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Accessing quantum nanoplasmonics in a hybrid quantum dot–metal nanosystem:
Mollow triplet of a quantum dot near a metal nanoparticle

Rong-Chun Ge,1 C. Van Vlack,1 P. Yao,2 Jeff. F. Young,3 and S. Hughes1,*

1Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, Canada K7L 3N6
2Department of Optics and Optical Engineering, University of Science and Technology of China, 230026, People’s Republic of China

3Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Rd., Vancouver,
British Columbia, Canada V6T 1Z1

(Received 9 November 2012; revised manuscript received 22 April 2013; published 20 May 2013)

We present a theoretical study of the resonance fluorescence spectra of an optically driven quantum dot placed
near a single metal nanoparticle. The metallic reservoir coupling is calculated for an 8-nm metal nanoparticle
using a time-convolutionless master equation approach where the exact photon reservoir function is included
using Green function theory. By exciting the system coherently near the nanoparticle dipole mode, we show
that the driven Mollow spectrum becomes highly asymmetric due to internal coupling effects with higher-order
plasmons. We also highlight the regimes of resonance squeezing and broadening as well as spectral reshaping
through light propagation. Our master equation technique can be applied to any arbitrary material system,
including lossy inhomogeneous structures, where mode expansion techniques are known to break down.
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I. INTRODUCTION

The study of quantum light-matter interactions near metals
can be used to explore fundamental quantum optical regimes
such as modified spontaneous emission1 and the strong
coupling regime,2–4 with applications ranging from single-
photon transistors5 to plasmon lasing and spacing.6–8 Metal
structures enable surface plasmon polaritons which give rise
to pronounced resonances in a similar way to high-Q (quality
factor) cavity structures. However, metals are significantly
more complicated to model because of material losses, and,
e.g., standard mode expansion techniques that are well used in
quantum optics theory typically fail. This motivates the need
for quantum optics models that can be applied to metallic
environments, and can expect to access new excitation regimes
that are unique to plasmonic systems.

Recently, there has been interest in the coherent excitation
of a single atom or quantum dot (QD) near a metal surface.
As is well known from atomic optics, a resonantly driven
atom (or QD) can yield a “Mollow triplet” for the incoherent
spectrum if the coherent Rabi oscillations have a frequency
that is larger than the decay rates in the system.9,10 Ridolfo
et al.11 modeled QD metal-nanoparticle (MNP) interactions
through a master equation (ME) approach by assuming a single
Lorentzian response for the metal and estimated the dot-metal
coupling parameters from electromagnetic simulations; such
an approach is useful but restricted since it essentially ignores
the higher-order plasmon modes and cannot be used if the QD
is too close to the metal surface—typically restricted to sepa-
ration distances greater than a radius of the particle1,4 or else
coupling to higher-order plasmons becomes important.12,13

Gonzalez-Tudela et al.14 employed a time-convolutionless
(i.e., time local) ME approach and explored the coupling for a
driven QD near a metal planar surface; this later method allows
one to incorporate the full non-Lorentzian lineshape of the
metal reservoir for QDs that are close to the surface, however,
the effects of internal coupling15 and spectral reshaping due
to QD/MNP-to-detector propagation were neglected. Internal

coupling refers to coupling to the photon reservoir at the
dressed-state resonances since, in general, the scattering rates
and radiative coupling depend on the driving field.15,16 For a
suitable MNP environment, the range of energy shifts of the
dressed states can be substantial compared to the range of
energies over which the local density of photon states (LDOS)
varies.

In this work, we introduce a powerful ME technique that
allows one to model the quantum light-matter interactions
for any general photonic reservoir function, including lossy
inhomogeneous structures. The only restriction we use is
the second-order Born approximation, which is valid for the
weak QD-plasmon coupling regime that we consider. We
apply this approach to study the incoherent spectrum that
is detected when a QD is driven resonantly near an 8-nm
MNP. A schematic of this excitation scheme is shown in
Fig. 1. In the strong-field excitation regime, we compute the
fluorescence spectrum at a detector remotely located from the
driven QD-MNP system, fully taking into account the effects
of light propagation and optical quenching. We demonstrate
that, as the field strength of the drive is increased, the ensuing
Mollow triplets become highly asymmetric. The Mollow
triplets give direct access to the regime of quantum nanopla-
monics and contain signatures of the MNP’s photon bath
function.

The paper is organized as follows. In Sec. II we introduce
the theory and ME technique for modeling a coherently
driven QD in the vicinity of a MNP. We also present
an expression for the incoherent spectrum in terms of the
medium Green functions which are computed exactly. In
Sec. III, we present calculations of the Green functions and
incoherent spectra for various pump intensities and pump
laser detunings. The ensuing Mollow spectrum is seen to be
highly asymmetric and we show the importance of including
internal coupling effects. We also study the effect of the
QD-MNP separation and observe squeezing and antisqueezing
of the spectral resonances. Theoretical expressions for the
linewidths in terms of the LDOS help to explain the physics.
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FIG. 1. (Color online) Schematic showing the QD metal-
nanoparticle system (not to scale). When a pump field is applied,
the resonance fluorescence can be detected in the far field. The radius
of the MNP is a = 8 nm, and the distance from the MNP to the
detector can be varied.

Conclusions are offered in Sec. IV. We also include an
Appendix that presents the optical Bloch equations for this
system and discuss useful analytical limits of the incoherent
spectrum.

II. THEORY

A. Photon Green function

We first introduce the classical photonic Green function
of the MNP, where the nanoparticle is assumed to be in
air. Defining the MNP complex permittivity as εMNP(r,ω) =
εR(r,ω) + iεI (r,ω), then the photon Green function satisfies
the following equation (ω is implicit):

∇ × ∇ × G(r,r′) − k2
0εMNP(r)G(r,r′) = k2

0δ(r − r′)I, (1)

where k0 = ω/c, μ = 1, and I is the unit dyadic. We use
a Drude model for a silver MNP, where εMNP(ω) = ε∞ −
ω2

m/(ω2 − iγmω), with ε∞ = 6, ωm = 7.9 eV and γm = 51
meV. For a spherical MNP, the Green function is computed
exactly.17 The MNP Green function can be understood in
terms of having contributions from the fundamental dipole-
like plasmon mode and a reservoir of higher-order plasmon
modes. The dipole mode propagates to the far field, but the
higher-order modes only couple in the near field. We consider
an 8-nm radius MNP, where a QD center is at some distance
h above the MNP surface. We assume there is a detector, at
position rD , that is 10 μm from the surface (i.e., in the far
field).

In Fig. 2(a), we show examples of the logarithm of the
z-projected LDOS, ρdd ≡ ρzz = Im[Gzz(rd ,rd ; ω)] in units of
ρ0, where ρ0 = k3

0/(6πε0) is the imaginary part of Gii(r,r; ω)
for free space. For the smallest separation of 2 nm (h/R =
0.25), a QD exciton can be strongly coupled to the MNP
resulting in vacuum Rabi splitting;4 this strong coupling
regime becomes accessible by coupling to the higher-order
plasmon peaks rather than at the weaker dipole mode peak of
the LDOS; one can see from Fig. 2(a) that the corresponding
LDOS (red solid, upper line) at high-order plasmon modes is
several times larger than at the dipole mode peak. For larger
spatial separations between the QD and MNP surface, the
LDOS decreases rapidly with the higher-order plasmon mode
decreasing more rapidly than the dipole mode; the QD-MNP
strong coupling regime is barely resolvable at h = 3 nm,
and is completely lost for separation distances of more than
h = 4 nm or h/R > 0.5. For the majority of our calculations
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FIG. 2. (Color online) LDOS ρdd for various separations of rdot

from the surface of a 8-nm silver MNP. (a) Logarithm of LDOS at
various locations: 2- (red, upper curve), 3- (green curve), 4- (cyan
curve), 5- (blue curve), 6- (magenta curve), 8- (black curve), and
16-nm (blue dashed, lower curve) away from the surface of the MNP
(from top to bottom), respectively. (b) LDOS ρdd (blue curve) at rdot

situated 5-nm away from the surface of the MNP, and the ρdD =
|Gzz(rD,rd ; ω)| (red curve), where rD (detector position) is 10-μm
above the dot position. The fundamental plasmon resonance of the
dipole mode is ωp ≈ 2.79 eV.

we will consider h = 5 nm, though later we will also study the
light-matter interactions at h = 8 nm; for the spatial separation
of h = 5 nm, we have verified that a second-order Born
approximation is valid and we will use this coupling regime
to introduce a general master equation below. From Fig. 2(a),
one can see that even for h = 16 nm (h/R = 2), there is still
an influence from the higher-order plasmon modes and the
use of a single Lorentzian model would fail in general. In
Fig. 2(b), we show the LDOS at the h = 5 nm in a linear scale
and also the magnitude of the nonlocal photon “propagator,”
|ρdD| = |Gzz(rD,rd ; ω)|. Clearly the reservoir function ρdd

cannot be described by a single Lorentzian lineshape; in
contrast, the propagator ρdD is mainly influenced by the dipole
mode1,4,18 and is thus much closer to a single Lorenzian
response.

B. Master equation

For the QD interactions, we consider a two-level system
(artificial atom) in the dipole approximation, interacting with
a general lossy and inhomogeneous structure (the MNP).
The total Hamiltonian of the coupled system can be written
as19,20

H = h̄

∫
dr

∫ ∞

0
dω ω f†(r,ω)f(r,ω) + h̄ωxσ

+σ−

−
[
σ+

∫ ∞

0
dω d · E(rd ,ω) + H.c.

]
+ Hdrive, (2)

where σ+/σ− are the Pauli operators of the exciton (electron-
hole pair), ωx is the resonance of the exciton, d is the dipole
of the exciton,21 f/f† are the boson field operators, and
the rotating-wave approximation has been applied (i.e., the
counter-rotating-wave term has been dropped). The electric-
field operator (not including the pump field) is defined
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through19,22,23

E(r,ω) = 1

ε0

∫
dr′ G(r,r′; ω) ·

√
h̄ε0

π
εI (r′,ω) f(r′,ω), (3)

and for convenience we have separated the pump Hamiltonian,
defined through Hdrive = h̄	

2 (σ+e−iωLt + σ−eiωLt ), with the
effective Rabi field 	 = 〈Epump(rd )〉 · d/h̄. The pump field
contains the direct pumping term plus the (dominant) scattered
field from the MNP

Epump(rd ,ωL) = E0(rd ,ωL) +
∫

VMNP

dr′G(rd ,r′; ωL)

× [εMNP(ωL) − 1] E0(r′,ωL), (4)

where E0(rd ,ωL) is the incident field operator and for a
large driving field we can treat the Rabi field classically
(i.e., as a “c-number”). Note that the spatial integration
is carried out over the volume of the MNP; in this way,
we recognize a plasmonic enhancement factor of ηp ≡ 1 +∫
VMNP

dr′G(rd ,r′; ωL) [εMNP(ωL) − 1], where G is the total
Green function of the environment including the presence of
the MNP. Exciting near the dipole resonance with a z-polarized
incident field, we estimate that 	 ≡ ηp	0 is at least one
order of magnitude larger than 	0 = 〈E0(rd )〉 · d/h̄. Thus the
incident Rabi field is substantially enhanced by the MNP
plasmonic response.24,25

In a frame rotating at the laser frequency ωL, we rewrite the
above Hamiltonian as H = HS + HR + HI , where the system,
reservoir (or bath), and system-reservoir interaction terms are
defined through

HS = h̄(ωx − ωL)σ+σ− + h̄ηx(σ+ + σ−), (5a)

HR = h̄

∫
dr

∫ ∞

0
dω ω f†(r,ω)f(r,ω), (5b)

HI = −
[
σ+eiωLt

∫ ∞

0
dω d · E(rd ,ω) + H.c.

]
, (5c)

and then transform the Hamiltonian using H̃ → U †(t)HU (t)
with U (t) = exp[−i(HS + HR)t/h̄], where the tilde denotes
the interaction picture. We next manipulate the system-
reservoir interactions to derive a ME with the reservoir inter-
action included within the Born approximation. A common
choice for the ME is the time-convolutionless form.26 To
second order in the interaction, one has

∂ρ̃(t)

∂t
= − 1

h̄2

∫ t

0
dτ TrR{[H̃I (t),[H̃I (t − τ ),ρ̃(t)ρR]]},

(6)

where ρ̃ is the reduced density operator in the interac-
tion picture, and ρR = ρR(0) is the density operator of
the photonic reservoir which is assumed to be initially
in thermal equilibrium. Using the bath approximation,
TrR[fi(r,ω)f†i (r′,ω′)ρR] = [n̄(ω) + 1]δ(r − r′)δ(ω − ω′) and
TrR[f†i (r,ω)fi(r′,ω′)ρR] = n̄(ω)δ(r − r′)δ(ω − ω′), we con-
sider the zero-temperature bath limit [i.e., n̄(ω) = 0], which
is appropriate for optical frequencies. Exploiting the rela-
tion

∫
ds εI (s,ω)G(r,s,ω)G∗(s,r′,ω) = Im[G(r,r′,ω)], trans-

forming back to the Schrödinger picture, and carrying
out the trace over the photon reservoir,16 we derive the

generalized ME

∂ρ

∂t
= 1

ih̄
[HS,ρ] +

∫ t

0
dτ {J̃ph(τ )[−σ+σ−(−τ )ρ

+ σ−(−τ )ρσ+] + H.c.} + Lpure(ρ), (7)

where J̃ph(τ ) = ∫ ∞
0 dωJph(ω)ei(ωL−ω)τ , with the photon-

reservoir spectral function given by Jph(ω) ≡ d·Im[G(rd ,rd ;ω)]·d
πh̄ε0

,

and Lpure(ρ) = γ ′
2 (2σ11ρσ11 − σ11σ11ρ − ρσ11σ11), where

σ11 = σ+σ− and γ ′ is the exciton pure dephasing rate.
The time-dependent operators, which are defined through
σ±(−τ ) = e−iHSτ/h̄σ±eiHSτ/h̄, highlight that the scattering
rates are pump-field dependent in general since different
dressed states can sample different parts of the LDOS.27

For on-resonance driving (i.e., ωL = ωx), then σ±(τ ) =
σ±(0)

2 [1 + cos 	τ ] + σ∓(0)
2 [1 − cos 	τ ] ± σ z(0) i sin 	τ ,

which shows explicitly the formation of new bath-mediated
scattering processes such as incoherent excitation and pure
dephasing, in addition to modified radiative decay. For
numerical calculations, Eq. (7) captures non-Markovian
dynamics, but for our MNP spectral functions, we find
no evidence for non-Markovian behavior on the ensuing
spectrum, so we can safely extend the upper time integration
on Eq. (7) to infinity. We subsequently obtain a useful analytic
form for the ME

∂ρ

∂t
= 1

ih̄
[HS,ρ] + (	)

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)

+Lpure(ρ) + N (	)[σ+σ−,ρ] + M(	)[σ+,σ zρ]

+M∗(	)[ρσ z,σ−]+K(	)σ+ρσ+ + K∗(	)σ−ρσ− ,

(8)

where the various parameters are defined as follows (see the
Appendix for further details):

(	) = d · Im[G(ωL − 	) + 2G(ωL) + G(ωL + 	)] · d
2h̄ε0

,

(9a)

N (	) = i
d · Re[G(ωL − 	) + 2G(ωL) + G(ωL + 	)] · d

4h̄ε0
,

(9b)

M(	) = i
d · [G(ωL − 	) − G(ωL + 	)] · d

4h̄ε0
, (9c)

K(	) = i
d · [G(ωL − 	) − 2G(ωL) + G(ωL + 	)] · d

4h̄ε0
,

(9d)

where G(ω) ≡ G(rd ,rd ; ω) and we use the scattered part of
the Green function.28 Note that in the above equations we have
included the principal value part16 exactly. It is also interesting
to note that similar terms appear for QDs that are coupled to
an acoustic phonon bath.29

C. Incoherent spectrum

To connect to experiments on resonance fluorescence,
the detected spectrum will depend upon the position rD as
highlighted above for the MNP [via G(rD,rd )]. The spectrum is
defined from S(rD,ω) = 〈[Escatt(rD,ω)]†Escatt(rD,ω)〉, where
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the scattering field due to the presence of QD is30

Escatt(rD,ω) = 1

ε0
G(rD,rd ,ω) · d [σ−(ω) + σ+(ω)]. (10)

For continuous wave excitation, it is common to define the
incoherent spectrum as follows:

S0(ω) ≡ lim
t→∞ Re

[ ∫ ∞

0
dτ (〈σ+(t + τ )σ−(t)〉

− 〈σ+(t)〉〈σ−(t)〉)ei(ωL−ω)τ

]
, (11)

where the later term in the above equation subtracts the elastic
(coherent) scattering from the pump field. Unfortunately,
though commonly used in quantum optics, this expression is
not valid—especially for metals—it neglects spectral filtering
effects via light propagation. Including propagation and
quenching in a self-consistent way, we derive the following
detectable spectrum:

Sp(rD,ω) = 2

ε0
|d · G(rD,rd ,ω)|2 S0(ω), (12)

which highlights the essential role of the propagator. Equa-
tions (11) to (12), together with Eq. (7), constitute our main
results with which to investigate resonance fluorescence of
the exciton in the vicinity of a MNP. Importantly, the correct
MNP reservoir function is included and the field operators are
properly quantized. An explicit expression for the analytical
spectrum is given in the Appendix, from which we obtain the
full-width at half-maximum (FWHM) of the Mollow triplet
center and sideband resonance, respectively,

center(	) ≈ γ ′

2
+ π

2
[Jph(ωL − 	) + Jph(ωL + 	)], (13)

side(	) = γ ′

4
+ π

4
[Jph(ωL − 	)

+ 4Jph(ωL) + Jph(ωL + 	)]. (14)

We recognize that the center line width is only affected by
the projected LDOS (since Jph(ω) ∝ d · Im [G(rd ,rd ; ω)] · d)
at the Mollow sidebands, while the sideband width depends on
a linear combination at all three dressed resonance; while such
effects have been predicted before for atomic and dielectric
system,31,32 the effects are usually small and to the best of our
knowledge have never been measured nor predicted for a lossy
metal environment.

III. RESULTS

A. Asymmetric Mollow triplets

To compute the resonance fluorescence spectra, we assume
a QD dipole moment of d ≡ |d| = 30 Debye and consider a
pump field that excites the exciton with an effective pump rate
	. Importantly, we have the dot in a spatial position where
it necessarily feels the influence of the high-order plasmon
modes, and consequently, we will show that such a system is an
excellent environment in which to study generalized reservoir
coupling. We then solve the steady state density matrix and
use the quantum regression theorem26 to obtain the two-time
correlation function and thus the spectrum.

In Fig. 3, we display the pump-dependent Mollow spectra
for the example case of ωL = ωx = ωp, using γ ′ = 0.1 meV.33

To better clarify the role of internal coupling effects, we show
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FIG. 3. (Color online) Calculated spectra for increasing Rabi
fields (bottom to top: 	 = 20,40,60 meV), with ωL = ωx = ωp .
(a) Spectra without propagation effects S0 with (blue solid
curves) and without internal coupling effects (red dashed curves).
(b) Corresponding spectra with propagation effects Sp , which is the
spectra that would be observed in the far field (via the plasmon dipole
mode); to better see the sidebands we have zoomed into the lower
part of the spectra.

two sets of results, with and without the time dependence of
the σ±(−τ ) terms in Eq. (7) [i.e., we set G(ωL ± 	) = G(ωL)
in Eq. (8)]. In Fig. 3(a), we plot the bare spectrum with (blue
solid lines) and without (red dashed lines) time dependence,
and recognize that there is no asymmetry when the internal
coupling term is turned off; although there can be a small Lamb
shift, we find that this is a negligible effect. These findings
are consistent with previous results.11 However, with internal
coupling, we observe a clear asymmetry in the Mollow triplets
for sufficiently large driving fields; this can be explained
by the complex energy (or frequency) dependence of the
LDOS. For each sideband of the triplet, there is a one-to-one
correspondence between the height of the sideband and the
corresponding total transition probability between the dressed
states, which is proportional to the LDOS at that energy
[see Eqs. (13) to (14), at the location of the QD. The large
asymmetry in the LDOS shown in Fig. 2 therefore manifests
itself in the asymmetric strength of the Mollow triplets for
sufficiently large drive fields. For the case without internal
coupling, assuming large drives, then only the LDOS at the
frequency of the pump field matters and the corresponding
Mollow triplet is symmetric. We also observe significant
narrowing of the resonances, consistent with Eqs. (13) to (14).
In Fig. 3(b), we observe similar features for Sp(ω), but now
the spectra are further reshaped due to photon propagation and
quenching effects; specifically, without propagation effects the
Mollow triplets are symmetric without internal coupling, and
asymmetric with internal coupling; with propagation effects,
both are asymmetric, but in opposite senses.

Next, we investigate the case when the pump field is
resonant with the exciton, but off resonant with the dipole
mode of the MNP, and show that the spectral filtering effect
can be used to selectively enhance the features of the Mollow
sidebands. In Fig. 4, we show the high-pump solution when
the pump field is now 60-meV blue-shifted with respect to the
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FIG. 4. (Color online) As in Fig. 3, using 	 = 60 meV, but now
the pump frequency is 60 meV above the fundamental plasmon mode:
ωL = ωp + 60 meV. (a) Spectra without propagation effects S0 with
(blue solid line) and without internal coupling effects (red dashed
line). (b) Corresponding spectra with propagation effects. Here the
fundamental plasmon mode is seen to relatively enhance the lower
Mollow sideband.

plasmon dipole mode (ωL = ωx = ωp + 60 meV). Here the
photon propagator has changed the spectrum of the scattering
field dramatically. Due to the fact that the left sideband
predominates over both other peaks, it should be more
accessible in an experiment. Figure 4(a) shows the following
features: (i) the induced-asymmetry from internal coupling
is now minor since the LDOS at ωL ± 60 meV is similar,
and (ii) there is significant spectral broadening when internal
coupling is included; this broadening effect is anticipated from
our theory as the Mollow sideband resonances now sample a
larger LDOS [see Fig. 1 and Eqs. (13) and (14)]. We stress that
such effects are not possible in a Lorentzian-decay medium
(e.g., a single mode cavity).

B. Position dependence of the Mollow triplet

Due to the fact that high-order plasmons are strongly
confined near the surface of the MNP, one may expect that
as the distance between the QD and MNP is increased, then
a simple single Lorentzian may be valid. In addition, it is
useful to know by how much the Mollow triplet features
change if one moves the spatial position of the QDs by a
few nanometers. As is shown in Fig. 2(a), even if the distance
between the QD and the surface of the MNP is as large as the
radius of MNP, the higher-order plasmon modes still have a
significant impact and the failure of a single Lorenzian model
is to be expected. In fact, we find the photonic resevoir of QD
induced by the MNP will always display some non-Loretzian
characteristics.

Figure 5 presents the Mollow spectra with the pump fre-
quency ωL = ωx = ωp. Figure 5(a) shows the bare spectrum
with (blue solid lines) and without (red dashed lines) internal
coupling, and clearly there is still an asymmetry between
the Mollow sidebands; however, since the LDOS values are
reduced the magnitude of the sidebands are suppressed and
the radiative decay rates are much smaller (all features, with
and without internal coupling are narrower). In Fig. 5(b), we
show the detectable spectrum in the far field, which again
shows significant reshaping of the spectrum due to photon
propagation and quenching effects. However, as the spatial
distance between the QD and MNP is further increased, the
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FIG. 5. (Color online) Calculated spectra for the QD located 8-nm
away from the surface of the MNP with increasing Rabi fields (bottom
to top: 	 = 20,40,60 meV), and ωL = ωx = ωp . (a) Spectra without
propagation effects S0 with (blue solid lines) and without internal
coupling effects (red dashed lines). (b) Corresponding spectra with
propagation effects Sp .

contribution of higher-order plasmon modes becomes smaller
and smaller; eventually we find that when the QD is placed
16 nm (2R) away from the MNP surface [blue dashed line in
Fig. 2(a)], then the magnitude of the LDOS can be reasonably
described by the dipole mode only as the LDOS contribution
from the higher-order plasmon modes is about one order of
magnitude smaller than the dipole mode LDOS; in this larger
separation regime, the MNP can be effectively described by
the dipole model as also discussed elsewhere.4,35

IV. CONCLUSION

We have introduced a general ME approach for modeling
quantum light-matter interactions for a driven atom or QD
in the vicinity of a metallic nanoparticle. The exact reservoir
function and propagator are obtained from Green function
theory and used directly in the ME formalism. We used this
approach to model the Mollow spectrum as a function of drive
strength, and demonstrated that clear spectral asymmetries and
nontrivial linewidth variations can be seen for suitably large
drives. We also investigated several different pump excita-
tion frequencies and QD positions and found rich coupling
behavior. While our master equation formalism is useful for
exploring regimes of quantum nanoplasmonics, the techniques
are general and can, assuming the validity of the second-order
Born approximation, model the spectrum from a driven QD
in any general photonic environment, including hybrid metal-
photonic-crystal systems34 and metamaterials.30,35
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APPENDIX : DERIVATION OF THE INCOHERENT
SPECTRUM AND FULL-WIDTH AT HALF MAXIMUM

OF THE MOLLOW TRIPLET RESONANCES

Using the master equation, Eq. (8), we derive the following
Bloch equations:

d〈σ+〉
dt

= −
(

(	) + γ ′

2
+ N (	)

)
〈σ+〉 + K∗(	)〈σ−〉

− i
	

2
〈σ z〉 − M∗(	), (A1)

d〈σ−〉
dt

= −
(

(	) + γ ′

2
− N (	)

)
〈σ−〉 + K(	)〈σ+〉

+ i
	

2
〈σ z〉 − M(	), (A2)

d〈σ z〉
dt

= −(2M(	) + i	)〈σ+〉 − (2M∗(	) − i	)〈σ−〉
−(	)(〈σ z〉 + 1), (A3)

with parameters (	) defined through Eqs. (9a) to (9d) in
the main text of the paper. These Bloch equations can be
solved exactly, which is the approach we have used in the
main text above, with no approximation. However, it is useful

to look at certain limits of the corresponding solution for the
spectrum S0(ω). This allows us to make a clearer connection
to the underlying physics of the resulting spectral linewidths.
Neglecting the terms from the real part of the Green function
(since these only cause spectral shifts through the Lamb and
Stark shifts), the steady state solutions of the Bloch equations
are as follows:

〈σ+〉ss = i
	

(
(	)+γ ′

2 − Kr (	) − 4M2
r (	)

(	)

)
2
(

(	)+γ ′
2 − Kr (	)

)(
(	)+γ ′

2 + Kr (	) + 	2

(	)

)
− Mr (	)

(	)+γ ′
2 − Kr (	)

, (A4)

〈σ−〉ss = 〈σ+〉∗ss, (A5)

〈σ z〉ss = −4−1(	)Re

[(
Mr (	) + i

	

2

)
〈σ+〉ss

]
− 1,

(A6)

where Kr (	) = Re[K(	)] and Mr (	) = Re[M(	)]. The in-
coherent spectrum, without propagation effects (see main text),
is given by

S0(ω) ≡ lim
t→∞ Re

[∫ ∞

0
dτ (〈σ+(t + τ )σ−(t)〉 − 〈σ+(t)〉〈σ−(t)〉)ei(ωL−ω)τ

]

= Re

⎧⎪⎨
⎪⎩

d(0) × −2Kr (	)δω−2Mr (	)	−i[	2+2Kr (	)(	)]

−iδω+ (	)+γ ′
2 −Kr (	)

+ 	h(0) − 2[δω + i(	)]f (0)

−2δω
(
Kr (	) + 3(	)+γ ′

2

) + 2i
[ − 	2 + δω2 − (

Kr (	) + (	)+γ ′
2

)
(	)

]
⎫⎪⎬
⎪⎭ , (A7)

with d(0) = f (0) + g(0), f (0) ≡ 〈δσ+δσ−〉, g(0) ≡ 〈δσ+δσ+〉, and h(0) ≡ 〈δσ+δσ z〉, respectively. These terms are obtained
from the steady state Bloch-equation solutions, via

f (0) = 1
2 (1 + 〈σ z〉ss − 2〈σ−〉ss〈σ+〉ss), g(0) = −〈σ+〉2

ss, h(0) = −〈σ+〉ss(1 + 〈σ z〉ss).

In the strong pump limit (i.e., 	  γ ′, |(	)|, |N (	)|, |M(	)|, |K(	)|), the full-width at half maximum (FWHM) values of the
Mollow triplet resonance are obtained from the imaginary parts of[

(	) + γ ′

2
− iδω − Kr (	)

]{
2i

[
δω2 − 	2 −

(
Kr (	) + (	) + γ ′

2

)
(	)

]
− 2δω

[
Kr (	) + 3(	) + γ ′

2

]}
= 0. (A8)

The corresponding roots are easily obtained

δω0 = −i

(
(	) + γ ′

2
− Kr (	)

)
, (A9)

δω± = ±
√

4[	2 + (	)B(	)] − [(	) + B(	)]2

2
− i[(	) + B(	)], (A10)

with B(	) = (	)+γ ′
2 + Kr (	). In the strong field limit, the real parts of the roots correspond to ωL,ωL ± 	, at these Mollow

triplet resonance, and the FWHM of the spectral linewidths are

center(	) = γ ′

2
+ π

Jph(ωL − 	) + Jph(ωL + 	)

2
, (A11)

side(	) = π
Jph(ωL − 	) + 4Jph(ωL) + Jph(ωL + 	)

4
+ γ ′

4
, (A12)

which explicitly show the role of the three LDOS values at the dressed-state resonance.
It is also useful to compare the above bare-state approach with an approximate dressed-state approach in the secular

approximation, which has been used before in the context of coupling to generalized reservoirs.31,32 The Mollow triplet can then
be explained from the energy level scheme in the dressed-state picture, where the Mollow central peak is due to the evolution
of 〈σ z

dress(t)〉, and the sidebands are related to the relaxation of the dipole operators 〈σ±
dress(t)〉. The dressed-state operators are
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related to the bare state operator through the following transformations, σ±
dress = 1

2 (σ z + σ∓ − σ±) and σ z
dress = σ+ + σ−. Using

bare-state operators, and adopting the secular approximation,31 we obtain the following Bloch equations:

d〈σ±〉
dt

= ∓i
	

2
〈σ z〉 − π〈σ±〉Jph(ωL − 	) + 2Jph(ωL) + Jph(ωL + 	)

4

−π
Jph(ωL − 	) − 2Jph(ωL) + Jph(ωL + 	)

4
〈σ∓〉 + π

Jph(ωL − 	) − Jph(ωL + 	)

4
− γ ′

2
〈σ±〉, (A13)

d〈σ z〉
dt

=
(

π
Jph(ωL − 	) − Jph(ωL + 	)

2
− i	

)
〈σ+〉 +

(
π

Jph(ωL − 	) − Jph(ωL + 	)

2
+ i	

)
〈σ−〉

−π
Jph(ωL − 	) + 2Jph(ωL) + Jph(ωL + 	)

2
(〈σ z〉 + 1). (A14)

Thus the time evolution of the average values for the dressed-state operators are given by

d
〈
σ z

dress

〉
dt

= −〈
σ z

dress

〉π [Jph(ωL − 	) + Jph(ωL + 	)] + γ ′

2
+ π

Jph(ωL − 	) − Jph(ωL + 	)

2
, (A15)

d
〈
σ±

dress

〉
dt

= 〈
σ±

dress

〉 (±i	 − π
[
Jph(ωL − 	) + 4Jph(ωL) + Jph(ωL + 	)

] + γ ′

4

)

−〈σ∓
dress〉

π [Jph(ωL − 	) + Jph(ωL + 	)] + γ ′

4
+ 〈

σ z
dress

〉
π

Jph(ωL − 	) − Jph(ωL + 	)

4

−π
Jph(ωL − 	) + 2Jph(ωL) + Jph(ωL + 	)

4
, (A16)

from which we obtain the spectral linewidths,

pop(	) ≡ center(	) = γ ′

2
+ π

Jph(ωL − 	) + Jph(ωL + 	)

2
, (A17)

coh(	) ≡ side(	) = γ ′

4
+ π

Jph(ωL − 	) + 4Jph(ωL) + Jph(ωL + 	)

4
. (A18)

As expected, these are in agreement with the more exact bare-state approach when analyzed in the Mollow limit (which is similar
to making the secular approximation). However, the advantage of Eq. (8) is that it can be applied for all values of the pump field,
so the secular approximation is not needed.
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