also taking account of the skew hopping parameters y3 and y4.
Their effect is clearly negligible for £ > y;/100 &~ 4 meV.

Conversely, it is possible to calculate the value of k, as
a function of the energy and k,. This corresponds to the
wave vectors of the plane-wave solutions of the Schrodinger
equation HW¥ = EWV and is given by

¥’

K = \/82 + A2 +1,/e? (T} +4A%) —TIA2—K2, (3)

which for A = 0 reduces to

K= /&2 +1eT) — k2. 4)

Depending on the value of ¢ relative to I'y, A, and k,, this
wave vector can be real or imaginary. This means that it can
represent a traveling or an evanescent plane-wave. Without
the interlayer bias, when 0 < ¢ < I'|, the k= is imaginary
while kT is real and then propagation is only possible using
the k* channel. When ¢ > I';, however, k~ becomes real too,
providing a new mode for propagation. For ¢ < 0, a similar
argument leads to propagation via k=~ when |¢| < '} and two
ways of propagation when |g| > T'}.

One obtains the two-band approximation for ¢ < I'} with
the condition that A and ¢ are of the same order of magnitude.
Therefore, one can neglect these terms up to second order in
Eq. (4), resulting in the wave vector

k'~ \/111\/52 - A2— K2, ®

which for A = 0 reduces to

k'~ [leT) — k2, (6)
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with the energy spectrum

I 2
&~ \/|:F_1((kl)2 + kg)} + A2, 7
and for A =0
e~ L((k’)2 +42). ®)
r :

This spectrum is superimposed in Fig. 1(c) as dashed curves.
It agrees with the full spectrum only near the Dirac point. The
validity of the approximation is based on the increase in energy
near the atomic sites of the B; and A, atoms, which influence
each other. For low Fermi energy, it therefore makes sense to
take into account only the orbital wave functions near the other
two atoms. This reduces the 4 x 4 Hamiltonian, Eq. (1), and
replaces it with the approximate one given by”

_hzu% VI A (ke — iky)? w— (Va
(kx + iky)z V"' — A > — sz s
)

4!
where V' = —y; V/(hzv%) and A" = —7/15/(77121)%). The two-
spinor plane-wave solution of the Schrédinger equation of this
Hamiltonian consists of a propagating wave with wave vector
given by Eq. (6) and an evanescent mode with inverse decay
length

H, =

K = \/\/82 — A2, + k2, (10)
= Jel +&2 for A =0, (11)

which corresponds to the imaginary part of k' with / = —1 in
Eq. (6). There is no positive energy value that can make this
quantity imaginary and so it can only represent a traveling
state when & < 0, which corresponds to a hole state. In
contrast to the four-band treatment, there is no second mode
of propagation. The introduction of an interlayer bias term § in
the system has a strong influence on the electronic properties.
As was pointed out earlier,? it opens a gap in the spectrum
which completely changes the low-energy behavior of the
electrons. When an interlayer bias is applied, the effect of
the skew hopping parameters is of even less importance for
the spectrum, as shown in Fig. 1(c). Notice that the two-band
approximation fails to describe the spectrum of the system
accurately.

The potential we consider is similar to the one used by
Katsnelson et al.,® but now with the addition of an interlayer
potential bias term. It consists of a one-dimensional potential
barrier of width d given by

0 ifx <0 (region 1),
V)= Vo+&5 if0<x<d (regionll), (12)
0 ifx >d (region III),

where § = +1 for the first layer and & = —1 for the second
layer. This barrier is shown in Fig. 2 and, because it is
translational invariant in the y direction, k, is a conserved
quantity. Using the Hamiltonians given by Egs. (1) and (9),
we can now calculate the transmission and reflection proba-
bilities for electrons impinging on the barrier. The two-band
model only allows for one mode of propagation, leading to
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FIG. 2. (Color online) Schematic representation of the transmis-

sion and reflection probabilities for a rectangular potential barrier.

one transmission (7') and one reflection (R) channel. For
sufficiently large energy, however, in the four-band model, it is
possible to propagate through two distinct modes. Therefore,
we have four reflection and four transmission channels. For
the transmission these are two nonscattered channels, which
we denote as T} and 7= for propagation via k™ and k~,
respectively, and two scattered channels in which the particle
enters through one channel and exits through another one. We
denote them as T for scattering from the k* band to the
k™ band and T for the other direction. A similar definition
holds for the R reflection channels. The eight channels are
schematically depicted in Fig. 2.

Using the transmission probabilities, we can calculate the
conductance as a function of the energy given by the Landauer-
Biittiker formula,°

W[ )
G(E) = Goﬁf_w dk, Z T (E k), (13)

I,m=%

where G = 4¢*/h, which is four times the quantum of
conductance due to spin and valley degeneracy and W is the
width of the sample in the y direction.

III. TRANSMISSION PROBABILITIES AND SYMMETRIES

Before calculating the transmission probability by matching
the components of the spinor wave function at the boundary
as explained by Barbier et al.'' and Snyman and Beenakker,'
a simplification can be made by transforming the Hamiltonian
from Eq. (1). Constructing symmetric and antisymmetric
combinations of the spinor components by combining the
atomic wave functions 4, with ¥, and ¥p, with y4,, the
Hamiltonian is transformed into

V' — ik, ujke iviky + A —iujk,
+ ! it
_ uy ky vV —T iuyky A
Hy =hvr —iviky + A —iujk, V' +vik,  ujke |
iug ky A Uy ky V +T4
(14)
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with the new spinor

Ya, — Vs,
R R N s
T2 YA s, | T\ )
wAz + 1//31

where we have introduced the reduced potential V' = V /hvg
and uf = (1 £v)) with the dimensionless skew hopping
velocities v} , = v34/Vr = y3,4/yo Which turn out to be very
small, i.e., ’vg ~0.09 and v ~ 0.04. These small values
advocate the neglect of the skew hopping parameters in the
discussion a little bit further. The four-component spinor can be
seen as a combination of two two-spinors W, 4 and W4 _ which
are respectively antisymmetric and symmetric with respect
to the exchange A; <> B, and A; < B;. This exchange
corresponds to a reflection of the system by an in-plane
mirror. Notice that for normal incidence and for an unbiased
system, i.e., when k, =0 and A =0, the Hamiltonian is
block diagonal in this basis. This means that it represents two
noninteracting one-dimensional systems with eigenfunctions
W, 4 which are described by the 2 x 2 Hamiltonian

V' =15k, (1 + v)k,
A+vjk, V' —ITy |

Neglecting the skew hopping terms, this Hamiltonian describes
a one-dimensional monolayer of graphene with a potential
term that breaks the sublattice symmetry and corresponds to
a Dirac Hamiltonian with a mass term.?! By calculating the
energy spectrum of this Hamiltonian, we can relate W, ; to the
bands corresponding to k’. In Fig. 3 the four energy bands
are depicted inside and outside the barrier region. Bands
belonging to the same W, ; have the same color. From this we
can see that within different energy ranges the transmission
at normal incidence depends on the availability of states
corresponding to the same /.

In the two-band approximation, and neglecting the skew
hopping parameters, a similar symmetry transformation leads
to the Hamiltonian

CRET R -2+ V" 2ikk, + A a7
n L 2ikky + A" K=k + V|

Hy, =71UF[ (16)
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FIG. 3. (Color online) Schematic representation of the energy
spectrum inside and outside the barrier region. The dots and
arrows indicate the energy regions for which electrons impinging
perpendicularly on the barrier will be transmitted or reflected.
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For normal incidence and without bias, the system corresponds
to that of two noninteracting Schrodinger particles described
by the Hamiltonian

h2
Hyy=—1—kX+V, (18)
2m

and the wave functions

1

Uy, = 7 (Va, +1¥5,), (19)
where [ = +1 and m = yl/Zv%. Since the system is now
described by a two-component spinor W, one can extend the
spinorial analogy of the charge carriers in monolayer graphene
by introducing a pseudospin.® The value of I now corresponds
to the pseudospin state of the particle. As shown above, the
pseudospin is the consequence of the (anti)symmetric nature
of the wave functions under in-plane mirroring. Although the
analogy with the normal spin properties of an electron are more
pronounced within the two-band model, the four-band model
incorporates the same symmetry and therefore the notion of
pseudospin is applicable in this model as the value of /. Note
that these symmetry considerations also hold when the skew
hopping parameters are included because the Hamiltonian of
Eq. (14) is block diagonal at normal incidence for a system
without bias.

The different energy ranges in which at normal incidence
and for § = 0 new phenomena are expected are defined by
the value of ¢ = (E — V)/hvp and thus by the difference
between the kinetic energy and the height of the potential in the
region under consideration. When V' — I'y < g1 < I'| outside
the barrier region, but e;; < O inside, for positive ¢ the W,
state which propagates outside will not be able to propagate
inside the barrier. The absence of propagating W, states inside
the barrier suppresses the transmission in this energy region.
The fact that the transmission is suppressed even though there
are propagating W_ states inside the barrier has been noticed
before and was called a cloaking of the W_ states'? and is
present in both models.

When &; > I'y outside the barrier, the W_ states can also
propagate in regions I and III. Inside the barrier, however,
these states are trapped and their energy spectrum is dis-
crete. This means that when electrons propagate through the
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FIG. 4. (Color online) Comparison of the transmission proba-
bility through a barrier of height V) = 0.05y; with (dashed curves)
and without (solid curves) the skew hopping parameters. Left: The
energy dependence of the transmission probability for junctions of
width d = 10 nm (blue), d = 25 nm (red), and d = 100 nm (green).
Right: The width dependence of the transmission probability for a
Fermi energy of E = éVO (blue), E = %Vo (red), and E = %VO.
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FIG. 5. (Color online) The transmission and reflection probabilities through a p-n junction of height V, = %yl as a function of energy and
transverse wave vector k. The energy is expressed in units of y; and the wave vector in units of ™!, the inverse of the in-plane interatomic
distance. The dashed curves indicate the borders between the regions where different modes are propagating or are evanescent inside or outside

the junction.

W_ state, they can propagate inside the barrier region only
if the energy matches one of the discrete energy levels
inside. The discretization condition corresponds to Fabry-
Pérot resonances, namely d = ni/2, where A = 27/ k*. This
results in resonances whose energies are, in the four-band
model without skew hopping or interlayer bias, given by'®

(AR

The above reasoning is valid for (near-)normal incidence. The
Hamiltonian of Eq. (14), however, mixes up the two states for
non-normal incidence.

To calculate the transmission probabilities at non-normal
incidence, the transfer-matrix method together with appropri-
ate boundary conditions was implemented. The plane-wave
solution for the Schrédinger equation of the four-band model
is a four-component spinor and can be represented by a product

T,

en(n,ky) = - + (20)

of matrices
v = PEC, 21

in which & corresponds to a 4 x 4 diagonal matrix consisting
of exponential terms and P is for § = 0 given by

1 1 0 0
k* k* iky iky
S I
L L Y
B B e e

in which k¥ is defined in Eq. (4). To find the transmission and
reflection probabilities, one has to equate the wave functions
at the borders of the potential barrier. This results in two times
four equations from which we obtain the components of the
vector C. Considering the boundary conditions of the system,
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FIG. 6. (Color online) The same as in Fig. 5, but now for the transmission and reflection probabilities through a potential barrier of height

Vo = 3y and width d = 25 nm.

this vector is given by

31’1 li

! ri i 0

CI: s | CIII= rl_ ’ (23)
r 0

where [ indicates the wave vector k* and 8141 is the
Kronecker delta. Using the transfer-matrix method, finding
the coefficients in these vectors corresponds to solving the
matrix equation

Cl = My uMy_mCl;. (24)

M1 is the transfer matrix from the region before the barrier
to within the barrier and My_ is the one from within to
behind the barrier. Using the matrix form of the spinor wave
functions in Eq. (21), the transfer matrix is given by

My = & Py Pubn. (25)

Finally the transmission (7") and reflection (R) probabilities
are obtained as

T = ﬁn’ > and R, = ﬁw |2 (26)
+ K + + k! S
This takes into account the change in velocity of the waves
when they are scattered into a different propagation mode.
Some of the different probabilities in Eq. (26) can be related
to each other via the time-reversal symmetry of the system.

The Hamiltonian under consideration describes electrons in
the vicinity of one of the two Dirac points in reciprocal space
which are called the two valleys. The Hamiltonian H' for the
other Dirac point is given by

H =—-HT. 27)

This means that electrons scattering from k™ to k=~ when
moving from left to right in the first valley are equivalent
to electrons scattering from k=~ to k™ but moving in the
opposite direction and in the other valley. When § = 0, both
valleys are equivalent and time-reversal symmetry holds near
a single Dirac point. Therefore, the transmission probability
of electrons moving in the opposite direction must be the same
because of the valley equivalence. Using a similar argument
for the reflection in both valleys, one can conclude that

Tt =T, and R =R]. (28)

Another symmetry operation ensures the symmetry of the
probabilities with respect to normal incidence. Note that the
Hamiltonian of the system given in Eq. (1) is not symmetric
under a sign flip in k. An interchange of the A} and B, atoms
together with B; <> A,, however, leaves the system invariant
but corresponds to exchanging k, — —k,. Since the system
is invariant under this transformation, the transmission and
reflection should be symmetric with respect to normal inci-
dence. The application of an interlayer bias, however, breaks
this exchange symmetry and therefore asymmetric results in
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FIG. 7. (Color online) The same as in Fig. 5, but now for the transmission and reflection probabilities through a biased potential barrier of

height V;, = %yl and width d = 25 nm and interlayer bias § = 0.3y.

the transmission and reflection are expected. This asymmetry
was noted before by Nilsson et al.?> The application of an
interlayer bias furthermore lifts the valley degeneracy and with
it the above-discussed symmetry in the scattered transmission.
Note that when the same quantities are calculated for states in
the other valley, the asymmetry is reversed and therefore the
overall symmetry of the system is preserved.

In the two-band model, one obtains a two-spinor which can
be described by a similar matrix product as before with

1 1 1 1

P = |:_(k—iky)2 kR k) (c—ky)? ] ; (29)
Iie Te Te Te

where k and « are defined as before. Equating both wave

functions and their derivatives at the edges of the barrier leads

to the transmission probability 7.

IV. NUMERICAL RESULTS

In order to investigate the importance of the skew hopping
parameters, we present in Fig. 4 the transmission probability
through a potential barrier at normal incidence with and
without including the skew parameters as a function of the
Fermi energy and the width of the barrier. The results show
that even in the low-energy range where the effect of the

skew hopping parameters are expected to be the largest,
the transmission probabilities are very similar. We therefore
conclude that for the discussion at hand these parameters are
not important and we neglect them in the following discussion.

In Fig. 5 we show the transmission and reflection prob-
abilities for a p-n junction as a function of the energy of
the incident wave E and its transverse wave vector k. The
height of the potential is set to Vy = %yl and the interlayer
potential difference § = 0. The results show qualitatively
different regions in the (k,, E') plane which can be explained by
identifying which modes are propagating inside and outside the
p-n junction. The borders between these regions are indicated
by dashed curves superimposed on the density plots.

For normal incidence, k, = 0, the expected cloaking in the
T and T channels occurs for Vo — y; < E < V,. When the
transverse wave vector k, differs from zero, it is possible for
electrons to scatter into the k~ propagating mode inside the p-n
junction and this results in a scattered transmission in the 7+
channel. For energies smaller than V) — y, there are propagat-
ing kT states in the junction and this leads to a nonzero trans-
mission in the 7" channel. This transmission is absent when
the potential V) < y; and it is also not present in the two-band
model. For energies larger than the height of the barrier, £ >
Vo, the particles behave similarly to Schrodinger particles.
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The numerical results of the probabilities 7~ and R_ are
shown in the fourth row of Fig. 5. For E < V; the electrons
tunnel using the propagating kK~ states in the junction since
the states match the number / = —1. For V, < E < Vy + yy,
however, there are no available £~ states and the transmission
is suppressed even though the energy is larger than the height
of the potential barrier. This is the equivalent phenomenon of
the cloaking discussed earlier. This phenomenon is absent in
the two-band approximation.

The scattered reflection (Ri',RI) shown in the second and
third rows of Fig. 5 is very strong at near-normal incidence and
E = V,. In this region both states are propagating outside the
junction but are evanescent inside it. In this situation scattering
is favorable due to the symmetry of the scattering probabilities.
This argument is independent of the mode the incident wave is
in. For a p-n junction the symmetry argument of the previous
section only holds for the scattered reflection. Because inside
the junction the carriers behave as hole states while outside
they are electrons, the symmetry described in Sec. I1I is broken
and therefore the equivalence in scattered transmission is no
longer valid. Since under reflection the electrons return again
in an electron state, for the reflection channel the symmetry
remains valid, which is also seen in the calculations of the
reflection channels R and R’

In Fig. 6 we show the transmission and reflection probabil-
ities for a potential barrier of width 25 nm and the same height
as the p-n junction. The cloaking in the 7" and 7~ channel
occurs for the same conditions as the p-n junction. When
the transverse wave vector k,, differs from zero, it is possible
for electrons to scatter into the k~ propagating mode inside
the barrier and this results in the observation of resonances
which follow the expression given by Eq. (20) for k, large.
For energies smaller than Vy — y, there are propagating k™
states in the barrier and resonances appear which follow the
expression given by Eq. (20). These resonances are absent
when the potential V) < y; and are also not present in the
two-band model. The symmetry argument of the previous
section does hold for a barrier since at both sides of the barrier
the particles have positive energy. Therefore, the scattered
transmission is the same as shown in the second row of
Fig. 6.

In Fig. 7 the transmission and reflection probabilities for
a barrier of height Vy = %yl and interlayer bias § = 0.3y,
are plotted. The band gap introduced by the interlayer bias
suppresses the transmission in the energy region between
Vo £46. In the band gap a remarkable asymmetric feature
with respect to normal incidence in the reflection channels
shows up. This is a manifestation of the breaking of the
interlayer sublattice equivalence as discussed in Sec. III. This
asymmetry is also present in the scattered transmission where
it depends on the incident mode. This asymmetric feature is
only present when scattering between different propagation
modes is possible. It is therefore another qualitative feature
that is not present in the two-band approximation.

The interlayer potential difference furthermore couples
the two propagation modes at normal incidence. Therefore,
the suppression due to cloaking is also adjusted. Now
both the interlayer bias term § and the transverse momentum
ky cause the two modes to be coupled as shown in Eq. (14).
Due to the interplay of both parameters, cloaking at normal
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FIG. 8. (Color online) Energy dependence of the conductance
of a single barrier with (a) d = 25 nm, (b) d = 10 nm, and a p-n
junction with height V, = %yl calculated using the four-band method
(blue) and the two-band approximation (dark red). (c, d) Different
contributions of the four transmission channels are shown as dashed
lines [see also the inset of (a)]. (d) Conductance for a biased bilayer
with interlayer bias § = 0.3y; and potential barrier of the same width
and height as that of (a).

incidence splits into two branches at finite k, as shown in the
nonscattered transmission and reflection.

The conductance is shown in Fig. 8 for both the two-
band approximation and the four-band method for barriers
of different width [Fig. 8(a) and 8(b)] and a p-n junction
[Fig. 8(c)]. For energies smaller than the barrier’s height,
E < Vj, the resonances in the transmission show up as
peaks in the conductance. Using the four-band method those
resonances are, however, more pronounced and there is a
difference in the position and number of peaks. Furthermore,
for energies smaller than Vy — y;, the resonance peaks for
the propagation via the k™ states appear as shoulders of
the other peaks. This phenomenon does not occur in the
two-band approximation for which all the resonances are
similar. When the energy is larger than y;, additional peaks
result from propagation via the k™ states inside the barrier
while peaks of the two-band approximation do not differ.
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This is clarified in the inset of Fig. 8(a), which shows the
contributions of the different transmission channels. While the
contribution of the TI channel is low in this region, the 7
and the scattered transmission channels have well-pronounced
resonances. When the energy is larger than the height of the
barrier, E > V), the conductance predicted by both models is
of the same order of magnitude. However, when the energy
is larger than Vj + y, the kK~ state is not cloaked anymore,
resulting in additional conductance that is absent for the
two-band model.

Snyman and Beenakker'® have shown that both models
coincide in the region for low barrier height, i.e., Vy < y1,
which is confirmed by our calculations. The characteristic form
of the conductance resembles that of the result obtained here
for the two-band approximation. Now it is clear, however, that
the conductance peak just above the barrier height is lower
in the four-band model. This is due to the additional scattered
reflection channel R™/ R thatis absent for low barriers. In the
latter case only the T channel could contribute and coincides
with the two-band model transmission, but now this channel
is suppressed.

Figure 8(b) shows that the resonant peaks in the conduc-
tance depend on the width of the barrier, but it should be
noted that they occur at different energies in both models.
In Fig. 8(c), the conductance of a p-n junction is calculated.
Although the barrier is of infinite width, both models predict
a finite conductance. For the four-band model, however, the
different energy regions show up as bumps in the conductance
caused by the availability of the second mode of propagation.

Figure 8(d) shows the conductance for a biased potential
barrier. The results are similar to that of the unbiased case but
are influenced by the suppression of the conductance in the
energy range of the band gap at V) £ §. Note that although the
scattered transmission is asymmetric with respect to normal
incidence, this is not visible in the conductance calculations
since it sums over all values of k.

V. CONCLUSION

We evaluated the transmission and reflection of electrons
through potential barriers and a p-n junction in bilayer
graphene. We extended previous calculations performed
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within the two-band model to the four-band model. We
compared the results with and without taking into account
the skew hopping parameters and found that the latter can be
neglected for energy ranges E > /100 ~ 4 meV. Within the
four-band model, the results from the two-band approximation
are recovered for small energies and low potential barriers.
We find new phenomena such as transmission resonances at
normal incidence. We showed that the notion of pseudospin
used to describe electrons in the two-band approximation
corresponds to the wave functions being symmetric or an-
tisymmetric with respect to in-plane mirroring and that this
leads to the observation of cloaking, which occurs for both
symmetric and antisymmetric states. We have also pointed
out that, because it is a consequence of the symmetry of the
system, the notion of pseudospin also holds when the skew
hopping parameters are taken into account. For high energies
anew mode of propagation is available for the electrons, which
is not present in the two-band approximation, and we found
that for non-normal incidence it is possible to scatter between
the two modes. The resulting conductance of the four-band
model incorporates these new phenomena and therefore differs
significantly from the conductance calculated within the two-
band model. This difference manifests itself by the presence
of many more and well-defined resonances and a substantially
higher conductance for high energies. Finally, we showed that
the application of an interlayer bias in the system significantly
changes the transmission characteristics. The band gap created
by the interlayer potential forms a distinct feature in the
conductance, and the transmission and reflection probabilities
lack reflection symmetry with respect to normal incidence.
The introduction of the interlayer symmetry-breaking term
furthermore couples the symmetric and antisymmetric modes.
Therefore, the notion of pseudospin is no longer valid.
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