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We present a self-contained theoretical and computational framework for dynamics following photoexcitation
in quantum dots near planar interfaces. A microscopic Hamiltonian parametrized by first-principles calculations
is merged with a reduced density matrix formalism that allows for the prediction of time-dependent charge and
energy transfer processes between the quantum dot and the electrode. While treating charge and energy transfer
processes on an equal footing, the nonperturbative effects of sudden charge transitions on the Fermi sea of the
electrode are included. We illustrate the formalism with calculations of an InAs quantum dot coupled to the
Shockley state on an Au[111] surface and use it to concretely discuss the wide range of kinetics possible in these
systems and their implications for photovoltaic systems and tunnel junction devices. We discuss the utility of this
framework for the analysis of recent experiments.
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I. INTRODUCTION

Nanostructured materials represent one of the most promis-
ing routes for the creation of novel energy harvesting and
optoelectronic devices. One of the key challenges in this
field is navigating the vast design space to search for an
appropriate combination of material properties for a specific
application. At present, the solution to this fundamental
problem can at best be constructed for specific classes of
systems. In the present paper, we tackle this problem for
one of the key configurations that has emerged in the fields
of photovoltaics and nanoelectronics: quantum dots acting as
chromophores in the vicinity of semiconductor and metallic
surfaces.1–3

We focus on charge kinetics in these systems and con-
struct a microscopic dynamical theory that is capable of
both describing the observable experimental phenomena and
making quantitative predictions for future research. The key
challenge addressed in the paper is the construction of a
framework in which a strong connection is maintained between
the microscopic parametrization of the Hamiltonian and the
description of dynamics within a restricted set of excited
states. Thus, key insights from an efficient navigation of the
parameter space can be related to specific physical properties
of the underlying materials in these systems.

Theories based on model Hamiltonians4–8 allow one to
construct a picture of the possible regimes of dynamics, but
the connection to realistic modeling of specific materials
may be hard to establish. On the other hand, parameter-
free ab initio studies9,10 can address only relatively small
systems and the key physical features of quantum-dot systems
cannot be treated. The work presented in this paper may
be viewed as a compromise between these two extremes.
Starting from the fundamental many-body Hamiltonian for
the light-matter interaction, we derive a low-energy effective

Hamiltonian in which all matrix elements are calculated from
the single particle wave functions of the subsystems, each
represented by a well-established model. The wave functions
and other characteristics of the surface are obtained from
an ab initio density functional theory based calculation. The
frontier states in the semiconductor quantum dot are obtained
from established effective mass models. In the region of
overlap between these subsystems, these wave functions can
be treated on equal footing. In this way, our low-energy
effective Hamiltonian is fully derived, with the addition of
no parameters. This Hamiltonian is then used to develop a
master equation for the reduced dynamics of the quantum dot.
Simulations based on the master equation provide quantitative
analysis of the range of possible charge kinetics in these
systems with a clear connection to the constituent surface and
quantum-dot materials.

By constructing the Hamiltonian in this way, a meaningful
analysis of charge and energy transfer channels in isolation
and in competition with each other emerges. Thus, one can
pursue important questions about charge kinetics such as
the following. How does the extinction of optical power
by the quantum-dot change in the presence of a surface?
How is cooling of hot carriers affected by the presence
of energy transfer to the surface? How does electrostatic
coupling of the quantum dot to a surface affect the lifetime of
exciton, biexciton, and other multielectron states? How does
nonradiative recombination of excitons in these systems affect
current extraction and photoluminescence? Our framework is
capable of answering these questions concretely. We illustrate
this within a specific system of InAs quantum dot on a gold
surface.

In recent years, several studies of kinetic processes in
models for single-molecule junctions under the influence
of both applied electrical bias and optical fields have been
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published.4–13 The studies of asymmetric dipole coupling in
the steady-state conductance5,8 have revealed photoinduced
current generation and current-induced photoemission. This
scenario, however, is inapplicable to single interface systems
in which only a photogenerated current can can exist, and
interfacial polarization plays a different role, as described
below. Electron dynamics in molecular chromophores at
semiconductor interfaces has been studied in depth for a
small number of systems and ideal situations fully ab initio.10

While these studies are invaluable for quantitatively settling
many questions about the microscopic processes and their
dynamical interplay, they do not capture the aspects arising
from the relatively large sizes of quantum dots. Furthermore,
the treatment of image potential at the interface remains an
external input to any computation based purely on density
functional theory.14–16

The highly polarizable surfaces of the planar electrode
and the quantum dot lead to electrostatic interactions that
significantly affect the quasiparticle and optical band gaps,
tunneling rates, and energy transfer. For a spherical quantum
dot, an important fundamental effect of the presence of a
planar surface is the formation of a dipole moment and strong
corrections to multipole moments of its exciton states. Thus,
the polarizability of electrode surface becomes a mechanism
for nonradiative recombination of excitons via energy transfer
to the electrode. In our numerical results, we show the effects of
this polarizability and quantify the significance of high-order
multipole moments of charge distribution on the nonradiative
exciton recombination in the narrow gap InAs quantum dot.
Having a microscopic Hamiltonian in hand further allows us
to compare this exciton decay with the dissociation across the
junction. This type of analysis, for example, is fundamental to
optimization of current extraction in photovoltaic applications
of these systems.

Furthermore, the size of a quantum dot also yields many
closely spaced energy levels, which lead to dynamical effects
that often do not arise in single molecules, especially if a
simplified treatment is limited to just the highest occupied
and lowest unoccupied molecular orbital. The spacing and the
number of energy levels qualitatively affects the dynamics
of charge injection, energy exchange, and the recoil of a
hole (electron) in response to the tunneling of an electron
(hole) to the electrode. Understanding the time for buildup
of these transitions in relation to the magnitude of these
transition rates is fundamental to determining the regimes
where a Markovian description of charge and energy transfer
breaks down. In experimental terms, it allows us to understand
when to expect deviations from Lorentzian line shapes in
both linear absorption and nonlinear optical spectroscopy of
these systems. The non-Markovian effects originate physically
from the coupling of quantum-dot states to the electrode, as
has also been discussed by Fainberg et al.4 in the case of
molecular junctions. However, it can be affected significantly
by the spacing of energy levels in the quantum dot, which is a
complementary aspect that exists naturally in our work. Fur-
thermore, the levels also couple significantly, via the Coulomb
interaction, to the incoherent particle-hole excitations in the
Fermi sea of the electrode, which opens additional channels

of energy transfer beyond those discussed in studies of
molecular systems.

With a few notable exceptions,4,17,18 studies in molecular
transport generally treat the electrodes as passive Fermionic
reservoirs, thus ignoring the scattering of electrons in the leads
as a result of the excitation-dependent Coulomb potential of
the molecule. Under certain conditions, discussed in this paper,
this potential can significantly alter the transport and relaxation
in tunneling junctions,19–22 as well as the optical absorption.23

For example, tunneling of an electron out of the quantum dot
yields sudden transition of its charge and can cause significant
dynamical fluctuations in the surface charge density in the
electrode. Studies of the effects of this kind have a long history
in x-ray emission and absorption in bulk metals and optical
absorption in doped quantum wells.24–26 They are well-known
to be composed of two competing contributions: the Mahan
exciton (ME)27–30 arising from the attraction of the electron
in the Fermi sea to the hole and the Anderson orthogonality
catastrophe (AOC)30,31 arising from the vanishing overlap
between the initial and the final many-body state. Together
they define the phenomenon of the Fermi edge singularity
(FES). A highly relevant example of the systems considered
in this paper is the recent observation of ME in InGaAs/GaAs
quantum-dot heterostructures.3

The theory formulated in this paper fully accounts for FES
phenomenon self-consistently alongside charge and energy
transfer processes. One aspect of the geometry considered in
this paper is that it is ideal for exploring FES within the hole
bands of a p-doped electrode. This has remained unexplored
in FES studies in bulk metals and quantum wells because the
core charge in this case is the much lighter electron, the motion
of which diminishes the FES signature. On the other hand, the
electron localized inside the dot presents no such problem and
new effects arising from scattering in nonparabolic bands and
the much larger subband mixing in hole states can be explored.
In addition, identifying systems in which these effects yield
important signatures in optical response and tunneling current
is important for the correct interpretation of experimental data
as well as device engineering.

The FES has also been studied in resonant tunneling
devices19 and was first predicted in these systems by Matveev
and Larkin.19 Abanin et al. emphasized the tunability of
the FES effect by engineering the geometric aspects of
the system and elucidated the novel effects arising within
a nonequilibrium electron gas.21 The optical response we
formulate here naturally leads to an extension of this idea
within the interfacial quantum-dot systems where tuning the
relative effect of the ME against the AOC can be achieved by
controlling whether the final state of the optical excitation lies
in the Fermi sea or in the capping layer of the heterostructure.

In a study by Despoja et al.23 on the ab initio calculations of
the core-hole spectrum of jellium surfaces the FES was found
to be very weak for a core-hole residing outside the surface.
This is due to very strong screening by the free electron gas
in the metal. While this may be expected for the small overlap
between the sharply screened potential inside the metal and the
extended states of the slab, our numerical calculations show
it to be true even for the sea of Shockley surface states on
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Au[111]. On the other hand, we expect the effect to increase
dramatically for thin films supported on an insulating substrate
with low dielectric constant.

Our paper is organized as follows. In Sec. II we derive
the microscopic Hamiltonian. The detailed expressions for
all the required Hamiltonian matrix elements are provided
in Appendix A. In Sec. III, we develop our model for the
dynamics, specifically a time-convolutionless master equation
for the density matrix of the quantum dot. From this equation,
we obtain the dynamical rates of charge and energy transfer, as
well as the optical response including the effects of the FES.
In Sec. IV we apply our model to calculations of charge and
energy transfer for an InAs quantum dot on Au[111] surface
and study the effect of the FES as well as the competition
between tunneling, cooling, and nonradiative exciton decay
on the dynamics. In Sec. V we discuss the application of our
theory to the modeling and analysis of experiments, and the
possible extension of the theory developed here to that of
a quantum-dot array supporting interdot charge and energy
transport. We also discuss in this section how the vibrational
modes of the quantum dot, neglected in the explicit analysis,
can be described within the framework presented. In Sec. VI
we conclude. Details not found in the text may be found in
Appendixes A and B.

II. MICROSCOPIC HAMILTONIAN

We start with the Hamiltonian,

H (t) =
∫

d r �†(r)

[
1

2m

(
h̄

i
∇ + eA(r,t)

)2
]

�(r)

+
∫

d r �†(r) [UD(r) + UL(r)] �(r)

+ 1

2

∫
d r

∫
d r ′ �†(r) �†(r ′)V (r − r ′)�(r ′)�(r),

(1)

where �(r) is the fermionic annihilation field operator. The
interaction of electrons with light occurs through the vector
potential A(r,t) associated with the optical field. We treat
the field as a classical external force in this work. Therefore,
we do not include energy stored in this field in the above
Hamiltonian. The potentials associated with the Quantum Dot
(QD) and the electrode are given by the functions UD(r) and
UL(r) respectively (see also Fig. 1). In the last term of (1)
V (r − r ′) is the Coulomb interaction among all fermions. We
have neglected the phonons and electron-phonon interaction
in the present model for brevity, but it can be incorporated
straightforwardly in our formalism, and we comment in
Sec. IV on how this can be accomplished.

Our approach is akin to the Bardeen approach to
tunneling.32 We make a physically reasonable distinction
between states of the QD and the electrode and then develop a
theory for the charge and energy exchange between the two sets
of states. It is then convenient to first write the field operator as
a sum of field operators that create/annihilate particles confined
to the QD and the electrode,

�(r) = �D(r) + �L(r). (2)

(b)

(a)

UL

UD

ψνk
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UL
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n
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FIG. 1. (Color online) (a) The geometry of the system studied
in this paper showing the important parameters for determining
the electrostatic potentials. (b) Schematic profile of potentials and
wave functions of the electrode and the quantum dot in a plane
perpendicular to the electrode surface and passing through the center
of the dot.

With the choice of the single-particle basis below, how the
states within the two subsystems can be identified are detailed.
It is implicit in the formalism of the reduced dynamics of
the QD (see Sec. III) that the electrode states, which are traced
over, are orthogonal to the QD states included in the dynamics.
Any distinction based on exact vanishing of the states within
appropriately defined volumes of the two subsystems would
not yield an orthogonal basis in general.33 However, with the
barrier potential equal to several electron volts, the low-energy
states of the QD and those near the Fermi level of the electrode,
even when calculated in isolation from each other, decay
exponentially within the barrier with a characteristic length
of about 1–2 Å. The QD and electrode states most relevant to
the dynamics are then orthogonal to a good approximation.
We exploit this property in the calculations, but note that
the approximation lies in the choice of basis and not in the
formalism.
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We substitute Eq. (2) into the Hamiltonian (1) above, and group the terms as follows:

HD =
∫

d r�†
D(r)

[
1

2m

(
h̄

i
∇ + eA(r,t)

)2

+ UD(r) + UL(r) +
∫

d r ′V (r − r ′){�†
D(r ′)�D(r ′) + ρimg(r ′)}

]
�D(r), (3)

HL =
∫

d r�†
L(r)

[
1

2m

(
h̄

i
∇ + eA(r,t)

)2

+ UD(r) + UL(r) +
∫

d r ′V (r − r ′)�†
L(r ′)�L(r ′)

]
�L(r), (4)

HDL =
∫

d r�†
D(r)

[
1

2m

(
h̄

i
∇ + eA(r,t)

)2

+ UD(r) + UL(r)

]
�L(r), (5)

VDL =
∫

d r
∫

d r ′�†
D(r)�D(r)V (r − r ′)[�†

L(r ′)�L(r ′) − ρimg(r ′)]. (6)

The term HD given by Eq. (3) describes the QD states in the
presence of the electrode potential, the Coulomb interaction
among carriers, and the classical electrostatic interaction with
the electrode in the form of an image potential. The latter
is included via the induced density (a real-valued function)
ρimg(r), which is later subtracted in Eq. (6). We call the basis
states of HD for A = 0 the QD states and the matrix elements
of −im−1h̄A(r) · ∇ between these states defines the optical
excitation of the QD in the presence of an electrode.

Similarly, HL in Eq. (4) defines electrode states and their
optical interaction in the presence of the lattice potential UL

and the Coulomb interaction among carriers. The single-
particle states of HL are calculated with full atomic scale
detail, after setting A = 0. Then the Coulomb interaction
appearing in Eq. (4) is incorporated into the treatment of
the states at the level captured by density functional theory.
In the particular example we use for illustration, only the
surface bound states play a direct role in calculations, while
the remaining states are kept formally for completeness. In the
final reduced dynamics of the QD, the sum of the interaction
matrix elements over these states yields well-defined single-
and two-particle response functions. The actual problem of
treating the electrode is then reduced to the calculation of these
response functions in the presence of a surface. The surface
bound states are calculated by constructing the surface Green’s
functions from the Kohn-Sham density functional theory, as
discussed at length in Sec. IV.

Next, the term HDL given by Eq. (5) describes hybridiza-
tion, including the optically driven excitations in which an
electron or a hole is excited directly into a final state in the
electrode. This term thus describes charge transfer. The last
term, VDL, given by Eq. (6), describes energy transfer mediated
by the Coulomb interaction between the QD and the electrode.
The advantage of adding and subtracting ρimg(r) in the above
expressions is twofold: The QD states include the image
potential nonperturbatively, and the dynamical interaction of
these states with the electrode reduces to fluctuations around
this density. As we see in Sec. III C, this naturally leads
to describing the energy transfer in terms of a dynamical
longitudinal susceptibility of the electrode.

In the above expansion we neglect the term
�

†
L(r)UD(r)�L(r) that appears in HL, which would

result in additional renormalization of the electrode states in
response to the presence of the neutral QD. We disregard this
term because the exponential decay of the electrode wave

functions in the barrier, combined with the extended nature of
these wave functions inside the electrode, makes the effect of
this perturbation very small. On the other hand, the changes
induced by the presence of the electrode has a significant
effect on the boundary conditions for the states localized
to the QD, and thus the analogous term �

†
D(r)UL(r)�D(r)

is included in the HD term. We remark that the neglected
term may be included by calculating the scattering states
starting from the eigenstates of HL.29 This would perhaps
be necessary for some mesoscopic electrodes lying at a very
small distance from the QD or in cases with small barrier
heights such that the electrode wave functions significantly
probe UD(r).

We have also neglected the particular exchange interaction
where one carrier lies in the QD state and the other in the
electrode state. This interaction should also be exponentially
suppressed for the low-energy and well-confined states of
relevance to this work. Related to this exchange is the
Coulomb-driven tunneling process which is also neglected in
comparison to the contribution by single-particle kinetic and
potential energies, as well as optical interactions, HDL. The
exchange interaction among carriers within each subsystem is
implicit in the above expressions.

Let us now turn to specification of the states comprising
�D and �L and begin with a set of single-particle basis states.
Let |g〉 be the ground state of the QD and ϕn(r) = 〈r | n〉 be
the single-particle excited states satisfying[

− h̄2

2m0
∇2 + UDeff (r) + �(r) − εn

]
ϕn(r) = 0. (7)

Here UDeff represents the pseudopotential for a single electron
or a hole added to the neutral ground state of the QD, and we
have introduced the electrostatic self-energy of a point charge
in the vicinity of polarizable surfaces such as that of the QD
and the electrode. The electrode contribution is given by34

�L(r) =
∫

d r ′V (r − r ′)ρimg(r ′). (8)

This is a well-known formulation of an exact one-body
potential representing the electrostatic energy stored in the
polarization reaction field that is induced by a unit charge on
dielectric surfaces.35–37

We label the solutions to the eigenvalue equation (7) as
electron states, ϕe(r), for the addition of a single electron to
the QD state e above the quasiparticle energy gap, and hole

205426-4



MICROSCOPIC THEORY TO QUANTIFY THE COMPETING . . . PHYSICAL REVIEW B 87, 205426 (2013)

states, ϕ∗
h(r), for the removal of an electron from a valence

state, h. While the solutions at higher energies significantly
violate the boundary conditions at the electrode surface, they
are nonetheless useful in forming a convenient basis set for
expanding the multiparticle states. The present paper discusses
only the exciton as the multiparticle excitation, and we express
its wave function as

�x(re,rh) =
∑
eh

ϕe(re)ϕ∗
h(rh)�eh;x, (9)

where the coefficients �eh;x are determined from a variational
calculation including the Coulomb interaction between the
electron, hole, and their induced surface polarizations [see
Eq. (3) and Sec. IV]. This approach has been employed widely
in semiconductor optics.38,39

The electrode states diagonalize HL in Eq. (4) for A = 0,
and we write them as ψνk = uνk(r)eik·r . While it is not
essential for the theory presented, we have parameterized these
states by a two-dimensional quasimomentum k, thus assuming
that the electrode has a planar surface. In a semi-infinite
electrode, ν may also take continuous values within regions of
the bulk excitations in the projected density of states. In terms
of the (nonorthogonal) basis set above, Eq. (2) can now be
written more precisely as

�(r) =
∑

n

ϕn(r)cn +
∑
νk

uνk(r)eik·rcνk, (10)

where the first term on the right-hand side corresponds to �D

and the second to �L. The operators cn and cνk annihilate
particles in states ϕn and ϕνk, respectively. The sum over n

is truncated to states that are well localized on the QD in the
sense that their weight in the electrode region is negligible.
The remaining states, which are high in energy and have a
significant fraction of their wave function inside the electrode,
are then all viewed formally as part of the states to be traced
over in the reduced dynamics.

Separating the optical interaction from the A = 0 form of
the terms in Eqs. (3)–(6), we now write the Hamiltonian as

H = HD + HL + HT + VC + H
(r)
D + H

(r)
L + H

(r)
T , (11)

in which the first two terms are the Hamiltonians for the
quantum-dot and the electrode states in the absence of
radiation,

HD =
∑

n

|n〉εn〈n|, (12)

HL =
∑
νk

ενkc
†
νkcνk. (13)

Here the εn are the energies of the QD states, including the
ground state of the neutral QD, single electron and hole states,
and the neutral exciton states. The ενk are the dispersion
of electrode energies with band index ν. The third term in
Eq. (11), which arises from Eq. (5) represents the hybridization
between the QD and the electrode, and we write it as

HT = |e〉 〈g| T eg + |h〉 〈g| T hg + |h〉 〈x| T hx

+ |e〉 〈x| T ex + c.c. (14)

Here we have introduced the electron transfer operators, T ab,
corresponding to the tunneling-induced change in the charge

state of the quantum dot. These formal operators are introduced
to simplify the dynamical model in Sec. III below, and are
defined as

T eg =
∑
νk

T
eg

νk cνk, (15)

T hg =
∑
νk

T
hg

νk c
†
νk, (16)

T hx =
∑
νk

T hx
νk c

†
ν,k, (17)

T ex =
∑
νk

T ex
νk cνk. (18)

The matrix elements T aa′
νk represent tunneling amplitudes and

can be computed from the electronic states ϕn and ψνk, as
described in detail in Appendix A. Recall that ϕh represents
a single-electron orbital in the valence band,40 such that ϕ∗

h is
the state of the corresponding hole. Thus, the matrix element
T

hg

νk describes the transfer of an electron from state h in the
valence band of the QD to the electrode. We have now defined
all the electron transfer operators needed for the formalism
below to describe addition or removal of electrons from
the QD.

Returning to Eq. (11), the fourth term represents the
Coulomb interaction in Eq. (6), which we expand in QD basis
states,

VC =
∑
nm

|n〉 〈m| V̂nm, (19)

where the operator V̂nm acts on the electrode states and is
defined as

V̂nn′ =
∑
ν,ν ′

∑
k,k′

Vn,νk;n′,ν ′k′c
†
νkcν ′k′ . (20)

The matrix elements in this expression follow directly from
Eq. (6) and are defined in full form in Eq. (A14). For
n �= m, the V̂nm represent quantum fluctuations around the
classically induced density of the electron gas and lead to
energy and polarization transfer between the QD and the
electrode. On the other hand, the diagonal terms, V̂nn, cause
random fluctuations in the energy level of the QD. This may
be thought of as a backaction from the excitations in the
electrode induced by the QD potential. As was discussed in
the Introduction, this coupling results in the FES and AOC
phenomena.

At this stage we let V̂nm represent all electronic excitations
of the system so that the matrix elements may be taken to be the
bare Coulomb interaction. In actual calculations, however, it is
more convenient to identify a set of elementary excitations of
the electrode strongly coupled to the QD, and then renormalize
this coupling by the interactions among these excitations, and
their interactions with the weakly coupled excitations. We see
in Sec. III that this can be achieved essentially by defining
a frequency-dependent dielectric function for the electrode
surface, in which the relevant interactions are included by
construction.

We now turn to the last three terms of Eq. (11), which
describe the interaction of the entire system with the external
electromagnetic (EM) field. We first write the matrix elements
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of the velocity operator in the standard form as

vnn′ (t) = e

2m
A(t)δnn′

+ h̄

2mi

∫
d r[φ∗

n(r)∇φn′ (r) − φn′(r)∇φ∗
n(r)], (21)

where φn may be set to a QD state ϕn or an electrode state
ψν . The fundamental optical transition is the exciton, and we
define its matrix element as

vxg(t) =
∑
e,h

veh(t)�eh;x (22)

and write the interaction between the EM field and the QD as

H
(r)
D (t) = e

∑
x

A(t) · vxg(t)|x〉 〈g| + c.c. (23)

Similarly, the interaction between the electrodes and the EM
field is given by

H
(r)
L (t) = e

∑
ν,ν ′

∑
k,k′

A(t) · vνk,ν ′k′(t)c†νkcν ′k′ + c.c. (24)

An additional light-matter coupling that we do not consider
in much detail here, H

(r)
T , describes the radiation-driven

charge transfer between the QD and the electrode. This
term introduces an externally controllable exciton dissociation
between the QD and the electrode and takes the form

H
(r)
T (t) = e

∑
e

|e〉 〈g|
∑
νk

A(t) · ve;νk(t)cνk

− e
∑

h

|h〉 〈g|
∑
νk

A(t) · vh;νk(t)c†νk + c.c. (25)

This completes our construction of the microscopic Hamilto-
nian and we now turn to the description of the charge dynamics
of an electrode coupled quantum dot.

III. DYNAMICS FOLLOWING PHOTOEXCITATION

We study dynamics within the restricted Hilbert space of
four classes of states: the ground state |g〉, single electron
states, |e〉, single hole states |h〉, and the exciton states |x〉.
This restriction is only for convenience and may be lifted by
expanding the set to include biexciton states and even larger
multielectron complexes. Within each class, however, we do
allow for an arbitrary number of states to exist. Since this
system is coupled to the electrodes, the unitary evolution
governed by the Schrödinger equation applies to the full
density matrix, which we denote as ξ (t), and it obeys the
equation

d

dt
ξ (t) = −i

h̄
[H (t),ξ (t)] , (26)

where H (t) is the Hamiltonian (11) discussed in the previ-
ous section. Fundamentally, the equation describes optical
excitations acting as the external force driving the system
out of equilibrium [the last three terms in Eq. (11)] and the
dynamical couplings between QD and electrodes returning the
two subsystems towards a state of mutual equilibrium (via both
HT and V ). Assuming that the electrode stays in equilibrium,
we now reduce this equation to the description of excitation,
dephasing, and relaxation of the QD alone.

A. Reduced density matrix dynamics

Recent experiments have pinpointed subtle FES effects
in optical spectra of quantum dots coupled to quantum
wells.3,41,42 Thus, it is crucial to include the effects of FES in
our theory. In order to achieve this, a special interaction picture
must be constructed to fully account for the nonperturbative
scattering of the electrode states in response to the electrostatic
potential of the QD. Our approach is motivated by the one body
formulation of the x-ray spectra by Mahan28 and Nozieres and
De Dominicis43 and the analysis of orthogonality catastrophe
by Anderson.31 In the original FES papers, the authors captured
how the sudden shift in the Hamiltonian of electrons forming a
Fermi sea affects the photoemission and absorption spectra in
metallic systems.27 Following this work, investigations into the
FES in the photoexcitation of doped semiconductors were also
carried out.24 We also note the studies of the FES within the
context of pump-probe experiments sensitive to the coherent
nonlinear optical response of doped semiconductors.44,45 All
these works focus on changes in the line shape of the optical
spectrum of a Fermi sea.

Here we explore the consequences of these fundamental
effects in the exciton dissociation across a QD-electrode inter-
face. We formulate a master equation for an electrode coupled
QD, and show how the effects of FES can be introduced
in this theory and how they can be recaptured naturally in
the time-dependent couplings defining the resulting equation.
Thus, the FES becomes an integral part of the dynamical
map that propagates the state of the QD towards equilibrium.
The couplings in which the FES appears take the form of
correlation functions bearing many similarities to the results
of Nozieres and De Dominicis.43 However, our equations
address a very different physical scenario, and they are applied
without making any simplifying assumptions on the spatial
profiles of the different electrostatic potentials created by QD
states. We also develop one-body formulas for calculating and
interpreting these correlation functions. We first discuss the
derivation of the equation of motion for a general electrode
and then specialize to the case of a Fermionic reservoir.

1. Derivation of the general form

From the full Hamiltonian defined in Eq. (11) in which
the Coulomb interaction is given by Eq. (19), we take three
contributions to construct the interaction picture by defining a
Hamiltonian,

H0 ≡ HD + HL +
∑

n

V̂nn|n〉〈n|, (27)

where n is a label for the QD states. The last term in the
expression above scatters electrode states via a potential that
is conditioned upon the QD state. This term is also the key
to capturing the FES effects, but it complicates the interaction
picture by yielding a nonperturbative coupling between the
system and the bath.

An analog of this way of partitioning the Hamiltonian has
been used in the chemical physics literature in the past.46–48

Such a reference system leads to the so-called “modified
Redfield” approaches.46,47 The crucial difference here is that
our bath is composed of fermionic excitations, which alter
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both the physics and the formalism compared to the bosonic
vibrational degrees of freedom at play in the previous work.

To proceed with our analysis, we define the full density
matrix within our interaction picture as

ξ̃ (t) = eiH0t/h̄ξ (t)e−iH0t/h̄. (28)

In the Schrödinger picture, the reduced density matrix defined
only over the QD states can be obtained by tracing ξ (t) over
the electrode degrees of freedom. However, we begin with
a slightly different version of this procedure and relate the
reduced density matrix in the Schrödinger picture to the ξ̃ (t)
via the equation

ρ(t) = TrL
[
e−iH0t/h̄ξ̃ (t)eiH0t/h̄

]
. (29)

The FES arises when many-body states are subjected to
unitary rotation by two (or more) different Hamiltonians. The
exponentials in the above formula accomplish this exactly
and allow us to expand the remaining interactions between
QD and the electrode perturbatively. From the chemical
physics perspective, the exponentials take into account the
bath-induced random fluctuations of the QD energy levels,
which cause the phenomenon of pure dephasing (decoherence
without population relaxation).48,49

Returning to the general derivation, we write the
Schrödinger equation within the interaction picture as

d

dt
ξ̃ (t) = − i

h̄
[HT (t),ξ̃ (t)] − i

h̄
[VC(t),ξ̃ (t)]

− i

h̄

[
H

(r)
D (t),ξ̃ (t)

] − i

h̄

[
H

(r)
L (t),ξ̃ (t)

]
− i

h̄

[
H

(r)
T (t),ξ̃ (t)

]
. (30)

The formal solution of this equation in the absence of an
external EM field may be written as

ξ̃ (t) = T+ exp

(
−i

∫ t

0
dt ′JI (t ′)

)
ξ (0). (31)

The symbol T+ enforces time ordering such that

T+ exp

(
−i

∫ t

0
dt ′JI (t ′)

)

= 1 − i

∫ t

0
dt ′JI (t ′) −

∫ t

0
dt ′

∫ t ′′

0
dt ′JI (t ′)JI (t ′′) + · · · .

The superoperator JI (t) in Eq. (31) acts on an arbitrary
operator Ô as

JI (t)Ô = 1

h̄
[H (t) − H0,Ô].

For our discussion below we also define superoperators for the
radiative and Coulomb perturbations,

JT (t)Ô = 1

h̄
[HT (t),Ô], JC(t)Ô = 1

h̄
[VC(t),Ô].

To proceed, we assume that ξ (0) = ρ(0) ⊗ R, return to the
Schrödinger picture, and take the trace of Eq. (31) over the
electrode states,

ρ(t) = G(t,0)ρ(0), (32)

where G(t,0) is a propagator for the reduced density matrix,

G(t,0) =
〈
e−iL0t T+ exp

(
−i

∫ t

0
dt ′JI (t ′)

)〉
L

. (33)

We have introduced 〈·〉L as the trace over electrodes, including
R. The superoperator e−iL0t is defined by its action on Ô as

e−iL0t Ô = e−iH0t ÔeiH0t .

To manage the subtleties of present choice of interaction
picture, we explicitly find its matrix representation in the vector
space of pairs of QD states by arranging the density matrix
elements in a column vector with some arbitrary but fixed
order. We define G as a matrix acting over vectors in this
space with the matrix elements,

Gac;a′c′ (t) = Tr

[
(|a〉〈c|)†e−iL0t

× T+ exp

(
−i

∫ t

0
dt ′JI (t ′)

)
R ⊗ |a′〉〈c′|

]
.

We obtain the matrix elements Gac;a′c′ (t) by expanding the
evolution operator on the right-hand side to second order. Then,
denoting its matrix form as G(t), we obtain

G(t) = D(t)

[
1 − iD−1(t)

∫ t

0
dt ′

〈
e−iL0tJI (t ′)

〉
L

− D−1(t)

〈
e−iL0t

∫ t

0
dt ′

∫ t ′

0
dt ′′JI (t ′)JI (t ′′)

〉
L

+ · · ·
]

. (34)

Here D(t) is defined to be a diagonal matrix over the same
space as that of G, and its elements are given by

Dab;a′b′ (t) = Rab(t)e−iωabt δaa′δbb′ , (35)

Rab(t) = TrL[eiKbt e−iKatR]. (36)

Here we have defined operators Ka that act only on the
electrode degrees of freedom, but are conditioned on the QD
state,

Ka = 1

h̄
(HL + V̂aa). (37)

The general expression (34) for the propagator has also been
derived earlier by Golosov et al.48 for a two-state system of
electronic degrees of freedom coupled to bosonic nuclear
motion. Below, we specialize this propagator to a bath of
fermions and provide mathematical details for the important
distinctions with respect to a bosonic reservoir.

To arrive at the equation of motion, we differentiate
Eq. (32) with respect to t , set ρ(0) = G−1(t,0)ρ(t), and use
Eq. (34) expanded to the order shown there. We thus obtain
an initial value problem with the dynamics governed by a
time-convolutionless master equation, which we write in the
form

d

dt
ρ(t) = M(t)ρ(t), ρ(0) = ρ0, (38)
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where ρ is now a vector obtained by rearranging the matrix
elements of ρ(t) as mentioned above. We express the time-
dependent mapping in Eq. (38) as

M(t) = Ḋ(t)D−1(t) + D(t)
d

dt

{
P(t) + B(t)

+ C(t) − 1

2
P2(t)

}
D−1(t), (39)

where P = PC + PT and Ẋ signifies the derivative with respect
to time. The form of this expression is motivated by the
separate physical processes that are described by each of
its terms, and the general expressions for these terms in the
superoperator form are as follows [see (35) above for definition
of D]:

Pj (t) = −iD−1(t)
∫ t

0
dt ′〈e−iL0tJj (t ′)〉L, j = C,T , (40)

B(t) = −D−1(t)
∫ t

0
dt ′

∫ t ′

0
dt ′′〈e−iL0tJT (t ′)JT (t ′′)〉L, (41)

C(t) = −D−1(t)
∫ t

0
dt ′

∫ t ′

0
dt ′′〈e−iL0tJC(t ′)JC(t ′′)〉L. (42)

Returning to Eq. (39), the first term of M(t) describes the
decoherence caused by sudden switching of the QD potential,
the general trends of which are discussed in the following
paragraphs. Note that D(t) is a diagonal matrix by definition in
Eq. (35). The second term in Eq. (39) arises from the first- and
second-order contributions to the propagator, systematically
included in Eq. (38) to second order. The first-order contribu-
tion P(t) includes both hybridization and Coulomb interaction
terms, although for the case of a Fermionic reservoir, only
the latter will be nonzero. The second-order contributions B(t)
and C(t) respectively capture the hybridization and Coulomb
interaction terms.

2. Discussion and specialization to a Fermionic reservoir

Let us now turn to the special interaction picture trans-
formation defined by Eq. (28) and discuss its subtleties.
We begin by taking the matrix elements of this equation
between two QD states, |a〉 and |b〉. Due to the fact that
eiH0t/h̄|a〉 = eiωat+iKat |a〉, and similarly for |b〉, we find

ρab(t) = TrL[e−iKat 〈a|ξ̃ (t)|b〉eiKbt ]e−i(ωa−ωb)t .

Therefore, unless ξ̃ (t) is in the form of a product of the density
matrices of the two subsystems, a simple relation does not
exist between the reduced density matrices of the QD in the
two pictures. In the derivation above, we have developed
the dynamical equations under the assumption of a direct
product form at t = 0. Therefore, it is instructive to analyze
the consequences of Eq. (29) with the product form, i.e.,

ξ̃ (t) = ρ̃(t) ⊗ R, (43)

where R is any admissible density operator within the Hilbert
space of the electrode states. The relationship between the two
pictures is more complex than it is conventionally,

ρab(t) = Rab(t)ρ̃ab(t)e−i(ωa−ωb)t .

Here, by ρ̃ we mean the QD density matrix in the interaction
picture. Thus, in addition to the coherent oscillatory factors

arising from the QD states alone, there is an additional
complex-valued multiplicative factor, Rab(t) [see Eq. (36)],
in the transformation from interaction to Schrödinger picture.
The function Rab(t) is a manifestation of the AOC, which
together with the ME describes the FES effects.30 To make the
link with AOC more explicit, we pick a basis set {|ψα〉} for
the electrode states in which the operator R is represented by
a diagonal matrix with elements Rα . Let |ψa

α (t)〉 = eiKat |ψα〉,
and write the function Rab(t) as

Rab(t) =
∑

α

Rα

〈
ψb

α (t)
∣∣ψa

α (t)
〉
. (44)

As pointed out by Anderson,31 owing to the macroscopic
size of the electrode, the overlap of the two states rapidly
decays for a finite scattering of single-particle states. We may
also view the function Rab(t) as the average decoherence
caused by the electrode states, where the latter act effectively
as a measurement distinguishing between the coherently
superimposed states |a〉 and |b〉 of the QD.

The solution to the equations of motion beyond the point
at which Rab(t) vanishes, or crosses zero, can be an extremely
poor approximation to the correct solution. To understand
whether this presents a difficulty in our theory, we note that
the leading contribution to AOC arises from differences in
monopole moments of the initial and final potentials. Thus, we
expect the decoherence due to this mechanism to be very weak
between QD states of the same net charge, so that Rab(t) ≈ 1
within each class of states introduced above. When there is
a charge transition, the AOC function decays as a power law
at low temperature or as an exponential at high temperatures.
In either case, the function does not vanish exactly within
finite time except in the case of strong coupling.50 To exclude
strong coupling from the present scenario, we note that the
coupling in our Hamiltonian is the Coulomb interaction, which
is always screened by the electrode. For situations like those
considered here the magnitude of the coupling is far from that
of the strong coupling regime. In fact, we have verified this
by explicit calculations of Rab(t) for typical values of matrix
elements in our Hamiltonian. Thus, we proceed assuming that
the functions Rab(t) decay but do not vanish exactly within the
relevant temporal window of the dynamics.

We now consider the consequences of specializing the
above general formulation to the case of a Fermionic reservoir,
which is the focus of the present work. We assume that the
state of the fermionic bath representing the electrode is that of
a normal metal and described by a mixture of states �α(N )
where α is a state index for N -particle many-body states.
Under this assumption, the annihilation operators entering H0

in Eq. (27) possess the property

cνk|�α(N )〉 = |�′(N − 1)〉 (45)

for the single-particle state |νk〉 having a finite occupation
in the many-body state |�α(N )〉 and |�′(N − 1)〉 being (an
un-normalized) N − 1 particle state. For such a state, the
first-order term in Eq. (34) vanishes whenever it corresponds
to hybridization coupling. To see this, write the trace as a sum
over the many-body bases |�α(N )〉 and consider the matrix
element between QD states |a〉 and |b〉, such that |b〉 has
one extra electron relative to |a〉. Then the expectation value,
〈e−iL0tJI (t ′)〉, in the first-order term consists of two terms.
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One of these is proportional to the sum∑
N,α

Rα(N ) 〈�α(N )| e−iKa (t−t ′)c
†
νke

iKb(t−t ′) |�α(N )〉 ,

and the other is obtained by c
†
νk → cνk. In the equation above,

Rα(N ) is the probability of state �α(N ) in a grand canonical
ensemble. Since the operators Ka and Kb do not change the
total number of particles, the result of the above formula
is an overlap between N -particle and N + 1-particle Fock
states. Therefore, it vanishes, and so do all odd-order terms
in Eq. (34).

In the language of our formalism, this implies that PT = 0.
We mention that this is a consequence of Eq. (45) and the fact
that hybridization involves an odd number of creation annihila-
tion operators for electrons. If the electrode were, for example,
in a BCS state then the previous sum over states would
also involve states in coherent superposition of different N ,
resulting in a nonvanishing expectation value of c

†
νk in general.

Furthermore, when considering the contribution of
Coulomb coupling via JC , the first-order term, PC in Eq. (34)
does not vanish. However, since Coulomb coupling does not
change the charge state of the QD, this term can be understood
as a Hartree energy correcting for the fact that electrode
states are defined in the presence of a neutral QD. Thus, for
a Fermionic reservoir, PC(t) in Eq. (39) is the off-diagonal
Coulomb potential matrix. It is discussed below in Sec. III C
with its definition given by Eq. (59). We also note that this term
does not affect populations, but describes only the dynamical
reorganization energy within the electrode during coherent
oscillations between different charge states of the QD.

For an electrode at equilibrium, the charge and energy
transfer processes may couple at third order. This coupling
would affect the rates of charge transfer such that an excited
electron or a hole in a state with low escape rate may exchange
energy with the electrode and jump to a state with a larger
escape rate. This modification of the charge lifetime of the
QD may be expected for closely lying hole levels. However,
since the Coulomb interaction is small due to screening, and
tunneling is exponentially suppressed by increase in junction
width, this regime may be an exception rather than a rule.
Thus, we do not pursue it in the analysis below.

We now stay within the confines of a Fermionic reservoir,
construct the expressions for B, Pj , and C matrices, and discuss
their physics. From the physical insight gained into these
matrices, we are also able to obtain useful approximations
that simplify their numerical evaluation.

B. Charge transfer rates

We first write the matrix elements of B(t) in terms of
the hybridization operators to facilitate the connection with
electrode correlations and then evaluate the matrix elements as
shown below. The matrix elements Bac;a′c′(t) follow from the
general expression (41) specialized to a Fermionic reservoir,
in which the term PT = 0 as discussed above. Thus we obtain

Bac;a′c′ (t) = −D−1
ac (t)e−iωact

[
1

h̄2

∫ t

0
dt1

∫ t1

0
dt2

×
∑

b

{
δcc′

〈
T ca

0 (t)T ab(t1)T ba′
(t2)R

〉
ei(ωabt1+ωba′ t2)

+ δaa′
〈
T c′b(t2)T bc(t1) T ca

0 (t)R
〉
ei(ωc′bt2+ωbct1)}

− 1

h̄2

∫ t

0
dt1

∫ t

0
dt2

× 〈
T c′c(t2) T ca

0 (t) T aa′
(t1)R

〉
ei(ωaa′ t1+ωc′ct2)

]
,

(46)

where ωac = ωa − ωc. The matrix element Bac;a′c′ (t) describes
scattering from the “initial state” ρa′c′ to the “final state”
ρac. Here the phase factors due to the QD energy levels
are shown explicitly and the time-dependent hybridization
operators reflect the action of Ka in Eq. (37). In addition,
we have introduced what we call the pure dephasing operator,

T ca
0 (t) = eiKct e−iKat , (47)

which does not generate any charge transfer and only affects
coherences by accounting for the FES effects for oscillations
between states of the QD with different effective Coulomb
potentials. We remark that it is straightforward to verify that
the matrix elements, Bac;a′c′ (t), obey the sum rule,

Bmm;mm(t) = −
∑
n�=m

Bnn;mm(t), (48)

which is quite general and, in turn, ensures that the sum of all
the rates for the population to relax from a state |m〉 equals the
total decay rate of this state.

Returning to Eq. (46), we note that since there are no
hybridization operators of the form T cc(t) in the entire
Hamiltonian, a given density matrix element is acted upon
by either the first two terms of that equation or the third but
not both. However, the three terms are not independent and
satisfy sum rules due to the conservation of total particle
number by the underlying Hamiltonian. These terms may
also be interpreted as generalized scattering “in” and “out”
rates for populations and coherences. We depict the effect of
these rates on the density matrix in Fig. 2 using double-sided
Feynman diagrams. As shown there graphically, the first two
terms couple only coherences to populations, while the third
term provides an additional pathway for coupling populations
that differ by one electron. The same effect would occur at a
higher order in the form of the third diagram. Note that T0(t)
does not have a representation in terms of these double-sided

FIG. 2. (Color online) Double-sided Feynman diagrams showing
the effect of the three terms in the dynamical hybridization couplings.
The red arrows represent the addition and removal of electrons
from the QD, respectively, and the two vertical lines represent the
“ket” on the left and “bra” on the right.
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Feynman diagrams because it does not change the state of
the QD.

From the definition (15)–(18) of the hybridization opera-
tors, and for an electrode consisting of an electron reservoir in
equilibrium, we find

Bac;a′c′ (t) = −D−1
ac (t)e−iωact ei(ωaa′−ωcc′ )t

1

h̄2

∫ t

0
dt ′

∫ +∞

−∞

dω

2π

×
[
γc′c;aa′ (ω,t ′; t)S(ω − ωa′a,t

′)

+ γa′a;cc′ (ω,t ′; t)S(ω − ωc′c,t
′)

− δa′a

∑
b

λac
cb;bc′ (ω,t ′; t)S(ω − ωcb,t

′)

− δc′c

∑
b

λca
ab;ba′ (ω,t ′; t)S(ω − ωab,t

′)
]
. (49)

The derivation of this formula is provided in Appendix B, and
we have defined here a function,

S(ω,t) = − sin(ωt)

ω
+ 2i sin2

[
ω t

2

]
ω

,

which accounts for the initial condition defined at a finite time,
and allows us to work with Fourier transforms with respect
to the initial time at −∞ (see Appendix B). The functions
γc′c;aa′ (ω,t ′; t) and λca

ab;ba′ (ω,t ′; t) are a generalization of the
spectral functions and defined as Fourier transforms of causal
response functions,

γc′c;aa′ (ω,t ′; t) = −2Im
∫ +∞

−∞
dt ′′�c′c;aa′ (t ′′,t ′; t)eiωt ′′ ,

λca
ab;ba′ (ω,t ′; t) = −2Im

∫ +∞

−∞
dt ′′�ca

ab;ba′ (t ′′,t ′; t)eiωt ′′ ,

so that the Fourier transform integrals can extend over the
entire real axis. The integrands in the previous expressions are
the correlation functions appearing in Eq. (49); the superscript
in � identifies the indices on the pure dephasing operator (47),
while these indices are implied by subscripts in the function
�. The function � captures the first two correlation functions
in Eq. (46), while � captures the last one, and they are
defined as

�ca
ab;ba′ (t ′′,t ′; t) = −i�(t ′ − t ′′)

〈
T ca

0 (t)T ab(t ′)T ba′
(t ′′)R

〉
,

�c′c;aa′ (t ′′,t ′; t) = −i�(t ′ − t ′′)
〈
T c′c(t ′)T ca

0 (t)T aa′
(t ′′)R

〉
.

(50)

In contrast to conventional correlation functions for a
single-particle propagation, these two correlation functions
contain three time arguments. Their dependence on the third
argument arises from the operator T ca

0 (t), which differs from
unity only when a �= c in general. Furthermore, physically, it
is only significantly different from unity when the difference
between the potentials of the two states is large enough to
cause significant AOC. Thus, the third argument describes the
shakeup of the final electrode states when the QD oscillates
between two different charge states. This is fundamentally dif-
ferent than the processes described by the first two arguments.
Specifically, the time difference t ′′ − t ′ relates to the particle
absorption/emission spectrum of the electrode in the presence

of a QD. The average time (t ′′ + t ′)/2 relates to the memory
of the initial state potential of the QD. In our notation, we
use a semicolon to set apart the two different kinds of time
arguments.

The full mathematical analysis of correlation functions
Eq. (50) is outlined in Appendix B. To gain physical insight
into the results therein, we focus on the process of electron
transfer from the QD to the electrodes. Then the pertinent
correlation function is denoted by the superscript “>” and
defined as

�>
c′c;aa′ (t ′′,t ′; t)

= −i

Z
�(t ′ − t ′′)

∑
νν ′kk′

T c′c
νk T aa′

ν ′k′

× 〈
eiKc′ t ′cνke

−iKc(t ′−t)eiKa (t ′′−t)c
†
ν ′k′e

−iKa′ t ′′e−βHL
〉
, (51)

where we have made the physical assumption that R =
exp(−βHL)/Z with the usual partition function Z =
〈exp(−βHL)〉.

The correlation function under the sum on the right-hand
side of Eq. (51) may be interpreted as a thermal average of
overlaps between two electrode states evolving under different
potentials. To see this, take a many-body electrode state with
N electrons, |�(N )〉, which would appear as a ket when
computing the expectation values in Eq. (51). First consider
the case where T ca

0 (t) ≈ 1, which occurs when the states |a〉
and |c〉 have the same charge. Then all the correlation functions
above reduce to functions with two essential time arguments.
The state |�(N )〉 initially evolves under the potential V̂a′a′

until time t ′′, and at this time an electron is injected from the
QD into a single-particle state of the electrode with in-plane
momentum k′. Within this scenario, the QD can either be in
a negatively charged state or in an exciton state immediately
before t ′′; it cannot be in the ground state. After tunneling, the
QD potential switches to V̂aa and the state is evolved back to
the initial time (t = 0). Let us call this state |�′′(N + 1)〉 to
denote the fact that the state corresponds to time t ′′. Similarly,
the bra form of |�(N )〉 evolves under V̂c′c′ until time t ′, when
an electron is added to it in the single-particle level k, and
the resulting N + 1 electron state is evolved back to the initial
time under the influence of the QD potential V̂cc. We label the
resulting state |�′(N + 1)〉.

With these definitions, we see that the correlation function
in Eq. (52) is equal to the overlap 〈�′(N + 1)|�′′(N + 1)〉,
the trace in that expression being a thermal average over all
the many body states, and the summation over k and k′ is a
summation over all possible in-plane momenta into which the
electron can be injected. The weights for the latter summation
are the tunneling amplitudes, which give the probability of
such an injection to occur. We may interpret in the same way
the correlation functions in which c

†
k′ is to the left of ck. As

they describe the evolution with an electron removed from the
initial state, the overlap is 〈�′(N − 1)|�′′(N − 1)〉.

It is now clear that if V̂c′c′ and V̂a′a′ are weak (for example,
if their source has a vanishing charge), the propagation of
|�(N )〉 until the time of adding the electron is identical in
both |�′(N + 1)〉 and |�′′(N + 1)〉. Therefore, the origin of
time loses significance and the resulting correlation becomes
a function only of the time difference t ′ − t ′′. It thus reduces
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to a correlation function for a system in equilibrium or in
a steady state, where the effects of initial conditions have
decayed. Therefore, the dependence of the generalized spectral
functions on t ′ in Eq. (49) is in proportion to the memory
of the QD potential in the initial state. Similarly, it follows
from Eq. (50) that the dependence on t is in proportion to the
difference between potentials of the superimposed final states
at time t .

It follows from above that if only the monopole contribution
is significant, the correlation function would depend only on
the time difference, t ′ − t ′′, so long as the initial and final
states of the QD have the same charge. The Fourier transform
of the correlation function with respect to this time difference
then defines a conventional spectral function describing single-
particle absorption or emission as a function of energy. When

coupling to the dipole and higher order potentials is strong
enough, coherent oscillation between the states of different
multipoles would, in general, lead to this spectral function
evolving as a function of the average time (t ′ + t ′′)/2, thus
exhibiting non-Markovian behavior.

We now summarize the mathematical expressions that
can be evaluated with our physical model. In particular,
we specialize to the case of quadratic Hamiltonians and
follow Blankenbecler et al.51 and Hirsch52 to develop ex-
plicit expressions for these correlation functions in terms
of a matrix inverse and matrix multiplication in the single-
particle basis for the electrode states. Thus, for the cor-
relation function in which an electron tunnels from the
QD to the electrode, the analysis presented in Appendix B
yields

�>
c′c;aa′ (t ′′,t ′; t) = −i�(t ′ − t ′′)rc′c;aa′ (t ′′,t ′,t)

∑
ν,ν ′kk′

T c′c
νk T aa′

ν ′k′ 〈νk|N̄c′c′ (−t ′,0)
[
I + �

(1)ca
c′c;aa′ (t ′,t ′′; t)N̄c′c′(−t ′,0)

]−1

× [
e−iKc′ t ′eiKa′ t ′′]|ν ′k′〉, (52)

and

�>ca
ab;ba′ (t ′′,t ′; t) = −i�(t ′ − t ′′)rca;ba′ (t,t ′′,t ′)

∑
ν,ν ′kk′

T ab
νk T ba′

ν ′k′ 〈νk|N̄ac(t − t ′, − t)
[
I + �

(2)ac
ab;ba′ (t ′,t ′′; t)N̄ac(t − t ′, − t)

]−1

× [
e−iKc′ t ′eiKa′ t ′′]|ν ′k′〉. (53)

The superscript “>” in these definitions indicates that the
correlation functions correspond to the propagation of a state in
which an electron is added to the electrode (see Appendix B).
The pairs of indices on the correlation function are constrained
by the type of correlation function, “lesser” and “greater,” in
accordance with Eq. (B5).

In these expressions, the evaluation of the correlation
functions has been divided into two parts. First, we have
defined a more general function to capture the AOC effects
for four potentials,

rc′c;aa′ (t ′′,t ′; t) = 1

Z

〈
eiKc′ t ′e−iKc(t ′−t)eiKa (t ′′−t)e−iKa′ t ′′e−βHL

〉
.

(54)

Second, the part that explicitly depends on the hybridization
functions is now reduced to the proper combination of matrices
that represent each indicated operator in the natural single-
particle basis for the electrodes, |νk〉. The matrix N̄ac(t,τ ) is
defined to be

N̄ac(t,τ ) ≡ e−iKat e−iKcτ
[
1 + e−βHL

]−1
eiKcτ eiKat . (55)

In the |νk〉 basis, the central term is simply the statistical
weight for empty states,

δνk,ν ′k′

1 + exp{−(Eνk − μ)/kBT } . (56)

Thus, the process for electron transfer into the electrode
is proportional to the empty states available. However, the
N̄ac(t,τ ) includes the time-dependent shake-up processes
induced by the potential of the QD states |a〉 and |c〉. In turn,

this influences the distribution of states available to receive the
electron, opening additional states below or blocking states
above the Fermi level.

The matrices �(j ), j = 1,2, in Eqs. (52) and (53) are
common to both emission and absorption and are defined as

�
(1)bb′
c′c;aa′ (t ′,t ′′; t) = e−iKc′ t ′eiKa′ t ′′e−iKat

′′T bb′
0 (t)eiKct

′ − I, (57)

�
(2)bb′
c′c;aa′ (t ′,t ′′; t) = e−iKc′ t ′T bb′

0 (t)eiKa′ t ′′e−iKat
′′
eiKct

′ − I. (58)

For the correlation corresponding to an electron tunneling
from the electrode to the QD, expressions similar to Eqs. (52)
and (53) exist [see Eqs. (B10) and (B12)]. In those correlation
functions, N̄ is replaced with the complement, N = I − N̄.

C. Energy transfer rates

We now turn to the expression for the matrices P(t) and C(t),
which are the first- and the second-order terms, respectively,
that enter in the cumulant expansion of the propagator (34).
The first-order term deriving from the Coulomb interaction,
Eq. (65), and specialized to the Fermionic reservoir, reads

Pac;a′c′ (t) = −iD−1
ac (t)

e−iωact

h̄

∫ t

0
dt ′

× [
δcc′

〈
T ca

0 (t)V̂aa′(t ′)R
〉
e−iωaa′ t ′

− δaa′
〈
V̂c′c(t ′)T ca

0 (t)R
〉
e−iωc′ct ′

]
. (59)

Recall that the diagonal terms (e.g., V̂aa) do not appear in the
V̂C operator, having been put in H0. As shown in Eq. (B13)
the above expression for Pac;a′c′ may be expressed in terms of
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a Hartree energy matrix,

�aa′ (τ ) = (1 − δaa′ )〈V̂aa′R(aa′)(τ )〉, (60)

the time-dependence of which arises from the evolution of
the electrode state under the influence of the average of the
potentials of the QD states |a〉 and |a′〉, which we write as

R(aa′)(t) ≡ ei t
2 (Ka+Ka′ )Re−i t

2 (Ka+Ka′ ).

By writing the time dependence in this manner, we fully
capture the monopole contributions to pure dephasing (see
Appendix B2). The effects of first and higher moments of
this density can be ignored due to the Friedel sum rule29

and have been verified by our calculations to be small. We
remark that this approximation is a direct consequence of the
charge conservation implied by the off-diagonal components
of the Coulomb matrix in Eq. (19). Furthermore, the Hartree
correction arises only in the coupling of coherences to each
other and to populations due to the fact that it is of first order
and that the diagonal elements of its underlying Coulomb
potential matrix have been removed.

We now turn to the second-order term, denoted by the
matrix C(t), which generates energy transfer between the
electrode and the QD. The full expression for C(t) is
identical in form to that for B, except for the appearance
of the Coulomb interaction operators V̂ac(t) instead of the
hybridization operators Tac(t). However, instead of starting
with the full form, we derive the expression for C by neglecting
the effects of AOC altogether.53 These effects can occur only
at third order in the Coulomb interaction between the QD and
the electrode. Furthermore, retaining these effects amounts
to calculating the dielectric function of an electrode driven
out of equilibrium by the fluctuations in the QD potential.
We expect this to be a very weak effect due to the screening
of this potential and the macroscopic size of the electrode.
Furthermore, since the Coulomb interaction does not change
the charge of the QD states, changes in the potential induced by
Coulomb processes are much weaker than hybridization. The
neglect of AOC in energy transfer simplifies the expression
for PC(t) by reducing it to ṖC(t) = 〈JC(t)〉L. This also allows
us to write the combination C − P2/2 in Eq. (39) in terms of
the fluctuation of potentials around their average values, with
Eq. (42) giving the general expression for C(t).

Thus, for states |a〉 and |a′〉 carrying an equal charge and
|c′〉 and |c〉 carrying an equal but not necessarily the same
charge as |a〉, we obtain

Cac;a′c′ (t) = − 1

h̄2 e−iωact

∫ t

0
dt1

∫ t1

0
dt2

×
[∑

b

δc′c〈�V̂ab(t1)�V̂ba′ (t2)R〉ei(ωabt1+ωba′ t2)

+ δaa′ 〈�V̂c′b(t2)�V̂bc(t1)R〉ei(ωbct1+ωc′bt2)

]

− 1

h̄2

∫ t

0
dt1

∫ t

0
dt2

×〈�V̂c′c(t2)�V̂aa′ (t1)R〉ei(ωaa′ t1+ωc′ct2). (61)

The three terms in this expression act on the density matrix
in a way similar to the corresponding three terms of the

tunneling process. Here we have defined the operator for the
fluctuation of V̂ab around its mean value as

�V̂ab(t) = eiHLt/h̄V̂abe
−iHLt/h̄ − 〈V̂abR〉.

Note that we have neglected the effects of AOC due to the
QD potential already in this definition; the subscripts on these
operators only identify the matrix elements when Eq. (20) is
substituted for performing calculations. We remark that the
matrix elements Cac;a′c′ (t) also obey the sum rule analogous
to Eq. (48):

Cmm;mm(t) = −
∑
n�=m

Cnn;mm(t). (62)

Following the derivation of γc′c;aa′ (ω,t ′; t) above, we now
define the functions

χc′c;aa′ (ω) = −2Im (1 − δc′c) (1 − δa′a)

×
∑

q

Vc′,ν;c,ν ′ (−q)Xνν ′;μμ′(q,ω)Va,μ;a′,μ′(q),

(63)

where Xνν ′;μμ′(q,ω) is the renormalized density-density corre-
lation function, which is generalized to include intersubband
transitions. By renormalization, we mean that a summation
over an infinite series of particle-hole excitations is per-
formed between the times of the two interactions. Thus, if
X0

νν ′;μμ′(q,ω) is the response function of a noninteracting gas
and corresponds to a single particle-hole excitation, then

Xνν ′;μμ′(q,ω)

= X0
νν ′;αα′ (q,ω) − X0

νν ′;αα′ (q,ω)Vαα′;ββ ′ (q)Xββ ′;αα′ (q,ω),

(64)

where Vαα′;ββ ′ (q) is the effective Coulomb interaction describ-
ing the momentum exchange q between particles scattering
from bands α′,β ′ and into the bands α,β. This matrix is an
effective interaction because it accounts for the static screening
by the bulk substrate beneath the surface. When this substrate
is a metal, the large plasmon frequency ensures that the bulk
response may be considered instantaneous, which creates a
static screening of the Coulomb potential of a surface electron,
and the result defines the two-particle interaction for the
surface modes. Similarly, the effective bulk dielectric function
is also static for insulators or wide-gap semiconductors. The
dynamical screening by the bulk may be important only for
narrow-gap materials.

Following the mathematical steps outlined in Appendix B
we obtain

d

dt
Cac;a′c′(t) = 1

2h̄2 e−iωact ei(ωaa′−ωcc′ )t
∫ +∞

−∞
dω

×χc′c;aa′ (ω)S(ω − ωcc′ ,t)

+χa′a;cc′ (ω)S(ω − ωaa′ ,t)

− δa′a

∑
b

χc′b;bc(ω)S(ω − ωbc′ ,t)

− δc′c

∑
b

χa′b;ba(ω)S(ω − ωba′ ,t). (65)

This expression forms the basis of our calculations of
energy transfer driven by Coulomb interaction between the
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QD and the electrode. We remark that the electron suscep-
tibility in this expression may be calculated to any level of
sophistication within the computational constraints. Note that
we did not include electron-electron interaction within the
electrode explicitly in the Hamiltonian (11). These interactions
enter our theory via the correlation functions, which depend
on elementary excitations that transfer energy between the
electrode and the QD. Thus, they can instead be taken into
account fully by constructing appropriate dynamical dielectric
functions and single-particle Green’s functions.

The analysis presented so far applies only to the intrinsic
couplings in the system, which lead the subsystems to
mutual equilibrium. The radiative interactions that drive these
subsystems out of equilibrium can be considered with the
additional light-matter coupling shown in Eqs. (23)–(25). The
full development of optical response of these systems can
be developed based on the above formalism. By computing
the linear and nonlinear optical response of surface coupled
quantum dots in this way, one can develop ways in which
advanced spectroscopic techniques can yield experimental
measurements of the subsystem couplings. However, this is
beyond the scope of the present paper.

IV. APPLICATION

We now apply our model to the system shown schematically
in Fig. 1 in the beginning of the paper. The goal of this section
is to illustrate the calculations of the main quantitites in the
formalism in the order it has been presented above. We first
calculate the microscopic Hamiltonian from a model of InAs
QD, and an ab initio model of a Au[111] electrode. We use
the electronic states computed from these models to obtain
couplings between the subsystems. We then illustrate the use
of the results of these calculations as input to our dynamical
theory. In particular, we calculate the charge and energy
transfer rates and the nonradiative exciton recombination rates.
In these calculations, we show the impact of FES and image
effects on the dynamical charge and energy transfer couplings.

A. Quantum-dot states

The QD is modeled as a dielectric sphere of InAs with
radius, a = 2.0 nm and dielectric constant εQD = 15.0. We
set the distance between the QD center and the image plane of
the electrode as h/2 = 2.625 nm. Following Chulkov et al.14

we set the location of the image plane plane to be 2 Åabove
the top atomic layer of the electrode. To model the QD states,
we use the effective mass approximation, in which we include
only the lowest conduction and heavy-hole bands of bulk InAs.
Thus, we use Eq. (7) in the form[

− h̄2

2m0
∇ · 1

mj (r)
∇ + V (r) + �(r) − εn

]
ϕn(r) = 0, (66)

where mj is piecewise continuous with mj = 1 in the space
between the QD and the electrode. Inside the geometric
boundary of the QD, it is equal to the effective mass of the
conduction band or a heavy-hole band for electron (j = e) or
hole (j = h) states, respectively. Inside the QD, we set me =
0.03 and account for the anisotropy of the InAs heavy-hole
bands by setting mh = 0.52 parallel to the electrode surface

and mh = 0.33 perpendicular to it. Note that this type of
modeling implicitly sets the smallest spatial scale to be the
lattice spacing of the QD such that its boundary is a shell of
zero thickness.

The potential V (r) is a square well potential of a spherical
QD with V = 0 outside the QD and V = −5.0 eV inside. The
value inside is typical of the work functions of semiconductor
materials, and in our discussion of dynamics below, we explore
how the charge transfer rates depend on the alignment of the
square well potential with the Fermi level of the electrode.
The self-energy, �, describes the electrostatic reaction field
due to the polarization of the electrode and the QD surfaces,
thus taking into account the image effects of both surfaces.
An exact calculation of this electrostatic potential is used, the
details of which can be found in our recent publication.34

Since our smallest spatial scale is larger than the lattice
constant, we interpolate the electrostatic image potential of
the QD across this width. Another essential assumption of
this electrostatics calculation is the uniform dielectric constant
inside the QD, which is well justified by several ab initio
calculations published in recent years.54,55

Using cylindrical symmetry, we reduce the problem to
two spatial dimensions, normal and parallel to the electrode
surface, and solve Eq. (66) numerically over a two-dimensional
grid of (r,z) points using the method of finite differences. We
use the the so-called ghost fluid method56 to subsume the mass
discontinuity.34

Our calculated total potential for the electron in the
geometry described above is shown in Fig. 3. We see from
this figure that the image attraction by both the QD and the
electrode lowers the potential significantly in the narrow tunnel
junction around the surface normal passing through the QD
center. This plays an important role in increasing the rate of
electron tunneling. On the other hand, tunneling is affected
little for the states whose symmetry places a node in the wave
function within this junction.

We calculate the exciton state by employing our exact so-
lution for the electrostatic polarization to determine the matrix
elements of the effective two-particle interaction potential,
V (re; rh), in which a full account is taken of the interaction of
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FIG. 3. (Color online) (Left) Potential energy of an electron in
the equatorial plane outside the electrode. (Right) Energy levels of
electron, hole, and exciton states. The exciton levels are placed such
that the hole of the exciton resides in the top hole level. The dash-
dotted lines refer to conduction (top) and valence (bottom) band
edges. The thick dashed line is the Fermi level of the electrode.

205426-13



VIRK, HYBERTSEN, AND REICHMAN PHYSICAL REVIEW B 87, 205426 (2013)

a hole with the volume density of the electron, and the surface
charge it induces.34 We then expand V (re; rh) in the basis
of product states lying below an energy cutoff and increase
this cutoff until the binding energy of the lowest exciton
state converges to within 1 meV. The effect of electron-hole
correlation on the resulting state is subtle but important. While
the lowest exciton wave function is dominated by the product
of the lowest electron and hole states, the mixing of states
introduces corrections that can have noticeable effects on
decay rates, as discussed below.

The right-hand-side panel in Fig. 3 shows the energy levels
obtained after the exact diagonalization just described. The
exciton level indicated on the figure is shown relative to the
hole level of the QD. One may view this as representing
the electron level correlated to a hole in the top valence level.

B. Surface states of the electrode

To compute the electrode wave functions at the surface,
we first perform an ab initio calculation (using the SIESTA

program57) for bulk Au, followed by a supercell calculation
with 24 monolayers of Au oriented along the [111] direction
separated by the equivalent of 36 layers of vacuum. The surface
unit cell is 1 × 1, with no reconstruction. The TRANSIESTA58

code is then used to generate the Green’s functions for
the surface Au layers via recursive decoupling59,60 from the
bulk layers. From these Green’s functions, we determine the
projected density of states (PDOS) in which the Shockley
band61 is identified, as shown in Fig. 4(a).

From the localized basis orbitals generated by SIESTA and
the eigenvectors at the poles of the surface Green’s function,
we calculate the wave functions for the surface states along
this band. The eigenvectors are taken along the peak of the
PDOS of the surface band. Figure 4(b) shows the state at the
bottom of the band superimposed on the atomic layer positions
of Au[111]. Since the dispersion of this state is predominantly
parabolic, its exponential decay remains essentially constant
along the band. This is because the rise in total energy of a
parabolic band is canceled by the rise in its kinetic energy
parallel to the surface, thereby leaving the wave number along
the surface normal fixed to its value at the bottom of the band.

C. Couplings

From these wave functions, and those of the QD, we
determine the hybridization matrix elements HT from a direct
application of Eq. (A6). To calculate the Coulomb interaction
matrix elements, we employ the procedure described by
Eqs. (A11)–(A14). The main input to this procedure is the
effective potential in which corrections due to the surface
dielectric function of the electrode are applied. In order to do
that, we follow Pitarke et al.62 and divide the surface into two
linear response systems. The first is the semi-infinite bulk, and
the second is the two-dimensional electron gas formed within
the Shockley band. We let χb and χs be the susceptibilities
of the two systems.

We define ε−1
b to be the dielectric function of the bulk and

follow Newns’ work63 in calculating it. Newns’ calculation
is based on the random phase approximation (RPA) within
a jellium model of the electron gas, and the potential we
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−12

−10

−8

−6

−4

−2

0

P
ot

en
ti

al
[e

V
]

FIG. 4. (Color online) (a) Density of states of Au[111] surface
close to the � point (a). (b) The averaged potential along the surface
normal. The superimposed red curve is the Shockley state. The atomic
planes are indicated as dashed lines, while the image plane is shown
as the solid line.

calculate thus represents screening by the semi-infinite bulk
only. Due to the large plasmon frequency of the bulk, we
replace εb with its static limit. We include the effects of the
surface states based on the work by Pitarke et al.62 and Silkin
et al.64 In their simplified model, the surface states comprise
a two-dimensional (2D) electron gas lying in a plane a small
distance |zp| above the interface of the semi-infinite jellium
representing the bulk substrate.62 This separation ensures
charge neutrality in the interior of the jellium medium,63 and
in the present case we place the 2D plane at z = 0, and set
zp = −3π/8kF ≈ 2 Å.64

Given V0(q,z) as the planar Fourier transform of a bare
potential, the potential screened by the jellium plane is
given by63

W (q,z) =
[
V0(q,z) − V0(q,z)

1 − ε−1
b (q)

1 + ε−1
b (q)

]
�(z − zp)

+V0(q,zp)
2ε−1(q,z − zp)

ε−1
b (q) + 1

�(zp − z), (67)
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where ε−1(q,z − zp) is obtained by multiplying the prefactor
in formula (62) of Newns’ paper63 by −q, and zp is the
coordinate of the receded plane. When V0(q,z) corresponds to
the potential of the charged QD, W (q,z) enters the Hamiltonian
matrix via Eq. (20) and accounts for the substrate response. The
response of the surface gas appears explicitly in the dynamical
rate expressions, and this asymmetry in our treatment arises
because the dynamics depends only on frequencies that are
much smaller than the bulk plasmon frequency. This allows us
to use only the static response of the substrate, but since the
surface acoustic plasmon branch extends to zero frequency,
the full dynamical response of the 2D surface gas must be
included. Furthermore, the coupling of the QD potential is also
much larger to the electron hole excitations in the surface gas
than it is in the bulk, since the potential is screened fully within
a few atomic layers below the surface. The dominant coupling
to surface states is also verified by the ab initio calculation of
electrode states as described above.

Thus, having made the choice to let W (q,z) represent the
entire bulk response, we now turn to the susceptibility χs of
the 2D surface electron gas. In the present implementation
approximating the general picture developed in Sec. III C, the
energy transfer rates originate from the response of the 2D
electron gas. We calculate the noninteracting χ0

s using Newns’
approach63 and use RPA to construct the interacting response
χs as in Eq. (64). In the RPA calculation, the electron-electron
interaction within the 2D gas is screened by the substrate, but
since the screening is only partial, collective excitations in
the 2D electron gas can exist in the form of surface acoustic
plasmons.62 We find the effective screened interaction using
Newns’ work,

veff(q) = v(q) − v(q)e−2q|zp | 1 − ε−1
b (q)

1 + ε−1
b (q)

. (68)

Here the first term is the Fourier transform of the bare
interaction within the 2D plane representing the surface
electrons, and the second term is the interaction with the image
charge in the substrate located in the plane a distance 2|zp|
below the surface electron plane. Substituting veff(q) into the
RPA summation for the 2D response, we obtain the screened
susceptibility, χs(q,ω), as

χs(q,ω) = χ0
s (q,ω)

1 − veff(q)χ0
s (q,ω)

.

In the left panel of Fig. 5, we have plotted a 2D color
map of the function Imχs(q,ω) in which the bulk screening is
neglected. We have verified that the acoustic plasmon branch
in the absence of bulk substrate follows the expected trend,√

e2nq/(2Mε0), which holds at low energies for a 2D gas
of quasielectrons of mass M and density n. By including the
screening due to the bulk substrate, we obtain the plot shown in
the right panel. The plasmon branch in the result is significantly
different as it has now acquired a linear profile that straddles
along the incoherent pair continuum. Thus, the bulk substrate
shifts the spectral weight of the plasmon branch to a lower
frequency and spreads it into the pair continuum.

Let us briefly comment on when this shift can become
important. Consider the processes in which a state n relaxes
to a lower energy state m via the Coulomb interaction, in

FIG. 5. (Color online) log10[−Imχ ] in the absence of the semi-
infinite bulk (left) and in the presence of static screening by the bulk
(right). Note the qualitative change in the dispersion of the acoustic
plasmon branch, which in the presence of the bulk lies close to the
incoherent electron-hole continuum, the upper boundary of which
is marked by the thin dashed line. Thus, the spectral weight of the
plasmon contributes to the pair continuum.

which the coupling potential is formed by the transition density
ϕ∗

m(r)ϕn(r). From Eq. (63) and energy conservation, we expect
that the region in the (q,E) plane that couples to this process
must lie within the Fourier-Bessel transform of this potential
along the q axis and in the range of energy differences En − Em

along the E axis. Wave functions inside a QD of radius 2 nm
would generally yield the peak of the Fourier-Bessel transform
to be around q ≈ 0.5 nm−1. The plot in Fig. 5 then implies
that En − Em must be 0.4–0.5 eV apart for the states n and
m to experience qualitative change in their coupled dynamics.
As shown by our calculations below, this energy difference
is much higher than the inverse rates implied by the energy
transfer matrix C(t) when the bulk substrate is included. On
the other hand, in the absence of the substrate, it is possible
to approach the regime where these changes may significantly
modify the time dependence of energy transport between the
QD and the electrode. We now turn to the effects of charge and
energy transfer on the exciton and hole populations with the
initial state in which the QD is prepared in the exciton state by
photoexcitation.

D. Exciton dissociation and Fermi edge singularity

In this section, we discuss the charge transfer of the
electron to the electrode, which leaves a positively charged
QD containing one hole. Since the charge state of the QD
changes from neutral to positive, we expect to see the effects
of the FES in the tunneling rate. With reference to the full rate
expression in Eq. (39), we focus on Mhh;xx so Dhh and Dxx

enter, both of which are simply unity, and the rate is simply

bx(t) ≡
∑

h

Ḃhh;xx(t).

A brief description of the calculation strategy is as follows.
From Eq. (49), we obtain

Ḃhh;xx(t) = − 2

h̄2

∫ +∞

−∞

dω

2π
γxh;hx(ω)S(ω − ωxh,t). (69)

The controlling energy scale is the excess energy of the
tunneling electron relative to the electrode Fermi energy,
expressed by ωxh. We evaluate the above expression using
Eqs. (52) and (54)–(58). Since the dipole field of an exciton is
weak and it does not affect the edge singularity by the Friedel
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sum rule,29 we set [Kx,HL] ≈ 0, which also sets N̄xx(t,0) ≈
N̄. The definition of γxh;hx(ω,t ′; t) and this approximation
together imply that it is independent of the time arguments t ′,t ,
which we reflect in the equation above by omitting the time
arguments (see also the discussion at the end of Sec. III B).
Taking only the surface states as the final states in the charge
transfer, we obtain

γxh;hx(ω) = −i
∑
kk′

T xh
sk T hx

sk′

∫ +∞

0
dτe−iωτ rxh;hx(τ )

×〈sk| N̄
[
I + �

(1)xx
xh;hx(τ )N̄

]−1
e−iKxτ |sk′〉, (70)

where s denotes the surface states, and

rxh;hx(τ ) = 1

Z

〈
eiKhτ e−iKxτ e−βHL

〉
,

�
(1)xx
xh;hx(τ ) = e−iKxτ eiKhτ − I.

Note that Eq. (70) is different from the Fermi golden rule result
in that it includes the effects of sudden switching of potential
to all orders in perturbation theory and therefore includes the
effects of FES exactly. This results in dressing of all operators
by the Coulomb potential of the QD. The above result is a
perturbation expansion with the dressed hybridization as the
small parameter. Eliminating the FES effects is equivalent
to setting rxh;hx(τ ) = 1 and �

(1)xx
xh;hx(τ ) = 0. Substituting these

two values into Eq. (70) and performing the integral over τ , the
Fermi golden rule expression without the FES effects emerges
in the imaginary part of γxh;hx representing the particle loss
rate from the QD.

To compute the integrand in Eq. (70), we represent Ka

in the plane-wave basis over the 2D quasimomentum within
the surface band. The circular symmetry of this band reduces
the problem significantly as the plane wave basis decomposes
into a product of angular momentum eigenfunctions, eilθ , and
Bessel functions Jl(kr) for the total momentum k. In this basis,
Ka can be represented as a block-diagonal matrix with each
block corresponding to an angular momentum eigenvalue l

and given by

h̄Kl
a;kk′ = h̄2k2

2mL

δkk′ +
∫ R

0
dr rĴl(kr)Ĵl(k

′r)

×
∫

dz|ψL;s(z)|2Vaa(r,z),

where mL is the effective mass of the surface band, Vaa(r,z) is
the potential due to the QD in state a [see Eq. (37)], |ψL;s(z)|2
is the planar averaged probability density of the surface state
with negligible k dependence (see Fig. 4 and Sec. IV B), Ĵl(kr)
are Bessel functions normalized to unity over [0,R] such that
Ĵl(kR) = 0, and R is a cutoff radius set by discretization of
k and is much larger than the screening length within the
2D surface electron gas. In addition, Vaa(r,z) is constructed
in accordance with the discussion in the previous section
where the potential outside and inside the electrode is given by
Eq. (67) respectively and followed by Fourier transform back
to real space.

We compute the resulting matrices Kl
a;kk′ over a discrete

set of k and diagonalize them to compute their exponentials
in Eq. (70) numerically exactly. Multiplying by T xh

sk T hx
sk′ and

summing over all k,k′ in the discrete set, we numerically

compute the integrand for a discrete set of τ . By experimenting
with the discretization of k and the total number of angular
momenta l, we obtained well-converged results by using 800k

points over the surface band shown in Fig. 4 and setting
maximum l to 24.

The resulting integrand as a function of τ generally
has a slowly decaying tail that prevents a direct ap-
plication of Fourier transform to obtain γ (ω). We fol-
low the well-established methods to handle this numerical
technicality24,28,65 and then Fourier transform the resulting
expression to obtain γ (ω). The remaining procedure to obtain
Ḃhh;xx is straightforward.

In Figs. 6(a)–6(d) we show bx(t) for two different align-
ments between the energy level of the lowest electron state and
the Fermi level of the electrode. Results are also shown for two
different temperatures, and plots in each figure correspond to
the absence and presence of the Coulomb interaction between
the QD and the electrode. We see from the figure that the
tunneling rate in the presence of the interaction is always
smaller than in the absence of this coupling. This effect is
the result of the FES, which in turn is mainly dominated by the
AOC function rather than the ME contribution. We verified
this by comparing these results with calculations in which
the AOC is excluded. Decrease in the rate also results from
removal of the substrate because it eliminates screening of the
QD potential.

We observe in Fig. 6 that the suppression in the tunneling
rate increases with temperature. This trend follows from the
Anderson-Yuval mapping,30 from which we expect the AOC
function to exponentially decaying for time t > h̄/kBT and at
temperatures much smaller than the Fermi temperature of the

FIG. 6. (Color online) The escape rate of the electron in the
presence of a hole with (solid red line) and without (dash-dotted
line) Coulomb coupling to the electrode. The triple-dotted green line
corresponds to the rate in the absence of the bulk substrate, but with
interaction with the 2D surface gas retained. Note the suppression of
tunneling due to the FES. Only the lowest electron level and all the
hole levels correlated to it are included. The effective junction width
is 6.25 Å. Plots are shown for two different temperatures for the
Fermi sea of surface states, and �E is the energy difference between
the Fermi level and the lowest electron level. The oscillations at the
rightmost end of each plot are due to the onset of aliasing as the
time increases beyond the inverse of the largest energy differences
imposed by the 2D momentum discretization of plane wave surface
states.
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electron gas. Since the present calculation is precisely within
this regime, the suppression of rate increases with tempera-
ture. At temperatures exceeding the Fermi temperature, the
orthogonality catastrophe would itself become exponentially
suppressed. This regime could be reached with an electrode
made of lightly doped semiconductor in which the Fermi
energy can be an order of magnitude smaller. This is also the
kind of system studied in an experiment by Kleemans et al.3

In addition, note from Figs. 6(b) and 6(c) that the time for
bx(t) to reach its asymptotic value is much smaller than the
inverse rate implied by its magnitude. Thus, the tunneling
process may be modeled accurately as Markovian with a
constant rate given by bx(t) for t > 1 ps. At temperatures
of 10 K and below, as shown in Fig. 6(a), non-Markov
behavior may be expected. The longer time for the approach to
asymptotic value in this regime is the result of sharp increase
in the density of vacant states.

We conclude that for a semi-infinite metallic electrode, the
edge singularity effect is small and quantitative, which is also
in agreement with recent ab initio work on the topic.23 On
the other hand, since the effect is proportional to the ratio of
the scattering potential to the bandwidth of the Fermi sea, a
lightly doped semiconductor would be a better system for its
observation.

Let us briefly comment on how this crossover from the
Markov to non-Markov regime may be accessible for obser-
vation. Since it occurs within the sub-picosecond time scale,
the photoluminescence in this regime is completely quenched.
The crossover is therefore relevant mainly to nonlinear optical
response of the system. A possible route to accessing this in
nonlinear optics is the reduction in bleaching of the exciton
absorption line due to dissociation. This bleaching can be
studied as a function of delay between pump pulses tuned to
the absorption frequency. The rise in absorption as a function
of the delay would then change from an exponential to a
nonexponential function as the temperature is lowered across
the crossover, which occurs at approximately 10 K in the
present model.

E. Nonradiative exciton recombination

In addition to dissociation, photoluminescence may also be
quenched by nonradiative recombination (NRR) in which the
energy is transferred to the electron-hole pair excitations in
the electrode, rather than being converted to a photon. In the
present geometry, this process is also faster than the typical
radiative recombination of excitons in InAs, as we now discuss.

We first quantify the NRR of an exciton and its sensitivity
to various physical properties of the system. With reference to
the full rate expression in Eq. (39), we focus on Mgg:xx so Dgg

and Dxx enter, both of which are simply unity. Thus, our theory
describes this process by the matrix element Ċgg;xx(t), which
depends on dcv · E(r), where dcv is the conduction-valence
band dipole matrix element at the band edge. We set its value
to 2.15 Å.66 The vector E is the total electric field of the
transition density of the exciton (see Appendix A),

E(r) = −∇
∫

dsV (r; s)ϕn(s)ϕn′(s),

where the potential V also includes the electronic surface
polarization response of the QD,

Ċgg;xx(t) = 1

h̄2

∑
q

|Vxg(q)|2
∫ +∞

−∞
dωX(q,ω)Ṡ(ω − ωgx,t),

(71)

where X(ω) is the susceptibility the computation of which we
described above in Sec. IV C, and

Vxg(q) = dcv ·
∫

d3re−iq·rE(r). (72)

We compute the integrand over a discrete set of (q,ω) over the
range shown in Figs. 5 and sum over this range to compute
Ċgg;xx(t) at a discrete set of points t . The range in q is sufficient
due to the fact that the transition density of the exciton has a
real space spread of approximately 4 nm. The range in ω is
justified from the exponentially suppressed X(q,ω) above the
acoustic plasmon line in Fig. 5.

In Fig. 7, we plot Ċgg;xx(t) for various values of l at which
the multipole expansion of E is truncated. Each l > 0 plot is
therefore a correction to the often used point dipole model,
in which only the l = 0 term of the transition densities is
employed. We see from the figure that the converged solution
is almost twice as large as l = 0 case and that convergence
occurs only beyond l = 3.

As in the case of charge transfer, we may also model NRR as
a Markov process with a constant rate equal to the asymptotic
value of Ċgg;xx(t). This is verified by plots of Ċgg;xx(t) in Fig. 7,
which show that after the initial appearance of an exciton state,
the Fermi sea responds at the ultrafast time scale of 10 fs, within
which Ċgg;xx(t) settles to a constant value. This is much faster
than the rate implied by the asymptotic value.

We remark that while NRR is almost 100 times smaller
than the electron tunneling rate in the figures shown, we
expect from the exponential suppression of tunneling with
distance, as opposed to a power law dependence of the
NRR, that the nonradiative decay of an excited QD would
cross over from a dissociative to a nondissociative channel

FIG. 7. (Color online) Forster rate calculated for increasing order
l (values indicated in legend) of the multipole expansion of the
transition density of the exciton, including the electrostatic reaction
field of the quantum dot. The oscillations result from the acoustic
plasmon branch in the renormalized susceptibility of the surface
electron gas.
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FIG. 8. (Color online) The Forster decay rate calculated for a
product state and the fully correlated state for lz = 0. The slight
increase in the Forster rate for the correlated state is the result of shift
in the transition density as shown in Fig. 9.

as its distance from the electrode is increased. In the present
model, the tunneling rate is reduced by a factor of 10 for
every extra 1.1 Å of separation so that both regimes may be
accessed for systems with only subnanometer differences in
the tunnel junction. Thus, the efficiency of current extraction
in a photovoltaic device may be heavily impacted by NRR, and
a point dipole model with uncorrelated electron-hole density
suffices to estimate this impact within a factor of 2, as can be
seen from Fig. 8. The correlation between the electron and the
hole slightly increases the decay rate by shifting the transition
density towards the metallic surface (see Fig. 9).

F. Hole cooling and tunneling

Let us now turn to hole tunneling as well as cooling
via Coulomb-driven energy transfer to pair excitations. The
crossover between charge and energy transfer as the dominant
decay channel is also relevant here. To show this we calculate
the matrix elements Ḃgg;hh(t) for tunneling, and Chh;h′h′(t) for
Coulomb-driven cooling. There is a symmetry restriction in
the latter so that transitions conserve the angular momentum
along the surface normal of the electrode. Furthermore, due to
our approximation [Kx,HL] ≈ 0 in Sec. III B, the computation
of Ḃgg;hh(t) is obtained by replacing x with g in Ḃxx;hh(t).
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FIG. 9. (Color online) Contours of transition density of the fully
correlated exciton state (left) compared to the charge density of the
product of lowest energy electron and hole wave functions (right). The
thick gray contour lines represent the contour level, ranging from 1
(maximum) to 0 (minimum).
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FIG. 10. (Color online) Cooling rates of hot holes in which
energy is transferred to the electrode via the Coulomb coupling to its
dynamical dielectric function. By symmetry the transfer conserves
lz, as indicated along each curve where the change in the principal
quantum number n is also indicated. The static screening by bulk
substrate is included both in the response of the surface electron gas
and as an image correction to the field of the quantum dot.

Similarly, the computation of Chh;h′h′(t) closely parallels that
of Cgg;xx(t) described in Sec. III C. Therefore, we have omitted
a discussion of computational details in this section.

We plot the results of our calculations for energy transfer
in the presence of a semi-infinite bulk electrode in Fig. 10.
To understand the dynamical effects of bulk screening, we
repeated this calculation by keeping the static image potential
of the QD, but removed the screening of electron-electron
interaction within the 2D gas. Thus, we capture only the
dynamical effects of the changes in the plasmon branch and
plot the resulting rates in Fig. 11 (the underlying loss function
for this calculation is shown in the left panel of Fig. 5). The
reduction in the rates compared to the screened case can be
understood by observing that only the points in proximity of
q ≈ 0.5/nm and E = 0.2 eV couple to the QD potential. This
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FIG. 11. (Color online) Cooling rates for the same states as in
Fig. 10 but without the substrate-induced screening of the electron-
electron interaction in the surface electron gas. The reduction in the
cooling rate is almost by a factor of 8 and is mainly due to the shifting
of the plasmon branch up in energy or farther away from the part of
loss function that couples to the transition densities. Line styles are
as in Fig. 10.
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FIG. 12. (Color online) Cooling rates for the same states as in
Fig. 10 but after completely excluding the effects of the bulk substrate.
The almost 200-fold increase in the rate is due to the removal of image
cancellation due to the static substrate response. A low dielectric
substrate supporting a conducting thin film, such as metal-on-oxide,
would correspond to this case. Line styles are as in Fig. 10.

region, which lies entirely inside the incoherent pair excitation
regime is farther from the plasmon branch in the absence than
in the presence of the substrate screening. The resulting loss
function is therefore smaller in the unscreened than in the
screened case. Thus, the dynamical effect of screening is to
enhance the rate.

However, we emphasize that the largest quantitative effect
of bulk screening is to suppress this rate via the instantaneous
image potential within the plane of the surface electron gas. In
Fig. 12 we plot the rates when the image potential is completely
removed, which corresponds to the lack of any substrate. Due
to the fact that the coupling is proportional to the square of the
QD potential, we see a substantial increase, by approximately
a factor of 250, in the cooling rate.

We now consider these results in light of the tunneling
rates of holes, plotted in Fig. 13. In the presence of the
substrate, tunneling is much faster for s (l = 0) hole states,
but approaches the energy transfer rates for p (l = 1) states.
The much smaller tunneling rate for the p state is expected
from its spatial profile which contains a node in the tunnel
junction. In the absence of the bulk, the energy and charge
transfer rates for all states lie within factors of two to four and
the two processes can thus compete. We expect this to hold
true even when we account for the effect of substrate removal
on tunneling.

To see why, we note that the 2D gas also generates an
image potential away from its own plane, which would have
the same effect on the junction potential as the image potential
of a metallic substrate. The formation of this image charge
may be treated as instantaneous for the purpose of tunneling,
because, as we have seen in the results above, the plasmon
oscillations are in the regime of 10–20 fs, and the dynamical
rates settle to constant values beyond this time scale. Thus,
the required charge rearrangement in the 2D gas is still much
faster than the tunneling rates. Also, as shown in Fig. 6, the
substrate removal reduces tunneling rates due to the FES, but
this is still within a factor of 2. The reduced dimensionality
of the electrode thus only lowers the screening of the external
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FIG. 13. (Color online) Rate of tunneling into a hole level of
the QD with a single hole. Plots are shown for lowest energy states
(principal quantum number n) at two different values of lz. The charge
distribution of the lz = 1 hole state is minimal near the tunnel junction,
and, therefore, it has a much smaller escape rate than the lz = 0 state.

field within the plane of the 2D gas and has only a small effect
on the charge transfer. We conclude that tuning the substrate
allows energy transfer to be controlled almost independently
of charge transfer.

V. DISCUSSION

In the previous sections, we have derived a microscopic
theory and an effective model of dynamics to obtain a self-
contained framework for studying surface coupled quantum
dots. In this section, we discuss how the model can be applied
to analyze a realistic experimental scenario and also to analyze
the experimental data. We also discuss how various physical
processes, neglected here for brevity, can be described within
our framework without any further modifications of the theory.

As an experiment would generally involve a collection
of quantum dots spread over a region possibly much larger
than their size, the charge and energy transfer rates must be
averaged across the collection and the spatial dependence of
the electrode density of states. Thus, both types of rates must
be computed for a distribution of tunnel junction widths and
changes in density of surface states across the collection of
QDs. Similarly, while the optical wavelength is much larger
than the size of the QD, the total optical response must also
account for spatial changes in the phase of the waves across the
region containing the QDs. This could be taken into account
by including the factor eik·rj in the optical field, where k is the
wave vector of the field and rj points to the center of of the
j th dot.

Quantum-dot arrays may be designed to exploit the vast
range of time scale of tunneling and the qualitative changes in
exciton decay pathways, which we have demonstrated above,
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in order to control the transport of energy and charge across
these arrays. Our theory can be extended straightforwardly to
address these systems. The Hilbert space of QD states may
be expanded to include electronic states of the entire array,
with appropriate expansion in the size of the “system density
matrix” used in our dynamical model. The Hamiltonian, HD

would then involve both the intradot energy levels and interdot
couplings, for example, in a tight-binding form. The coupling
to electrodes may then acquire additional dependence on QD
locations, but they could still be calculated using the same
methodology as outlined in this paper. Population dynamics
of the density matrix of this dot array, computed in the
same manner as for a single QD above, would then provide
the information necessary for energy and charge transport
studies.

In a similar vein, the QD density matrix may also be
extended to include biexcitons, triexcitons, and even higher
order charge complexes. The fundamental structure of our
theory is a set of levels for the QD and their dynamical coupling
to the electrode. From our semianalytical model of the surface
polarization in the surface coupled QD system, the correlation
energy of all higher-particle states may be determined by
expanding them in the product of single-particle basis (though
it could be impractical beyond the biexcitons). The calculation
of hybridization and Coulomb interaction with the electrode
then follows the same path as was used for excitons. The
implications of interparticle correlations on their Coulomb
coupling to the electrode surface and the energy transfer rates
may be studied within this as was done above for exciton decay
by NRR. We recall that the correlations become important
when the monopole moment of the charge distribution of a
state vanishes and therefore does not set the energy scale for
Coulomb coupling far above all the multipole contributions.

We have neglected vibrational levels of the QD in formu-
lating the present theory. At the simplest level, the electron-
phonon coupling within the QD provides an extra energy
transfer channel for the electronic system. The discretization of
vibrational levels would generally result in a non-Markovian
time-dependent rate of energy exchange, which may be
accounted for via a model spectral density of phonons in
the QD. This would result in an extra energy transfer matrix
defined in the same way as Cac;a′c′(t) in Eq. (65) above,
the spectral function of the susceptibility in that formula
replaced by the model spectral density of phonons. However,
this treatment would still neglect the coherent dynamics of
the electronic and the lattice systems. The most extensive
model would be a coupled system of electronic, photonic,
and vibronic density matrices. This would allow a full study
of phonons, excitons, polaritons, and photoluminescence.

VI. CONCLUSION

In summary, we have presented a theoretical and compu-
tational framework to model the charge kinetics of optically
excited quantum dots on surfaces. We have started from a
microscopic construction of the eigenstates of the subsystems,
and the couplings between them, and employ them in an
effective model of dynamics restricted to a small subset of these
states. The model is ideally suited to explore various questions
regarding the effect of the surface on charge extraction, exciton

lifetime, and photoluminescence quenching in these systems.
We have also developed a dynamical theory taking into account
the effects of the FES in the electrode response.

We illustrated the use of our theory by applying it to an InAs
quantum dot above an Au[111] surface to which it is coupled
via the Shockley surface states. Both the charge and energy
transfer processes are essentially Markovian in this system, but
complex dynamics may result from their interplay. We found
that the FES can lower the exciton dissociation, but does so
only by a factor of 2 for a Fermi sea that has a bandwidth much
larger than the screened Coulomb coupling.

We also discussed the effects of multipole moments of
excitons on the rate of energy transfer to the electron-hole
pair excitations in the surface electron gas. The electron-hole
correlation and its interplay with the image potential of the
electrode has significant quantitative effects on the oscillator
strength for energy loss to the plasma excitations of the electron
gas. This nonradiative decay of excitons was found to be about
100 times slower than the dissociative rate for the material and
geometry used in the calculations. However, with exponential
scaling of the dissociative rate with the barrier width and
height, and for larger QDs exhibiting greater correlation
effects, competition between the two decay pathways can be
expected. This would also yield rich dynamics.

Such a Coulomb-driven process can also act as a cooling
mechanism for a charged QD, and we have discussed, in
particular, the cooling of holes. The energy transfer is very
sensitive to the excitation spectrum at the electrode surface,
and in particular the coupling of the QD to the acoustic
surface plasmons. The size of the QD and the energy level
spacing control the strength of its dynamical coupling via
this mechanism, and we find that the shifting and broadening
of the plasmon mode due to screening by the bulk yields
a large (approximately 200-fold) reduction in the cooling
rate. By arguing that this screening does not affect the
formation of image potentials in the junction, we claim that
screening properties of the substrate can sensitively tune this
system between energy transfer and charge transfer modes of
operations.

Our work can be applied to model and analyze experiments
on colloidal quantum dots near semiconductor and metallic
surfaces and epitaxial quantum dots in multiple quantum
wells. We have emphasized the vast range of time scales that
can exist in the dynamics of these systems and point to the
various crossovers in the dominant decay pathways for exciton
states as well as the charge kinetics. In a subsequent paper,
we will develop the theory of linear and nonlinear optical
response of these systems. Thus, the excitation process itself
will be studied dynamically in the presence of charge kinetics
described here.

Another interesting application of this model that we have
briefly discussed is the exploration of spatially dependent
coupling between a quantum-dot array and an electrode to
control transport physics in these systems. Finally, extensions
of the present theory are necessary to describe coupling to the
driven vibrational modes of the quantum dot and dynamics
of photon degrees of freedom for exploring the competition
between charge and energy exchange with photoluminescence
and phonons. These extensions will be considered in future
publications.
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APPENDIX A: MATRIX ELEMENTS

1. Hybridization

For QD states that are exponentially suppressed at the elec-
trode surface, the hybridization may be defined by adding and
subtracting HL to the total Hamiltonian. The decomposition
has the advantage of ease of evaluation in terms of potential
energy differences outside the electrode. Thus, for the single
electron or hole QD state we write

T
ge

νk =
∫

d ru∗
kν(r)e−ik·r [H (r) − HL(r)] ϕe(r), (A1)

T
hg

νk =
∫

d ru∗
kν(r)e−ik·r [H (r) − HL(r)] ϕh(r), (A2)

T
eg

νk = T
ge∗
νk , (A3)

T
gh

νk = T
hg∗
νk . (A4)

Since ϕh represents a single electron orbital in the valence
band, such that ϕ∗

h is the state of the hole, all of the above
matrix elements are defined with respect to an electron transfer.
Here we have shifted the origin so that z = 0 lies at the image
plane of the electrode. The integrand vanishes on the electrode
side (z < 0), and we simplify the above formula within
the effective mass approximation with a uniform mass, m,
inside the QD. Since the kinetic energy operator acting on φa

yields Ea and the function uνk(r) varies on a much faster scale
than the rest of the functions under the integral, we obtain

T
ga

νk =
∫

d r〈u∗
kν(z)〉e−ik·rUa(r)ϕa(r). (A5)

Here we have replaced uνk(r) with its average, 〈u∗
kν(z)〉,

over the planar [111] unit cell of the Au lattice. Outside
the electrode, 〈u∗

kν(z)〉 decays exponentially, but may have
additional dependence on z depending on the pseudopotential
in the DFT calculation. The potential energy Ua in Eq. (A5),
which depends on the QD state, is defined as

Ua(r) = V (r) − UL(r) +
(

1 − m

m0

)
[Eα − V (r)]�(r ∈ �D).

Here the pseudopotential UL for the electrode can be extracted
from the DFT calculation, the planar average of which in our
calculations is shown in Fig. 4. The function �(r ∈ �D) is
unity inside the QD and zero outside. In the presence of
cylindrical symmetry, we may write the above integral in
terms of a Bessel transform of an order equal to the angular

momentum quantum number, l, of the QD state,

T
ag

νk (z) = (−1)l/2
∫

drrUα(r,z)ϕa(r,z)Jl(kr),

and write

T
ag

νk =
∫

dz〈u∗
kν(z)〉T ag

νk (z). (A6)

Finally, we introduce matrix elements defining the charge
transfer processes that form or dissociate an exciton state.
Using the coefficients, �eh;x , for the expansion of the exciton
state in terms of the electron-hole product states, we write the
matrix elements for charge transfer involving an exciton state
in terms of the above matrix elements connecting the ground
and single-particle states,

T hx
νk =

∑
e

�he;xT
ge

νk , (A7)

T ex
νk =

∑
h

�he;xT
gh

νk , (A8)

T xh
νk = T hx∗

νk , (A9)

T xe
νk = T ex∗

νk . (A10)

2. Coulomb interaction

We write the matrix elements in Eq. (20) by separating the
classical contribution,

Vn,νk;n′,ν ′k′ = Wn,νk;n′,ν ′k′ − δνν ′δk,k′W
(img)
nn′ . (A11)

In any expectation value, the subtracted term multiplies the
sum over occupied states and therefore produces W

(img)
nn′ so

long as the trace of the statistical matrix for the electrode is
normalized to unity. The matrix elements in Eq. (A11) are
given by

Wn,νk;n′,ν ′k′ = 1

2

∫
d rWnn′ (r)e−i(k−k′)·ru∗

νk(r)uνk′(r) (A12)

and

W
(img)
nn′ = 1

2

∫
ds

∫
d rWnn′ (r)�img(r; s),

where �img(r; s) is the charge distribution producing an image
potential due to a point charge located at s outside the surface.
In the above equations, Wnn′ is the potential due of the
“transitions density” of the two QD states, ϕn(r)ϕn′(r). We
determine this potential from our semianalytical solution34

for the electrostatic potential, which yields the coefficients of
multipole moments, Qlm(s) as a function of s. Following the
calculation of Qlm we calculate the potential of the transition
density as follows. When n and n′ refer to the same bulk band,
we exploit the fast scale of Bloch envelope functions and set
their overlap to unity and obtain

Wnn′ (r) =
∑
l,m

1

2ε0a

∫
ds

Qlm(s)

2l + 1

al

rl+1
Ylm(r̂)ϕ∗

n(s)ϕn′(s).

When n and n′ belong to different bulk bands, the underlying
Bloch envelope functions become orthogonal. In this case, we
must expand the Coulomb potential over the bulk unit cell of
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the QD. Let x vary over the unit cell,

V (r − s − x) = V (r − s) − x · ∇V (r − s).

When this is averaged over the macroscopic envelope functions
ϕn(s), we replace Wnn′ (r) with

Wnn′ (r) + dnn′ · ∇Wnn′ (r),

where dnn′ is the dipole moment between the Bloch states
between bands n and n′. This is used in calculating energy
transfer for exciton states in which case the zeroth-order term
in the field vanishes. When dnn′ also vanishes, higher order
derivatives of the potential must be coupled to the multiple
moments of the microscopic Bloch functions. Replacing the
overlap of Bloch envelope functions by their planar average,

Oνk,νk′ (z) =
∫

d r‖u∗
νk(r)uνk′(r),

we obtain

Wn,νk;n′,ν ′k′ = 1

2

∫
dzOνk,νk′(z)

∫
d r‖ei(k′−k)·r‖Wnn′ (r).

(A13)

APPENDIX B: CHARGE AND ENERGY TRANSFER RATES

In this Appendix, we collect the necessary mathematical
steps to derive the energy and charge transfer rates as defined
in Eqs. (49) and (65). We make use of the equivalence of the
following two expressions. Let

f (t) = −i

∫ t

0
dτX(τ )eiω0τ , (B1)

where X(τ ) is a causal function, and the factor i is for
later convenience. The Fourier transform of X(τ ), which is
complex,

X(ω) = XR(ω) + iXI (ω),

satisfies the Kramers-Kronig relations.29 Then, we may write
f (t) entirely in terms of XI (ω) as

f (t) = 1

2

∫
dωSpec [X(ω)] S(ω,t), (B2)

where we have defined the spectral function Spec[X(ω)] =
−2XI (ω), and

S(ω,t) = − sin[(ω − ω0)t]

ω − ω0
+ 2i sin2

[
(ω − ω0) t

2

]
ω − ω0

.

It is useful to note that the limiting behavior of the function
S is

lim
t→∞ S(ω,t) = −πδ(ω)t, lim

t→0
S(ω,t) = −t + i

ωt2

2
.

1. Charge transfer

The charge transfer matrix can be described by the functions
defined in Eq. (50), which are explicitly equal to two of the four
correlation functions in the definition of Bac;a′c′ (t) in Eq. (49).
To handle all these correlations, and to derive this reduction

to two functions explicitly, we define here two additional
functions,

�−ca
c′b;bc(t ′′,t ′; t) = −i�(t ′ − t ′′)〈T c′b(t ′′)T bc(t ′)T ca

0 (t)R〉,
�−

c′c;aa′ (t ′′,t ′; t) = −i�(t ′ − t ′′)〈T c′c(t ′′)T ca
0 (t)T aa′

(t ′)R〉.
It follows from the above definitions that

�−
c′c;aa′ (t ′′,t ′; t) = −[�a′a;cc′ (t ′′,t ′; t)]∗, (B3)

�−ca
c′b;bc(t ′′,t ′; t) = −[

�ac
cb;bc′ (t ′′,t ′; t)

]∗
. (B4)

Let us introduce the Fourier transforms of the correlation
functions as

�c′c;aa′ (ω,t ′; t) =
∫ +∞

−∞
dt ′′�c′c;aa′ (t ′′,t ′; t)eiωt ′′ .

The above definitions of the correlation functions and their
relationship, Eqs. (B3) and (B4), imply that

Spec[�aa′;c′c(ω,t ′; t)] = Spec[�−
cc′;a′a(−ω,t ′; t)],

Spec
[
�ca

aa′;c′c(ω,t ′; t)
] = Spec

[
�−ac

cc′;a′a(−ω,t ′; t)
]
.

We now use the basic relation (B2) and exploit the fact that only
the Spec[�(ω,t ′; t)] and Spec[�(ω,t ′; t)] are necessary in the
final expressions. Thus, performing the required permutations
of states in the subscript and setting

γaa′;cc′ (ω,t ′; t) = Spec[�aa′;cc′ (ω,t ′; t)],
λaa′;cc′ (ω,t ′; t) = Spec[�aa′;cc′ (ω,t ′; t)],

we obtain Eq. (49) in the main text. We now turn to the
evaluation of these spectral functions.

The functions � and � can be expressed in terms of
single-particle Green’s functions of the electrode, within the
interaction picture discussed in the main body. Here we
explicitly develop the expressions for �(ω,t ′; t), since the
derivation of �(ω,t ′; t) follows the same form. These Green’s
functions are physically different depending on whether
they describe propagation of the system under addition or
removal of a particle. Following conventional notation we use
superscript “>” to describe propagation under addition of an
electron to the electrode and “<” for the removal of an electron.
Thus, letting nc be the electron occupation of the QD in state
c, we define

�c′c;aa′ (t ′′,t ′; t)

=
{

�>
c′c;aa′ (t ′′,t ′; t) n′

c = nc + 1,n′
a = na − 1,

�<
c′c;aa′ (t ′′,t ′; t) n′

c = nc − 1,n′
a = na + 1,

(B5)

where �>
c′c;aa′ (t ′′,t ′; t) describes the tunneling of an electron

out of the quantum dot and is given by Eq. (51) in the main
text, while

�<
c′c;aa′ (t ′′,t ′; t)

= −i

Z
�(t ′ − t ′′)

∑
νν ′kk′

T cc′
νk T aa′

ν ′k′

× 〈
eiKc′ t ′c

†
νke

−iKc(t ′−t)eiKa (t ′′−t)cν ′k′e−iKa′ t ′′e−βHL
〉

(B6)

describes the tunneling from the electrode to the quantum
dot. We also define �≶ in a similar fashion to correspond
to the ordering of c† and c. Note that the superscripts on the
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hybridization matrix elements, e.g., T cc′
νk T aa′

νk match the pairs
of subscripts on the correlation function, and these pairs of
indices are constrained by the type of correlation function,
“lesser” or “greater,” in accordance with Eq. (B5).

In the case of a quadratic Hamiltonian, this formula can be
further simplified using two mathematical relations which can
be proven using expressions derived by Hirsch.52 In particular,

our HL and K operators are all quadratic. The Hirsch approach
allows us to connect the required full traces to the evaluation
of an expression based on those operators in a single-particle
basis. In the following, the left-hand side gives the ratio of
two thermal averages while the right-hand side is a specific
matrix element in a single particle basis of the enclosed series
of operators represented by matrices in that basis set:

〈eiAnxeiAmycie
iA2c

†
j e

iA3e−βHL〉
〈eiAnxeiAmyeiA2eiA3e−βHL〉 = 〈νk|N̄mn(−y, − x)[I + (e−iAmye−iAnxe−iA3e−iA2 − I)N̄mn(−y, − x)]−1

× e−iAmye−iAnxe−iA3 |ν ′k′〉, (B7)

〈eiA3c
†
i e

iA2cj e
iAnxeiAmye−βHL〉

〈eiA3eiA2eiAnxeiAmye−βHL〉 = 〈νk|Nnm(x,y)[I + (eiAnxeiAmyeiA3eiA2 − I)Nnm(x,y)]−1eiAnxeiAmyeiA3 |ν ′k′〉. (B8)

In the second of the two preceding equations, Nnm(x,y) = I − N̄nm(x,y), and in the the first equation,

N̄mn(y,x) = eiKmyeiKnx[1 + e−βHL ]−1e−iKnxe−iKmy,

where the central part is given by Eq. (56) in the main text. To apply expressions to Eqs. (B7) and (B8), we substitute

eiAnxeiAmy = eiKc′ t ′ = eiKc′ t eiKc′ (t ′−t), eiA2 = e−iKc(t ′−t)eiKa (t ′′−t), eiA3 = e−iKa′ t ′′ .

It is also convenient to define matrix functions,

�
(1)bb′
c′c;aa′ (t ′,t ′′; t) = e−iKc′ t ′eiKa′ t ′′e−iKat

′′T bb′
0 (t)eiKct

′ − I,

�
(2)bb′
c′c;aa′ (t ′,t ′′; t) = e−iKc′ t ′T bb′

0 (t)eiKa′ t ′′e−iKat
′′
eiKct

′ − I,

and a function describing the AOC,

rc′c;aa′ (t ′′,t ′,t) = 〈eiKc′ t ′e−iKc(t ′−t)eiKa (t ′′−t)e−iKa′ t ′′e−βHL〉.
To apply these expressions to �>ca

ab;ba′ , we substitute,

eiAnxeiAmy = eiKct eiKa (t ′−t), eiA2 = e−iKbt
′
eiKbt

′′
, eiA3 = e−iKa′ t ′′ .

With these definitions, we obtain the following set of functions to describe electron and hole tunneling between the QD and
the electrode,

�>
c′c;aa′ (t ′′,t ′; t) = −i�(t ′ − t ′′)rc′c;aa′ (t ′′,t ′,t)

×
∑

νν ′kk′
T c′c

νk T aa′∗
ν ′k′ 〈νk| N̄c′c′(−t ′,0)

[
I + �

(1)ca
c′c;aa′ (t ′,t ′′; t)N̄c′c′ (−t ′,0)

]−1
[e−iKc′ t ′eiKa′ t ′′ ]|ν ′k′〉, (B9)

�<
c′c;aa′ (t ′′,t ′; t) = i�(t ′ − t ′′)rc′c;a′a(t ′′,t ′,t)

∑
kk′

T aa′
νk T c′c

ν ′k′ 〈νk| Nc′c′ (t ′′,0)
[
I + �

(1)ca
a′a;cc′ (t ′′,t ′; t)Nc′c′ (t ′′,0)

]−1
[e−iKa′ t ′′eiKc′ t ′]|ν ′k′〉,

(B10)

and for �,

�>ca
ab;ba′ (t ′ − t ′′,t ′; t) = −i�(t ′ − t ′′)rca;ba′ (t,t ′′,t ′)

×
∑

νν ′kk′
T ab

νk T ba′
ν ′k′ 〈νk|N̄ac(t − t ′, − t)

[
I + �

(2)ac
ab;ba′ (t ′,t ′′; t)N̄ac(t − t ′, − t)

]−1
[e−iKc′ t ′eiKa′ t ′′ ]|k′ν ′〉,

(B11)

�<ca
ab;ba′ (t ′ − t ′′,t ′; t) = −i�(t ′ − t ′′)rca;ba′ (t,t ′′,t ′)

×
∑

νν ′kk′
T ba′

νk T ab
ν ′k′ 〈νk| Nca(t − t ′,t)

[
I + �

(2)ac
ab;ba′ (t ′,t ′′; t)Nca(t − t ′,t)

]−1
[eiKct eiKa (t−t ′)e−iKa′ t ′′ ]|ν ′k′〉.

(B12)

205426-23



VIRK, HYBERTSEN, AND REICHMAN PHYSICAL REVIEW B 87, 205426 (2013)

2. Energy transfer

a. First-order term

Since we are only dealing with the Coulomb term in this
appendix, we omit the subscript C used in the main text for
functions related to this interaction. From the definitions of
the superoperators, the first-order term takes the form shown
in Eq. (59) in the main text. We now impose the condition that
the subscripts of V̂ab correspond to states with the same net
charge and that only the monopole terms are significant in the
operators Ka . Thus, we replace Ka and K ′

a with their average
and define the time evolution of the electrode density operator
under the potential (Va + V ′

a)/2 as

R(aa′)(t) = ei t
2 (Ka+Ka′ )Re−i t

2 (Ka+Ka′ ).

The corrections to this are small and quantified at the end of
this discussion. The first-order term now becomes

d

dt
Pac;a′c′ (t) = −iDac(t)D−1

a′c′(t)

[
d

dt
D−1

ac (t)
∫ t

0
dτ

×
∑

k,k′,νν ′
δcc′Va,νk;a′ν ′k′ 〈c†νkcνk′R(aa′)(τ )〉

− δaa′Vc′,νk;c,ν ′k′ 〈c†νkcνk′R(cc′)(τ )〉
]
.

Clearly, each term under the sum is the expectation value
of the potential energy as the electrode state evolves under
the average potentials of the states that coupled by the off-
diagonal Coulomb interaction. Thus, by using our definition
of the Hartree energy matrix in Eq. (60),

d

dt
Pac;a′c′(t)

= −iδcc′D−1
a′c (t)

(
�aa′ (t) + d ln Dac(t)

dt

∫ t

0
�aa′(τ )

)

+ iδaa′D−1
ac′ (t)

(
�c′c(t) + d ln Dac(t)

dt

∫ t

0
�c′c(τ )

)
.

(B13)

To obtain the corrections beyond the above, we let K̄aa′ =
(Ka + Ka′)/2 and δWaa′ = (V̂aa − V̂a′a′)/2 and write〈

e−iKat V̂aa′eiKa′ tR
〉 = 〈

V̂aa′ei(K̄aa′ −δWaa′ )tRe−i(K̄aa′ +δWaa′ )t 〉
= 〈

V̂aa′eitK̄aa′
Uaa′ (t)RU

†
aa′ (t)e−itK̄aa′ 〉

,

where

Uaa′(t) = 1 − i

∫ t

0
dt ′e−itK̄aa′

δWaa′ (t ′)eitK̄aa′

−
∫ t

0

∫ t ′

0
e−it ′K̄aa′

δWaa′ (t ′)ei(t ′−t ′′)K̄aa′

× δWaa′ (t ′′)eit ′′K̄aa′ + · · · .

From this result, we see that the leading correction to the
first-order term, as approximated by Eq. (B13), is given by a
potential δWaa′ , which is equal to the difference between two
electrostatic potentials of equal charge.

b. Second-order term

We derive the expression for one of the terms in the
energy transfer matrix, while the remaining three terms can
be computed from it. Thus, let

Fac;a′c′ (τ ; t) = −ei(ωaa′+ωc′c)t

×
∫ t

0
dτ 〈�V̂c′c(t − τ )�V̂aa′ (t)R〉e−iωc′cτ .

We define

χ+
ab;b′a′ (τ ; t) = −i�(τ )〈�V̂c′c(t − τ )�V̂aa′(t)R〉,

χ−
ab;b′a′ (τ ; t) = −i�(τ )〈�V̂c′c(t)�V̂aa′(t − τ )R〉.

These two functions also satisfy the relation

(χ+
c′c;aa′ (τ ; t))∗ = −χ−

a′a;c′c(τ ; t)

⇒ Spec[χ+
c′c;aa′ (ω; t)] = Spec[χ−

c′c;aa′ (−ω; t)].

Using the expressions for �V , and implying summation
over repeated indices, we obtain,

χ+
c′c;aa′ (ω; t) = Vc′,νk;c,ν ′k′Va,ν p;a′,ν ′ p′

× [〈c†νk(t − τ )cν ′k′(t − τ )c†μ p(t)cμ′ p′(t)〉
− 〈c†νk(t − τ )cν ′k′(t − τ )〉〈c†μ p(t)cμ′ p′(t)〉].

In most circumstances, we may neglect defects in the electrode
surfaces and assume a uniform electron gas. Within this
approximation, the correlation functions must conserve mo-
mentum and the planar Fourier transform of the QD potential
also becomes a function only of the difference between the
two momenta

Vc′,νk;c,ν ′k′ = Vc′ν ′;cν(k − k′) =
∫

Vc′c(r)e−i(k−k′)·rd r.

In this case the number of momenta in the summation reduces
and we obtain

χ+
c′c;aa′ (ω; t) =

∑
q

Vc′,ν;c,ν ′ (−q)Xνν ′;μμ′(q,ω)Va,μ;a′,μ′(q).

Here the function, Xνν ′;μμ′(q,ω), is the density density
correlation function, generalized to include intersubband
transitions,

Xνν ′;μμ′(q,ω)

=
∫ ∞

0
dτ eiωτ [〈c†νk−q(t − τ )cν ′k(t − τ )c†μ p+q(t)cμ′ p(t)〉

− 〈c†νk(t − τ )cν ′k−q(t − τ )〉〈c†μ p+q(t)cμ′ p(t)〉].

The calculation of density-density correlation can be found in
most textbooks on solid state physics.29 Substitution of these
calculations into the above formula and setting χ = Spec[χ+]
yields formula (65) in the main body.

205426-24



MICROSCOPIC THEORY TO QUANTIFY THE COMPETING . . . PHYSICAL REVIEW B 87, 205426 (2013)

*kv2212@columbia.edu
†mhyberts@bnl.gov
‡drr2103@columubia.edu
1W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil,
and X.-Y. Zhu, Science 328, 1543 (2010).

2J. J. Choi, J. Luria, B.-R. Hyun, A. C. Bartnik, L. Sun, Y.-F. Lim,
J. A. Marohn, F. W. Wise, and T. Hanrath, Nano Lett. 10, 1805
(2010).

3N. A. J. M. Kleemans, J. van Bree, A. O. Govorov, J. G. Keizer,
G. J. Hamhuis, R. Notzel, A. Y. Silov, and P. M. Koenraad, Nat.
Phys. 6, 534 (2010).

4B. D. Fainberg, M. Sukharev, T.-H. Park, and M. Galperin, Phys.
Rev. B 83, 205425 (2011).

5M. Galperin, M. A. Ratner, and A. Nitzan, Nano Lett. 9, 758 (2009).
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36C. J. F. Böttcher and O. C. van Belle, Theory of Electric Polarization
(Elsevier Scientific, Amsterdam, 1973).

37L. E. Brus, J. Chem. Phys. 80, 4403 (1984).
38Y. Z. Hu, M. Lindberg, and S. W. Koch, Phys. Rev. B 42, 1713

(1990).
39S.-L. Chuang, S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla,

Phys. Rev. B 43, 1500 (1991).
40For a DFT calculation, this would be a Kohn-Sham orbital.
41C. Latta, F. Haupt, M. Hanl, A. Weichselbaum, M. Claassen,

W. Wuester, P. Fallahi, S. Faelt, L. Glazman, J. von Delft, H. E.
Tureci, and A. Imamoglu, Nature (London) 474, 627 (2011).
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