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Multiband s-wave topological superconductors: Role of dimensionality and magnetic field response
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We further investigate a class of time-reversal-invariant two-band s-wave topological superconductors
introduced earlier [Deng, Viola, and Ortiz, Phys. Rev. Lett. 108, 036803 (2012)]. Provided that a sign reversal
between the two superconducting pairing gaps is realized, the topological phase diagram can be determined
exactly (within mean field) in one and two dimensions as well as in three dimensions upon restricting to the
excitation spectrum of time-reversal-invariant momentum modes. We show how, in the presence of time-reversal
symmetry, Z2 invariants that distinguish between trivial and nontrivial quantum phases can be constructed
by considering only one of the Kramers’ sectors in which the Hamiltonian decouples into. We find that the
main features identified in our original two-dimensional setting remain qualitatively unchanged, with nontrivial
topological superconducting phases supporting an odd number of Kramers’ pairs of helical Majorana modes
on each boundary, as long as the required π -phase difference between gaps is maintained. We also analyze the
consequences of time-reversal-symmetry breaking either due to the presence of an applied or impurity magnetic
field or to a deviation from the intended phase matching between the superconducting gaps. We demonstrate how
the relevant notion of topological invariance must be modified when time-reversal symmetry is broken, and how
both the persistence of gapless Majorana modes and their robustness properties depend in general upon the way
in which the original Hamiltonian is perturbed. Interestingly, a topological quantum phase transition between
helical and chiral superconducting phases can be induced by suitably tuning a Zeeman field in conjunction with a
phase mismatch between the gaps. Recent experiments in doped semiconducting crystals, of potential relevance
to the proposed model, and possible candidate material realizations in superconductors with s± pairing symmetry
are discussed.
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I. INTRODUCTION

Obtaining a complete understanding of topological quan-
tum matter has a fundamental significance across condensed-
matter physics as well as potential practical implications
within quantum science. On the one hand, characterizing
“nonlocal” topological order and unveiling connections with
the emergence of “topologically protected” edge states are
prerequisites for developing a unified classification of matter
beyond Landau’s paradigm of symmetry breaking.1 On the
other hand, taking full advantage of the distinctive robustness
features that the degenerate ground-state manifold enjoys may
offer new pathways to fault tolerance in topological quantum
memory and quantum computation.2,3

Building on the paradigmatic example of quantum Hall
liquids and the recent discovery of topological insulators3–5

(TIs), topological superconductors6–9 (TSs) are attracting a
growing theoretical and experimental interest in this context.
TSs are gapped phases of fermionic quantum matter whose
“zero-energy” edge states are naturally associated to Majorana
quasiparticles, that is, fermions which are their own antipar-
ticle, as originally suggested by Majorana back in 1937.10

Remarkably, Majorana exchange operations may lead, under
appropriate conditions, to non-Abelian statistics,7,11,12 making
Majorana states uniquely suited in principle to both fundamen-
tal quantum studies and topological qubit implementations.
As a result, a variety of proposals have been put forward
in recent years to engineer Majorana fermions in different
condensed-matter platforms.

A number of proposed TS realizations involve explicit
breaking of time-reversal (TR) symmetry: notably, the seminal

“Kitaev’s wire” in one dimension8 (1D) and the chiral super-
conductors with p + ip pairing symmetry,6 as well as sub-
sequent 1D hybrid semiconductor-superconductor nanowires
as well as heterostructures in two dimensions (2D) (see
Refs. 13–19) for representative contributions. Our interest,
however, is in TR-invariant topological superconductivity.
Existing proposals for TR-invariant TSs have thus far largely
relied on the proximity effect between a three-dimensional
(3D) TI and a conventional (s-wave) superconductor20,21

(see also Ref. 22 for early contributions), or on access to
unconventional (p + ip and/or spin-triplet) superconducting
order parameter.23–25

Our motivation is to explore whether alternative routes
to TR-invariant TSs exist based on conventional s-wave
bulk pairing symmetry. Our key physical insight is to
take advantage of multiband superconductivity, directly in
the spirit of the original proposal by Suhl-Matthias-Walker
(SMW) for two-band s-wave superconductors.26 Following
the experimental discovery of MgB2 in 2001,27 signatures
of multiband superconductivity have been reported by now
for a variety of materials,28 including newly discovered iron-
based superconductors.29 A model Hamiltonian for a 2D TR-
invariant centrosymmetric two-band s-wave TS supporting
Majorana edge states was proposed in Ref. 30, under the con-
dition that a sign reversal be enforced between the two pairing
gaps. From a mathematical viewpoint, such a two-band model
can equally describe a bilayer system where the band index is
replaced by a layer index.30–33 In this work, we aim to continue
our exploration of TR-invariant multiband TS, with the goal of
(i) obtaining a more complete characterization of the nontrivial
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topological features that emerge for this class of Hamiltonians
and (ii) gaining a deeper insight on basic aspects of TS and their
edge states in general. The content is organized as follows.

We begin in Sec. II by introducing the relevant class
of two-band TR-invariant model Hamiltonians for systems
of different spatial dimension. While it is not possible to
analytically determine the excitation spectrum for general
parameter values, we show how an exact solution leading to
nontrivial topological behavior may be obtained under the
assumption that the two pairing gaps are π shifted from one
another, including in 3D as long as we focus on the excitation
spectrum of TR-invariant modes. We argue that, as long as
two decoupled “Kramers’ sectors” are identifiable, restricting
to a single such sectors allows us to naturally construct
Z2 topological invariants applicable when TR symmetry is
preserved. In particular, we demonstrate how topological
numbers originally defined in low dimension (such as, notably,
Berry phases) can be extended beyond 1D upon restriction to
low-dimensional manifolds in parameter space.

Section III is devoted to characterizing the topological
features that emerge in our model as the spatial dimension
increases from 1D to 3D. This is done by first examining
the bulk topological response, and then by establishing the
extent to which bulk properties relate to the existence of
Majorana edge states via a bulk-boundary correspondence.
In all dimensions, we find that a Z2 invariant distinguishes
topologically trivial from nontrivial TS phases. The latter
are found to support an odd number of Kramers’ pairs
of counterpropagating (helical) Majorana modes on each
boundary. We explicitly show that gapless Majorana modes
existing in topologically trivial phases are generally not robust
against perturbations, even if TR symmetry is preserved.

In Sec. IV, we explore the consequences of explicitly
breaking TR according to different mechanisms, with em-
phasis on determining the conditions under which gapless
Majorana modes may persist, and characterizing their degree
of robustness compared to the TR-invariant case. We first
analyze the effect of a static magnetic field in various physical
scenarios, allowing for the field to act in different directions on
the bulk or solely on the boundary, respectively. In particular,
we show how the full excitation spectrum can still be exactly
determined in the presence of a longitudinal Zeeman field
in 2D, and how topological invariants must be appropriately
redefined as a consequence of TR symmetry being broken. In
general, we find that gapless Majorana modes may exist in
the presence of applied or impurity magnetic fields. However,
their degree of robustness against subsequent perturbations
depends in general on both the symmetry and the details
of the latter. Similar conclusions apply if TR symmetry is
explicitly broken due to a phase mismatch between the pairing
gaps relative to the intended value of π . Remarkably, the
application of a suitable Zeeman field may then be used to
restore gapless Majorana modes that would be gapped in
under a phase mismatch alone, and to induce a topological
quantum phase transition (QPT) between helical and chiral
phases, accompanied by a vanishing bulk gap.

In Sec. V, we present some considerations on the practical
feasibility of our proposal in real materials. In particular,
we qualitatively discuss implications in the context of the
search for topological superconductivity in 3D doped TI

materials34–36 and follow up on our original suggestion30

of realizations in iron-based superconductors exhibiting s±
pairing symmetry. We conclude in Sec. VI with a summary of
our main results and an outlook to open problems. Additional
technical details are included in the Appendixes. Specifically,
Appendix A presents a complete symmetry analysis of our
TS model Hamiltonian, thereby defining its symmetry class.
Appendix B briefly discusses the role of the self-consistency
constraint in determining the physical accessibility and stabil-
ity of different phases, whereas Appendix C shows the explicit
form of the Hamiltonian matrix when arbitrary static magnetic
fields perturb the TS system. Finally, Appendix D addresses
the important problem of a consistent, numerically gauge-
invariant evaluation of topological invariants by discussing
Berry phase and Chern number computations.

II. TIME-REVERSAL-INVARIANT TOPOLOGICAL
SUPERCONDUCTORS

A. Model Hamiltonian

Our starting point is a class of TR-invariant two-band
Hamiltonians of the form introduced in Ref. 30. Consider
a regular lattice in D spatial dimensions, with orthonormal
vectors {êν | ν ∈ uD} ≡ {x̂,ŷ,ẑ, . . .}, where the relevant set of
indices uD depends upon dimensionality and Nν is the number
of lattice sites in the νth direction (for example, u2 = {x,y}
with a total number of sites N = NxNy in 2D, and so on). Let
c and d label two orbitals (bands) and for each lattice site j

introduce

ψj ≡ (cj,↑,cj,↓,dj,↑,dj,↓)T ,

in terms of fermionic annihilation operators cj,σ ,djσ , with σ =
↑,↓ denoting the spin quantum number. Let us also introduce
Pauli matrices τν and σν (ν = x,y,z) that act on the orbital and
spin parts, respectively. Then the relevant Hamiltonian may be
written as

HD = Hcd + HSO + Hsw + H.c., (1)

where the different terms have the following expression:

Hcd = 1

2

∑
j

(ucdψ
†
j τxψj − μψ

†
j ψj ) − t

∑
〈i,j〉

ψ
†
i τxψj ,

HSO = iλ
∑

j,ν∈uD

ψ
†
j τzσνψj+êν

, (2)

Hsw =
∑

j

(�cc
†
j,↑c

†
j,↓ + �dd

†
j,↑d

†
j,↓).

Physically, Hcd, HSO, and Hsw represent the two-band in-
ternal dynamics, the spin-orbit (SO) interaction, and the
s-wave intraband superconducting fluctuations, respectively.
The parameter μ is the chemical potential, ucd is an onsite
spin-independent hybridization term between the two bands,
whereas t quantifies the strength of interband hopping, with
〈i,j 〉 representing nearest-neighbor sites i and j . Note that,
for simplicity, we have assumed here that no interband SO
coupling is present and, without loss of generality, we have
taken the strength of the SO coupling to be the same, equal
to λ, for each band. The parameters �c and �d represent the
s-wave pairing gaps of the two bands within the mean-field

205414-2



MULTIBAND s-WAVE TOPOLOGICAL . . . PHYSICAL REVIEW B 87, 205414 (2013)

approximation, that is, in momentum space,

�c = −Vcc〈ck,↑c−k,↓〉, �d = −Vdd〈dk,↑d−k,↓〉, (3)

with Vcc > 0, Vdd > 0 being the effective attraction strength
for fermions in each band.26

Notice that in the limit where μ = 0 and no supercon-
ducting fluctuations are present, Hsw = 0, the Hamiltonian
HD in Eq. (1) reduces to the so-called Dimmock model for a
TI.37,38 From the point of view of the symmetry classification
introduced by Altland and Zirnbauer,39 one may explicitly
verify (see Appendix A) that HD exhibits manifest invariance
under both TR and particle-hole (PH) transformations, in
addition to exhibiting inversion symmetry, indicating that the

model can be taken to belong to DIII symmetry class. In
particular, TR symmetry constrains each of the mean-field
pairing gaps to be real, with a phase equal to 0 or π .

For general parameter values and periodic boundary con-
ditions (PBC), HD can be block-diagonalized by a Fourier
transformation in all spatial directions. That is, we may rewrite

HD = 1

2

∑
k

(Â†
kĤkÂk − 4μ), (4)

where

Â
†
k = (c†k,↑,c

†
k,↓,d

†
k,↑,d

†
k,↓,c−k,↑,c−k,↓,d−k,↑,d−k,↓),

and Ĥk is an 8 × 8 matrix in general:

Ĥk =

⎛⎜⎜⎜⎝
−μ + �λk · �σ mk i�cσy 0

mk −μ − �λk · �σ 0 i�dσy

−i�cσy 0 μ + �λk · �σ ∗ −mk

0 −i�dσy −mk μ − �λk · �σ ∗

⎞⎟⎟⎟⎠ . (5)

Here, ∗ denotes complex conjugation and we have introduced
the compact notations

�λk ≡ −2λ
∑
ν∈uD

sin kν êν,

mk ≡ ucd − 2t
∑
ν∈uD

cos kν,

�σ ≡
∑
ν∈uD

σν êν .

Remarkably, an exact analytical solution exists in both 1D
and 2D in the limit where the pairing gaps are π shifted, that
is,

�c = −�d ≡ �, (6)

in which case Ĥk in Eq. (5) decouples into two 4 × 4 matri-
ces. Specifically, upon introducing new canonical fermionic
operators

ak,σ = 1√
2

(ck,σ + dk,σ ),

(7)

bk,σ = 1√
2

(ck,σ − dk,σ ),

we may rewrite

HD = 1

2

∑
k

(B̂†
kĤ

′
kB̂k − 4μ),

with

B̂
†
k = (a†

k,↑,b
†
k,↓,a−k,↑,b−k,↓,a

†
−k,↓,b

†
−k,↑,ak,↓,bk,↑)

and Ĥ ′
k = Ĥ ′

+,k ⊕ Ĥ ′
−,k, where

Ĥ ′
+,k =

(
mkσz − μ + �λk · �σ i�σy

−i�σy −mkσz + μ + �λk · �σ ∗

)
,

(8)

Ĥ ′
−,k =

(
mkσz − μ − �λk · �σ ∗ −i�σy

i�σy −mkσz + μ − �λk · �σ

)
.

(9)

Notice that the 4 × 4 matrices Ĥ ′
+,k and Ĥ ′

−,k may be regarded
as TR of one another, in the following sense: by partitioning the
fermonic operators B̂k ≡ B̂+,k ⊕ B̂−,k and using the explicit
form of the TR transformation T given in Appendix A,
that is,

T a(b)k,↑T −1 = a(b)−k,↓, T a†(b†)k,↓T −1 = −a†(b†)−k,↑,

T a(b)k,↓T −1 = −a(b)−k,↑, T a†(b†)k,↑T −1 = a†(b†)−k,↓,

we may write

T (B̂†
+,kĤ

′
+,kB̂+,k)T −1 = B̂

†
−,kĤ

′
−,kB̂−,k.

The excitation spectrum obtained from diagonalizing either
“Kramers’ sector” Ĥ ′

+,k or Ĥ ′
−,k is given by

εn,k = ±
√

m2
k + 
2 + |�λk|2 ± 2

√
m2

k

2 + μ2|�λk|2, (10)

where 
2 ≡ μ2 + �2 and we have assumed the energy
ordering ε1,k � ε2,k � 0 � ε3,k � ε4,k. Clearly, εn,k = εn,−k,
as implied by inversion symmetry. QPTs occur when the gap
closes, that is, ε2,k = 0, for general � = 0, leading to the QPT
lines determined by

mkc
= ±
, kν,c ∈ {0,π}, ν ∈ uD.

Note that the above condition is independent upon the SO
strength λ, as long as λ = 0.

In 3D, the Hamiltonian HD can no longer be decoupled into
4 × 4 matrices due to the SO coupling along the z direction
(see Appendix C), implying that no analytical solution of the
excitation spectrum can be obtained in general. However, since
for the TR-invariant modes the gap closes only at the QCPs,
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and the SO coupling term vanishes for the TR-invariant modes,
that is, for kν,c ∈ {0,π}, ν ∈ uD , we may focus on the excitation
spectrum for kz = kz,c. In this case, the decoupled structure
into two TR Hamiltonians Ĥ ′

±,k still holds, and thus we obtain
exactly the same form of excitation spectrum as in Eq. (10) for
the corresponding energies εn,k=(kx ,ky ,kz,c). The phase diagram
of the Hamiltonian HD , as the dimension changes from 1D
to 3D, will be discussed in detail in Sec. III, with appropriate
topological numbers being identified and labeling each phase.

Two additional remarks are in order in regard to the
Hamiltonian HD in Eqs. (1) and (2). First, the contribution Hsw

is a special case of the general SMW Hamiltonian for a two-
band superconductor with s-wave pairing symmetry,26 corre-
sponding to the situation where no interband electron-phonon
process takes place. In this case, the two superconducting gaps
are also associated with two distinct transition temperatures.
In principle (and in fact most likely in real materials), an
interband interaction Hamiltonian of the form

Hcd = −
∑
k,k′

Vcd (c†k,↑c
†
−k,↓d−k′,↓dk′,↑ + H.c.),

may also be present, in addition to the two intraband interac-
tions with strength Vcc and Vdd in Eqs. (2) and (3). Within a
mean-field description, it is easy to check that the effect of the
additional term amounts to a renormalization of the attraction
strengths for each band,

�c �→ �′
c ≡ Vcc�c + Vcd�d,

�d �→ �′
d ≡ Vcd�c + Vdd�d.

Thus, our analysis can be straightforwardly extended to the
general case Vcd = 0. In particular, requiring that �′

c = −�′
d

still yields �c = −�d as a unique solution if Vcc = Vdd ,
therefore all the results obtained for Vcd = 0 apply with no
modification in this case. While different attraction strengths,
as determined by band-structure details, can be easily accom-
modated in principle, we shall show in Sec. IV B that the
specific values of these parameters do not play a crucial role
(cf. Fig. 10). Thus, for simplicity, we shall focus on the already
rich behavior emerging for Vcc = Vdd henceforth.

Second, as written in Eq. (2), the superconducting term in
HD involves s-wave pairing in each band separately. Consider,
however, the following unitary transformation for each mode
k:

U = 1√
2
{I2×2 ⊗ [(σx + σz) ⊗ I2×2]}.

Then, at the symmetry point defined by Eq. (6), HD transforms
into

H̃D = 1

2

∑
k

[Â†
k(UĤkU

†)Âk − 4μ],

which can in turn be written in real space as follows:

H̃D = 1

2

∑
j

(ucdψ
†
j τzψj − μψ

†
j ψj ) − t

∑
〈i,j〉

ψ
†
i τzψj

+ iλ
∑

j,ν∈uD

ψ
†
j τxσνψj+êν

+
∑

j

�(c†j,↑d
†
j,↓ − c

†
j,↓d

†
j,↑) + H.c. (11)

That is, the original intraband superconductivity is transformed
into interband spin-singlet superconductivity, with the original
intraband SO interaction being correspondingly transformed
into interband SO interaction. Thus, all the results obtained
from investigating HD in the limit �c = −�d can be directly
generalized to the class of models described by H̃D .

B. Topological indicators

Since the Hamiltonian HD preserves TR symmetry, topo-
logical invariants that are applicable to the TR-broken case
will, in general, fail to characterize the system’s topological re-
sponse. While different approaches have been pursued,20,40–42

our strategy is to build on previous work43,44 and construct
suitable “partial” topological quantum numbers in order
to distinguish between topologically trivial and nontrivial
phases.30 In particular, in this work we shall focus on three
kinds of topological indicators, which we define in what
follows. We anticipate that despite their different form, these
indicators are in essence equivalent when applicable, as we
will demonstrate for our system in Sec. III.

(i) Partial Berry-phase sum parity. Consider the simplest
1D case first. By taking advantage of the decoupled structure
between TR pairs in the limit of π -shifted gaps [Eq. (6)], we
may consider the sum of the Berry phases43–45 for the two
occupied negative bands of one Kramers’ sector only, say,
|ψ1,kx

〉 and |ψ2,kx
〉 of Ĥ ′

+,k, with each Berry phase given by
(see also Appendix D for more detail on the actual numerical
calculation)

Bn = i

∫ π

−π

dkx

〈
ψn,kx

∣∣∂kx
ψn,kx

〉
. (12)

Since Bn may only attain the values 0 or π (mod 2π ) for a
system with inversion symmetry,46 a Z2 topological invariant
may be naturally constructed as follows:

PB = (−1)mod2π (B+)/π , B+ ≡ B1 + B2. (13)

For D > 1, the basic idea is to use lower-dimensional
topological numbers upon restricting to a lower-dimensional
manifold in parameter space.44 In 2D, for instance, note that
the superconductor in the momentum planes ky,c ∈ {0,π} is
mapped to itself under inversion and has the topology of a 1D
ring under PBC. Thus, it is possible to define a Z2 invariant by
analyzing the parity of the partial Berry-phase sum restricted
to the planes ky = ky,c. That is,

PB = (−1)mod2π (B+)/π , B+ =
∑

ky=0,π

(
Bky,1 + Bky,2

)
. (14)

The 3D case can be treated in a similar fashion and is discussed
in more detail directly in Sec. III A3.

(ii) Partial Chern sum parity. This invariant was originally
introduced and used in Ref. 30 for the 2D geometry. In a similar
spirit to the above, the idea is to use the Chern numbers (CNs)
of the two occupied negative bands of one Kramers’ sector
only, say Ĥ ′

+,k as before. Call these CNs C1 and C2, and let
|ψn,k〉 denote the band-n eigenvector of Ĥ ′

+,k. Then, the CNs
Cn ∈ Z, n = 1,2, are given by (see also Appendix D for its

205414-4



MULTIBAND s-WAVE TOPOLOGICAL . . . PHYSICAL REVIEW B 87, 205414 (2013)

numerical implementation)

Cn = 1

π

∫ π

−π

dkx

∫ π

−π

dky Im
〈
∂kx

ψn,k
∣∣∂ky

ψn,k
〉
. (15)

Thus, a Z2 invariant may be constructed as follows:

PC ≡ (−1)mod2(C+), C+ ≡ C1 + C2. (16)

Again, the extension to the 3D case will be addressed in
Sec. III A3.

(iii) Partial fermion number parity. As discussed in Ref. 30,
there is a direct connection between the invariant PC defined
in Eq. (16) and the fermion number parity of the TR-invariant
modes. Let us focus on the ground-state fermion number parity
of the TR-invariant points kc in the first Brillouin zone. Since
for these modes the two TR Hamiltonians Ĥ ′

+,kc
and Ĥ ′

−,kc

are decoupled, we need only concentrate on the ground-state
parity property of Ĥ ′

+,kc
. Let us introduce the new basis given

by

ukc
≡ {

a
†
kc,↑|vac〉,b†kc,↓|vac〉,|vac〉,a†

kc,↑b
†
kc,↓|vac〉}.

In this basis, Ĥ ′
+,kc

becomes

Ĥ+,kc
= −μI4×4 + [

mkc
σz ⊕ (�σx + μσz)

]
,

with eigenvalues −μ ± mkc
,−μ ± |
|. When |mkc

| > |
|,
the ground state of each mode kc is in the sector with odd

fermion parity Pkc
= eiπ(a†

kc ,↑akc ,↑+b
†
kc ,↓bkc ,↓) = −1; conversely,

when |mkc
| < |
|, it is in the sector with even fermion parity

Pkc
= 1. Thus, we define a Z2 partial fermion number parity

invariant as follows:

PF =
∏
kc

Pkc . (17)

Computing the fermion number parity of the TR-invariant
modes from one representative of each Kramers’ pairs is
consistent with the fact that only a partial CN (or Berry-phase)
sum can detect TS phases in the presence of TR symmetry.

III. ROLE OF DIMENSIONALITY

A relevant question regarding the existence of nontrivial
TS phases and their physical properties is the role played by
spatial dimensionality. In this section, we will explore the
topological response of our Hamiltonian HD as we move from
1D to 3D, first through bulk properties, that is, by computing
the topological numbers from the bulk Hamiltonian, and
then through the bulk-boundary correspondence, that is, the
relationship between the nature of the bulk vacuum in the
thermodynamic limit and the existence of surface modes on
the boundary.

A. Bulk properties

1. Topological response in 1D

The so-called Kitaev wire,8 which is essentially the XY

chain in a transverse magnetic field written in fermionic
language, has attracted a lot of attention recently for supporting
an odd number of Majorana modes on the boundary, as
originally remarked in Ref. 47 (see also Ref. 48). Does our
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Δ
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[−1]

[1]
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[1] [1]

[1]

FIG. 1. (Color online) Phase diagram of the Hamiltonian HD in
1D as a function of ucd and �, with t = 1 = λ, for representative
chemical potential μ = 0. As noted, the phase diagram is independent
upon λ provided that λ = 0. The horizontal black dotted line at � = 0
represents an insulator or metal phase, depending on the filling. The
topological response is characterized via the partial Berry-phase sum
parity PB , given in square brackets. Notice that the phase diagram is
symmetric under � �→ −�. System size: Nx = 100.

TR-invariant two-band TS model in 1D (u1 = x) also exhibit
nontrivial topological phases?

The natural choice of topological indicator is the partial
Berry-phase sum parity, instead of the partial Chern sum parity,
which requires at least a 2D parameter space [cf. Eq. (15)]. The
phase diagram obtained (for μ = 0) from requiring ε2,kc

= 0
is depicted in Fig. 1, where the integer numbers in square
brackets are the partial Berry-phase sum parity PB , with PB =
−1 (1) corresponding to nontrivial (trivial) topological phases,
respectively. The phase diagram shows the topological phases
of the 1D Hamiltonian indexed by a Z2 number, as expected
from general classification arguments in this simple case.39,49

2. Topological response in 2D

In 2D, we may compute both the partial CNs [Cn, Eq. (15)]
and the partial Berry phase of each occupied band [Bky,c,n,
Eq. (14)] by following the procedure outlined in Appendix D.
We find that the parity of the partial Berry-phase sum PB is
consistent with the parity of partial Chern sum PC in the whole
parameter space.

The topological responses for μ = 0 and −1 as representa-
tive examples are shown in the two top panels of Fig. 2, with
the integer numbers in parentheses giving the partial Chern
sum C+ (see also Fig. 1 in Ref. 30). As it will become explicit
from analyzing the bulk-boundary correspondence (Sec. III B),
an odd (even) value of C+ corresponds to nontrivial (trivial)
topological phases, respectively. We stress that in 2D QPTs are
present also between phases carrying the same partial Chern
sum parity, for instance, separating phases with C+ = 1 and
−1, as well as C+ = 0 and ±2 (blue dashed-dotted lines).
Thus, a Z invariant is necessary in order to identify all
the topological phases in the bulk phase diagram. A similar
characterization was encountered for the model analyzed in
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FIG. 2. (Color online) Phase diagrams of the Hamiltonian HD in 2D (top panels, μ = 0 and −1, respectively) and 3D (bottom panels,
μ = 0 and −1, respectively) as a function of ucd and �. The topological response is characterized in terms of the partial CN sum C+ in 2D,
and in terms of the partial CN sum of the modes kz = kz,c(C0

+,Cπ
+) in 3D, the respective values being given in parentheses. The corresponding

Z2 invariant is the parity of the partial CN sum, Eq. (18). System size: Nx = Ny = Nz = 100.

Ref. 50, where, however, TR symmetry is explicitly broken.
Since the partial Berry-phase sum is, by definition, a Z2

quantity, this also makes B+ inadequate to fully characterize
the phase diagram, although PB still correctly diagnoses the
presence of nontrivial topological features.

3. Topological response in 3D

The 3D Hamiltonian HD is especially interesting in the
light of recent discoveries of candidate TIs (Ref. 52) and
investigations of possible TS materials in 3D geometries.34–36

Since our 3D superconductor in the momentum planes kz =
kz,c ∈ {0,π} is mapped to itself under inversion and has the
topology of a 2D torus under PBC, we may define a Z2

invariant by analyzing the partial Chern sum restricted to such
planes. If C

kz,c

+ denotes the corresponding partial Chern sum,
then we can define the following Z2 parity invariant:

PC ≡ (−1)mod2(C+), C+ ≡ C0
+ + Cπ

+. (18)

Note that we could choose the partial Chern sum on the planes
kx = kx,c or ky = ky,c. It is easy to verify that the resulting
values of PC would be the same on the planes kx = kx,c, ky =
ky,c, and kz = kz,c. In fact, since only the parity of (C0

+ + Cπ
+)

matters, the definition in Eq. (18) is equivalent to the parity of
(C0

+ − Cπ
+). This is similar in spirit to the “strongZ2 invariant”

that has been invoked to distinguish strong versus weak (trivial)
TI phases.40

The topological phase diagrams for μ = 0 and −1 are
shown in the two bottom panels of Fig. 2, where an odd (even)
value of C+ corresponds to nontrivial (trivial) topological
phases, respectively. Notice that although we use, as in 2D,
a Z number to map out the 3D phase diagrams, the parity PC

(hence a Z2 invariant) suffices to identify all the phases since
all the QPT lines now separate phases with different parity,
unlike in 2D.

Similarly, we may fix ky = ky,c,kz = kz,c, and define the
partial Berry-phase sum parity as

PB = (−1)mod2π (B+)/π , B+ ≡
∑

ky ,kz=0,π

(
Bky,kz,1 + Bky,kz,2

)
.

We find that the resulting values of PB are consistent with
both PC and PF throughout the phase diagram. We also recall
that in Ref. 43 a many-body generalization of the one-body
Berry phase was constructed in the presence of interaction
by properly defining twisted boundary conditions. Thus, an
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interesting possibility for further exploration is whether the
partial Berry-phase sum defined here might still characterize
the topological response of an interacting system with TR and
inversion symmetries, provided that only one representative
from each TR pair is selected.

In summary, we may conclude that the parity of the
partial Berry-phase sum, of the partial Chern sum, and of
the partial fermion number are all equivalent to one another:
PC = PB = PF . Thus, any of them can be used to characterize
the Z2 invariance in our TR-invariant system irrespective
of dimensionality, with odd (even) parity corresponding to
nontrivial (trivial) topological phases, respectively. That being
said, if there are QPT lines between phases that share the same
parity (such as in the 2D phase diagram), then a Z invariant
(the partial Chern sum) is needed to distinguish and label all
the phases.

B. Bulk-boundary correspondence

As mentioned, a bulk-boundary correspondence generally
refers to the relationship between bulk properties of the system
in a given phase and the existence and robustness of the
corresponding edge states. Specifically, for our TR-invariant
Hamiltonian, we formulate the bulk-boundary correspondence
in terms of the relation between the bulk Z2 topological
invariants and the parity of the number of TR pairs of boundary
modes.38 That is, a bulk phase characterized by odd (even) PC

(or, equivalently, PB,PF ) is expected to correspond to an odd
(even) number of TR pairs of edge states per boundary, which
are robust against perturbations that preserve the symmetry
class of the system (DIII in our case). One should, however,
notice that there is no a priori reason to expect that the
topological numbers that characterize the phases in the bulk
phase diagram should be the same that also characterize the
bulk-boundary correspondence.

In order to characterize the bulk-boundary correspondence
in our model Hamiltonian, we investigate HD with open
boundary conditions (OBC) along one spatial direction, while
keeping PBC along the remaining direction(s). Our numerical
results indicate that the bulk property PC (PB) = −1 (1) does
correspond to an odd (even) number of Kramers’ pairs of
helical edge modes on each boundary. Since our Hamiltonian
exhibits PH symmetry, the quasiparticle annihilation operator
γεn,k for eigenvalue εn,k obeys γ †

εn,k
= γ−εn,k , which identifies

such zero-energy modes as Majorana fermions γ
†
0 = γ0.

The situation is simplest for the 1D system: for instance,
when ucd = 2, � = 2 (PB = −1 in the phase diagram of
Fig. 1), one pair of Majorana edge modes exists at each end,
while when ucd = 6, � = 2 (PB = 1 in the phase diagram of
Fig. 1), no edge mode is found. Direct calculation also shows
that a topologically trivial phase (PB = 1 with ucd = 0, � = 1
in Fig. 1) can likewise support two pairs of Majorana modes
per edge, corresponding to kx = 0, kx = π , respectively. Since
the bulk-boundary correspondence for the 2D case has already
been extensively discussed in Ref. 30, we focus next on
addressing in detail the 3D cubic geometry.

In 3D, we maintain PBC along the x and z directions, and
use instead OBC along the y direction [sometimes referring
to the resulting 2D boundaries as the right (left) edge]. Thus,
we can obtain the excitation spectrum εn,kx ,kz,c

by applying a

Fourier transformation in the x and z directions. For simplicity,
let us focus on the case μ = 0. Since the Dirac cones exist at
the TR-invariant modes, we may fix additionally kz = kz,c ∈
{0,π}. The resulting excitation spectrum is depicted in Fig. 3
for representative parameter choices. Specifically, Figs. 3(a)
and 3(b) correspond to phases that support a total odd number
of Dirac cones on each edge, that is, two Dirac cones (at
kx = 0 and π ) for kz = 0 and one Dirac cone (at kx = 0) for
kz = π . This is consistent with the partial Chern sum C0

+ = 0
for kz = 0 and Cπ

+ = 1 for kz = π , hence [Eq. (18)] PC = −1.
Figures 3(c) and 3(d) correspond instead to phases supporting
a total even number of Dirac cones, that is, two Dirac cones
at kx = 0 for kz = 0, with two corresponding Kramers’ pairs
of Majorana modes on each boundary, and no Dirac cone for
kz = π . This is consistent with the partial Chern sum C0

+ = 2
for kz = 0 and Cπ

+ = 0 for kz = π . Similar to both the 1D and
2D cases, an even value of, say, C0

+ may correspond to a pair
of Dirac cones [as in Fig. 3(a)] or it may indicate the absence
of Dirac cones altogether [as in Fig. 3(d)].

While gapless Majorana modes in nontrivial TS phases
(PC = −1) are protected against boundary perturbations that
respect TR and PH symmetries (thus do not change the
symmetry class), it is interesting to explicitly verify what
happens if PC = 1. Consider, in particular, the situation we
discussed above with C+ = 2 [Fig. 3(c)], in which case two
Kramers’ pairs of helical Majorana modes, say, (γ (i)

1 ,γ
(i)
2 ),

with γ
(i)
2 = T γ

(i)
1 T −1, i = 1,2, exist at kx = 0,kz = 0. Sup-

pose that we can express the two copropagating modes
γ

(1)
1 and γ

(2)
1 from each Kramers’ pair on a given edge as

follows:

γ
(1)
1 =

Ny∑
jy=1

(
α

(1)
jy

a
†
jy ,↑ + β

(1)
jy

b
†
jy ,↓ + H.c.

)
,

(19)

γ
(2)
1 =

Ny∑
jy=1

i
(
α

(2)
jy

a
†
jy ,↑ + β

(2)
jy

b
†
jy ,↓ − H.c.

)
for real coefficients α

(i)
jy

,β
(i)
jy

, where we have used the canonical

fermion operators defined in Eq. (7) along with γ
(i)†
1 = γ

(i)
1 ,

i = 1,2. Then, consider, for example, the following pertur-
bation that acts on the boundary, and preserves TR and PH
symmetries, as well as inversion (see also Appendix A for
further discussion):

Hp =
∑

kx ,jy ,kz,σ

u
(jy )
p

(
c
†
kx ,jy ,kz,σ

c−kx ,jy ,−kz,σ

+ d
†
kx ,jy ,kz,σ

d−kx ,jy ,−kz,σ

) + H.c., (20)

where u
(jy )
p ≡ up = 0 for jy = 1 or Ny , and u

(jy )
p = 0 other-

wise. By invoking degenerate perturbation theory, we can infer
that the degeneracy of the zero-energy surface modes is lifted
since explicit calculation yields

〈�gs|γ (2)†
1 Hpγ

(1)
1 |�gs〉 = 0,

where |�gs〉 is the many-body ground state. The exact
excitation spectrum in the presence of Hp is shown in Fig. 4
for kz = 0.
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FIG. 3. (Color online) Excitation spectrum of the 3D Hamiltonian HD with OBC along the y direction, for μ = 0,t = 1,λ = 1 = �. Top
panels: ucd = 2, with C0

+ = 0 for kz = 0 in panel (a), and Cπ
+ = 1 for kz = π in panel (b). Bottom panels: ucd = 4, with C0

+ = 2 for kz = 0 in
panel (c), and Cπ

+ = 0 for kz = π in panel (d). Note that the bulk gap scales as min(λ,�), indicating that the edge modes are more stable for
stronger SO and superconductivity. System size: (Nx,Ny,Nz) = (40,100,40).

This explicitly illustrates how the presence of an even
number of pairs of Majorana modes, such as in the C+ = 2
phase in 3D, makes such modes generally nonrobust against
boundary perturbations, even if the symmetry class of the
system is unchanged. Therefore, a distinctive property of a
3D TR-invariant TS is the presence of an odd number of Dirac
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FIG. 4. (Color online) Excitation spectrum of the 3D Hamiltonian
HD with OBC in the y direction and in the presence of the boundary
perturbation Hp given in Eq. (20). The relevant parameters are μ =
0, t = 1 = λ = �, and ucd = 4, with perturbation strength up = 0.1.
The gapless surface modes clearly become gapped under Hp . System
size: (Nx,Ny,Nz) = (40,100,40).

cones, corresponding to an odd number of pairs of helical
Majorana surface modes, similar to the 1D and 2D cases.
While this might seem to conflict with the robust behavior
predicted from the topological classification49 for the DIII
class in 3D, this apparent contradiction can be resolved by
noting that such a classification strictly must be applied within
“irreducible” blocks where only generic symmetries such as
TR and PH are satisfied. While care is needed in interpreting
the free-fermion topological classification in the presence of
inversion symmetry (see Appendix C in Ref. 49) and, more
generally, interaction effects,51 our model additionally exhibits
“hidden” discrete symmetries which, although hard to identify
a priori, should be taken into account in principle. For instance,
we have explicitly verified that one such Z2 ⊗ Z2 ⊗ Z2 ⊗ Z2

hidden symmetry exists in the limit μ = 0, λ = t , and is broken
by the above perturbation Hp (see Appendix A).

In summary, topologically nontrivial (trivial) phases with
odd (even) PC (PB , PF ) correspond to an odd (even) number
of Dirac cones (or points, depending on dimension). Thus, our
model Hamiltonian HD in Eq. (2) exhibits qualitatively similar
behavior regardless of dimensionality, in the sense that both
trivial and nontrivial TS phases exist in all cases. Thanks to
the richer phase structure, however, more possibilities arise in
3D for different phases to exist. Interestingly, while QPT lines
always separate odd-parity TS from even-parity trivial phases,
a vanishing gap and thus QPT lines can also occur between
regions of the phase diagram sharing similar topological
features in 2D.
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IV. RESPONSE TO TIME-REVERSAL-SYMMETRY-
BREAKING PERTURBATIONS

Since the Hamiltonian HD preserves TR symmetry, the
gapless nature of the Kramers’ pair(s) of helical Majorana
modes in a TS phase is protected against perturbations
that preserve TR symmetry. It is nevertheless interesting to
explore how such robustness properties are modified when TR
symmetry is broken in different ways, and the extent to which
these changes are reflected in the bulk topological indicators.
As a result of explicitly breaking TR symmetry (thus bringing
the system to class D, according to Ref. 39), we expect that
different topological invariants are needed to characterize
the topological phases, as well as a different formulation
of the bulk-boundary correspondence. Specifically, as we
shall see in what follows, Z2 topological invariants may
now be constructed from the parity of the full (rather than
partial) Chern or Berry-phase sum, with the bulk-boundary
correspondence requiring that an odd (even) value of the latter
also implies an odd (even) number of Majorana edge modes
(as opposed to Majorana pairs) on each boundary.

To the best of our knowledge, most investigations aiming
to explore the robustness of topological phases under TR-
symmetry breaking have involved a TI model as their starting
point (see, e.g., Refs. 53–56). In this section, we shall focus
on studying our TS model first in the presence of a uniform
(bulk) Zeeman field along different directions, intended as an
external control parameter, and then in the presence of different
kinds of internal (uncontrollable) magnetic impurities. Next,
we will proceed to quantitatively investigate the effect of TR-
symmetry breaking by moving away from the limit of exactly
π -shifted superconducting gaps [Eq. (6)], and again reconsider
the effect of and interplay with an applied Zeeman field. While
we shall primarily address a 2D geometry, in the light of our
analysis in Sec. III and as it will become clear through the
discussion, the main features emerging for the 2D case will
remain qualitatively valid with some natural modifications for
1D and 3D as well.

A. Majorana modes under a static magnetic field

Throughout this section, we shall continue to assume that
�c = −�d , and consider a total Hamiltonian of the form H ≡
HD + HM , where HD is given in Eq. (2) and

HM =
∑

ν=x,y,z

H
(ν)
M , H

(ν)
M =

∑
j

h(j )
ν ψ

†
j σνψj . (21)

Here, h(j )
ν represents the strength of the magnetic field/impurity

along the ν direction at site j , and the sum extends over all
lattice sites or over boundary sites only, depending on whether
a bulk or boundary field is considered. With reference to the
spin (z) quantization axis, we shall refer to the z (x,y) as
longitudinal (transverse) directions, respectively.

1. Effect of a uniform longitudinal magnetic field

Let us begin by considering the response of the bulk to a
uniform z-magnetic field, that is, h

(j )
ν = hz = 0. Remarkably,

an analytical solution for the full spectrum still exists for
PBC by employing the diagonalization procedure described
in Sec. II A, thanks to the fact that the SO coupling HSO has

no component along z (see also Appendix C). That is, the
total Hamiltonian can still be rewritten as in Eq. (4), with
Ĥ ′

k = Ĥ ′
+,k ⊕ Ĥ ′

−,k defined in Eqs. (8) and (9), except that
now we replace mk �→ m±,k = mk ± hz, in the corresponding
expression for Ĥ ′

±,k. With this substitution, the excitation
spectrum εn,k,+ (εn,k,−) obtained from diagonalizing Ĥ ′

+,k

(Ĥ ′
−,k) is formally still given by Eq. (10). Thus, it is clear

that the effect of the longitudinal Zeeman field is to formally
replace ucd �→ ucd ± hz for Ĥ ′

±,k, respectively. QPTs occur
when the excitation gap closes, that is, when either ε2,k,+ = 0
or ε2,k,− = 0 (for general � = 0), which determines the QPT
lines as m±,kc

= ±
.
Since TR symmetry is broken, the full sum of the CNs

over the two occupied negative bands of both Ĥ ′
+,k and Ĥ ′

−,k
need no longer be zero. Thus, we can use the parity of this
full Chern sum P̃C as a Z2 invariant. However, in order to
make a comparison between partial Chern sums with and
without magnetic field, we still calculate, following Eq. (15),
the partial Chern sums (C+,±) of the two occupied negative
bands of Ĥ ′

±,k separately (say, C1,± and C2,±) and construct
the parity invariant as follows:

P̃C ≡ (−1)mod2(C+,++C+,−), C+,± ≡ C1,± + C2,±,

in such a way that C+,+ = −C+,− = C+ [given by Eq. (16)]
in the absence of magnetic field.

The resulting topological phase structure is shown in
Fig. 5, where the two numbers reported in parentheses are
the two partial Chern sums C+,+ and C+,−, respectively.
Two remarks are in order. First, despite the fact that, as
we have verified, no singular behavior of the derivatives
of the many-body ground-state energy with respect to hz

develops at hz = 0, one should treat the phases along the
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FIG. 5. (Color online) Topological phase diagram of the 2D
Hamiltonian HD + HM , with HM ≡ H

(z)
M being a longitudinal Zee-

man field with strength hz. The remaining parameters are t = 1,
ucd = 1, μ = −1 for arbitrary λ = 0. The topological response is
characterized via the partial CN sum (C+,+,C+,−) from the occupied
bands of Ĥ ′

+,k and Ĥ ′
−,k, respectively. The horizontal black dotted

line has the same meaning of the zero-field case. The vertical black
dotted line indicates that a different classification of phases applies
along the TR-invariant line hz = 0 (see text).
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TR-invariant line hz = 0 as being different from those in
the TR-broken region hz = 0. This is because the process of
adiabatic connection between two regions in parameter space
must be carried out without changing the basic symmetry
class in order for these regions to be meaningfully thought
as belonging to one and the same topological phase.49 Second,
in a real physical system, an excessively strong magnetic field
can destroy superconductivity. Thus, we have also performed
self-consistent calculations, along the lines of Appendix B,
in order to have at least some indication on the degree of
stability of different phases in Fig. 5. Our numerical results
suggest that the required range of � remains accessible in the
presence of magnetic field for all the phases not too far from
the center of the phase diagram, labeled with (C+,+,C+,−) =
(2,0),(0,−2),(0,0),(−1,0),(0,1),(−1,1). Specifically, in order
to get a rough order-of-magnitude estimate, let us assume a
material with narrow bandwidth, say between 10 ∼ 100 meV,
indicating that the tight-binding coupling strength t is in the
range 2 ∼ 20 meV. The value hz = 0.1 may then correspond to
a field strength between 0.2 ∼ 2 meV (2 ∼ 20 T, respectively).
Since hz can be arbitrarily close to zero in the above-
mentioned phases, however, the corresponding magnetic field
strengths can safely be below the critical field strength in
superconductors.

Similar to the case when TR symmetry is conserved, we
may still establish a direct connection between the invariant
P̃C defined above and the full fermion number parity of the TR-
invariant modes P̃F . Following the same procedure outlined in
Sec. II B, we find that when |m+,kc

| > |
|, the ground state of
each mode kc in Ĥ ′

+,k belongs to the sector with odd fermion

parity, that is, P+,kc
= eiπ(a†

kc ,↑akc ,↑+b
†
kc ,↓bkc ,↓) = −1, otherwise

it is in the sector with even fermion parity P+,kc
= 1. Similar

results for the fermion parity P−,kc
of the ground state of

each mode kc in Ĥ ′
−,k are obtained by analyzing the relation

between |m−,kc
| and |
|. As a result of breaking TR symmetry,

however, P−,kc
need not be equal to P+,kc

, just like C+,− is not
necessarily the opposite to C+,+. Nonetheless, let us define, in
analogy to Eq. (17),

P̃F ≡
∏
kc

P+,kc
P−,kc

.

Then, by analyzing the relation between |m±,kc
| and |�| for

each kc, we can see that the TS (trivial) phases with P̃C =
−1 (1) correspond to the ground state with P̃F = −1 (1), as
anticipated. In contrast to the TR-invariant case, note that it is
necessary to take into account the CNs or fermion parity of the
occupied bands in both Ĥ ′

±,k, in order for this correspondence
to hold.

Let us now focus on exploring the effect of the magnetic
field on the Majorana edge states. To do so, as before we
study the 2D Hamiltonian H = HD + HM on a cylinder
(PBC along x, and OBC along y), with the corresponding
excitation spectrum εn,kx

obtained by applying a Fourier
transformation in the x direction only. In order to demonstrate
the bulk-boundary correspondence when TR symmetry is
broken, that is, the correspondence between a bulk with
P̃C = 1 (−1) and the presence of an even (odd) number of
Majorana edge modes, we show in Fig. 6 two representative
cases with P̃C = 1 (−1), respectively. Specifically, for even P̃C
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FIG. 6. (Color online) Excitation spectrum of the 2D Hamiltonian
HD + HM on a cylinder, with HM = H

(z)
M being a longitudinal

Zeeman field with strength hz = 1, and μ = −1, t = 1 = λ. Top
panel: ucd = 4, � = 2, P̃C = 1. Two (helical) Majorana edge states
exist on each boundary, corresponding to a trivial phase. Bottom
panel: ucd = 5, � = 1, P̃C = −1. One (chiral) Majorana edge state
exists on each boundary, corresponding to a TS phase. System size:
(Nx,Ny) = (40,100).

(top panel, C+,+ = 1,C+,− = −1), two helical Majorana edge
states exist on each boundary, whereas for odd P̃C (bottom
panel, C+,+ = 0,C+,− = −1), only one chiral Majorana edge
state on each boundary, which is consistent with the above
bulk-boundary correspondence. Accordingly, the top (bottom)
panel of Fig. 6 corresponds to a trivial (nontrivial) topological
phase.

Interestingly, if the magnetic field is turned off while
keeping all the other control parameters unchanged in the
trivial phase corresponding to the top panel, the same partial
Chern sums C+,+ = 1,C+,− = −1 still hold in the limit
hz → 0. These values, however, correspond now to a nontrivial
TR-invariant TS since the Z2 invariant is characterized by the
(odd) parity of the partial Chern sum when TR symmetry
is preserved rather than the parity of the Chern sum for all
the occupied bands. This illustrates how the same topological
number may in fact correspond to completely different phases.
The key point here is that the topological invariant changes
when the basic symmetry class changes, as a consequence of
TR symmetry being broken. Although, as already remarked,
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no singular behavior develops at hz = 0, a topological QPT
still takes place in this sense, solely signaled by the change of
the underlying topological invariant.

The observation that the two situations for hz = 0 and hz =
0 in the above discussion correspond to nontrivial and trivial
topological phases, respectively, may be explicitly confirmed
by investigating the response of the gapless edge states under
the effect of a TR-preserving backscattering interaction. For
instance, let us consider the following boundary perturbation:

Hb = i
∑
kx ,jy

u
(jy )
1

(
c
†
kx ,jy ,↑dkx,jy ,↑ − c

†
kx ,jy ,↓dkx,jy ,↓

) + H.c.,

where u
(jy )
1 = u1 = 0 for jy = 1 or jy = Ny , and u

(jy )
1 = 0

otherwise. Let us also introduce the terminology of a “quasi-
TR pair” to refer to two gapless Majorana edge modes
when (i) TR symmetry is broken, yet, (ii) the relationship
C+,+ = −C+,− still holds for the corresponding bulk. A
comparison between the robustness of a Kramers’ pair and
a quasi-TR pair of Majorana modes against Hb is shown in
Fig. 7. As one can see, the Kramers’ pairs of Majorana modes
are robust (top panel), whereas the quasi-TR pairs are not,
in the sense that they become gapped, with a gap scaling
linearly in u1 (bottom panel). Thus, gapless TR pairs of edge
modes of the zero-field Hamiltonian HD may remain gapless
in the presence of a magnetic field. However, their degree of
robustness against subsequent TR-preserving perturbations is,
in general, different as compared to the original Kramers’ pairs.
It is worth noting that a similar behavior was also reported
recently in the context of a TR-invariant quantum spin Hall
system,53 where a pair of gapless edge states was found to
remain gapless when an external magnetic field was added.
These gapless edge states would, however, become gapped
in the presence of backscattering, indicating a low-dissipation
(but not dissipationless) spin transport.

Unlike in other models where a Zeeman magnetic field is
required for the very existence of Majorana modes (see, for
instance, in Refs. 50 and 57), we iterate that this is clearly not
the case in our multiband system. Rather, the Zeeman field
may be viewed as a control knob for potentially tuning the
emergence/disappearance of Majorana modes. For instance,
with reference to the phase diagram in Fig. 5, imagine that
for a fixed value of �, say � = 3.2, the magnetic field hz is
increased from hz = 0 to 8. Then, it turns out that the number
of Majorana edge modes changes in the following way: 2
(one TR pair, as hz = 0) → 2 (one quasi-TR pair)→ 3 →
2 → 1, which effectively turns the original strong TS into
a weak/trivial one depending on the applied field strength.
Likewise, if � is instead fixed at, say, � = 1, a nonzero hz

can turn a weak TS into a nontrivial topological phase with
only one robust Majorana edge mode on each boundary. The
usefulness of a Zeeman field as a tuning mechanism in the
presence of an additional TR-breaking perturbation will also
be further discussed in Sec. IV B.

2. Effect of uniform transverse magnetic fields

Let us now briefly consider the case where a Zeeman
field is instead applied in a transverse (x or y) direction,
with focus on the changes induced in the edge spectrum.
Specifically, imagine first that the magnetic field acts along
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FIG. 7. (Color online) Excitation spectrum of the 2D Hamiltonian
HD + HM + Hb on a cylinder, with HM = H

(z)
M being a longitudinal

Zeeman field with strength hz and Hb a backscattering potential
with strength u1 = 0.2, respectively, for μ = −1, t = 1 = λ, ucd =
4, � = 2. Top panel: TR-invariant case, hz = 0. The two Majorana
modes on each edge form a Kramers’ pair and remain gapless under
Hb. Bottom panel: TR-broken case, hz = 1. The two Majorana modes
on each edge form a quasi-TR pair; note the appearance of a gap in
the edge spectrum. System size: (Nx,Ny) = (40,100).

x, that is, h
(j )
ν = hx in Eq. (21). In the presence of such a

field, the total Hamiltonian HD + HM on a cylinder can no
longer be decoupled into two 4Ny × 4Ny matrices for each
momentum mode kx (see Appendix C). We can nevertheless
obtain physical insight by examining specific cases. Imagine,
in particular, that the system is in a TS phase when hx = 0,
say corresponding to μ = −1, ucd = 4, � = 1, with reference
to the phase diagram in Fig. 2 (top right panel), and imagine
that we still express the energy eigenvectors in the basis of
canonical fermion annihilation operators aσ and bσ defined
in Eq. (7) when hx = 0. Then, we may represent the two
TR-invariant Majorana edge modes (γ1,γ2), γ2 = T γ1T −1,
that exist for kx = 0 on each boundary in the form

γ1 =
Ny∑

jy=1

(
αjy

a
†
jy ,↑ + βjy

b
†
jy ,↓ + H.c.

)
,

(22)

γ2 =
Ny∑

jy=1

(
αjy

a
†
jy ,↓ − βjy

b
†
jy ,↑ + H.c.

)
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FIG. 8. (Color online) Excitation spectrum of the 2D Hamiltonian
HD + HM on a cylinder, with HM = H

(ν)
M being a uniform transverse

field, for μ = −1, t = 1 = λ, ucd = 4, � = 1. Top panel: x field,
with strength hx = 0.5. The edge spectrum remains gapless. Bottom
panel: y field, with strength hy = 0.2. The edge spectrum becomes
gapped. System size: (Nx,Ny) = (40,100).

for suitable real coefficients [cf. Eq. (19)]. Direct calculation
shows that the matrix element with respect to the many-body
ground state vanishes:

〈�gs|γ †
2 H

(x)
M γ1|�gs〉 = 0. (23)

Similarly, one also finds that

〈�gs|γ †
2 H

(y)
M γ1|�gs〉 = 0. (24)

Thus, according to degenerate perturbation theory, a field in
the x direction can not lift the degeneracy of the gapless
Majorana edge modes supported by HD , whereas in general a
field along the y direction does. These conclusions have been
confirmed by explicit numerical calculation, with illustrative
results shown in Fig. 8.

It is worth noting that the different roles that magnetic
fields in the x versus y direction play in our model is
ultimately a consequence of the different boundary conditions
imposed in these directions PBC (OBC) along x (y) directions,
respectively. Should the latter be interchanged, then the effect
of transverse perturbations along x and y would be as well.
Furthermore, even if the edge spectrum remains gapless under
hx = 0, the edge modes no longer form Kramers’ pairs. Thus,

similarly to the behavior found in the presence of a z field
(Fig. 7), these modes are not expected in general to have the
same degree of robustness against disorder/backscattering as
they have in the TR-invariant case.

As a side remark, it is also interesting to observe that in
the limit � → 0, μ → 0, where the model Hamiltonian HD

describes a TI, a perturbation in the x direction does not lift
the degeneracy of the gapless edge modes either, despite the
lack of Majorana fermions. As a result of PH symmetry, the
two fermionic TR-invariant edge modes at the Dirac point can
now be written as (hx = 0)

γ1 =
Ny∑

jy=1

αjy

(
ajy,↑ + bjy,↓

)
,

γ2 =
Ny∑

jy=1

αjy

(
ajy,↓ − bjy,↑

)
,

that is, the quasiparticles ajy,↑(ajy,↓) and bjy,↓(bjy,↑) behave as
if they were particle-hole pairs. The possibility that edge states
in a TI may remain robust despite TR breaking was recently
noted in a different context.56

3. Effect of magnetic impurities

In reality, even in the absence of external perturbations,
magnetic fields are inevitably present due to various kinds of
impurities in the material. Thus, it is important to get a sense of
what effect such magnetic fields will have on Majorana modes,
a main difference with respect to the uniform-field case being
that translational symmetry is now explicitly broken along
one or more spatial directions. While more complex scenarios
can be envisioned, we limit ourselves here to impurity fields
acting along a single direction. In particular, we consider a
longitudinal (z) impurity field in a 2D geometry, and still
assume PBC (OBC) in the x (y) direction, respectively.

Suppose that the system is in a TS phase, with a pair of
Majorana edge states on each boundary. Two scenarios may
be physically interesting: (i) a single magnetic impurity on
each boundary, in which case we may let, for instance, h

(j )
ν =

hz = 0, for j ∈ {(1,1),(Nx,Ny)}, and h
(j )
ν = 0 otherwise in

Eq. (21); (ii) random magnetic impurities on each boundary,
in which case we may let, for instance, h

(j )
z in Eq. (21) to be

uniformly distributed random numbers in [0,1].
As a result of explicitly breaking translational symmetry,

the total Hamiltonian can now be written directly in real space
in the form

HD + HM =
∑
i,j

(
ψ

†
i ,ψ

T
i

)
Ĥi,j

(
ψj

(ψ†
j )T

)

for a suitable matrix Ĥi,j . Numerical results obtained by
diagonalizing HD + HM in the single-particle sector Ĥi,j in the
two cases are shown in Fig. 9, where the label Em corresponds
to the mth single-particle eigenvalue and only the energy
eigenvalues near zero are displayed. Despite TR symmetry
being broken, gapless edge modes may still be inferred to
persist in both cases in the thermodynamic limit: in case (i),
the minimum gap in the edge spectrum is about 10−8 (10−12)
for system size 16 × 16 (24 × 24), and similarly in case
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FIG. 9. (Color online) Single-particle excitation spectrum of
the 2D Hamiltonian HD + HM on a cylinder, with HM = H

(z)
M

representing a longitudinal impurity magnetic field, for μ = −1, t =
1 = λ, ucd = 4, � = 2. The blue triangle corresponds to case (i),
with a single magnetic impurity with strength hz = 0.5 on each
boundary, whereas the red dots correspond to uniformly distributed
random magnetic impurities on each boundary (averaged over 10
different realizations). System size: (Nx,Ny) = (16,16).

(ii) such a minimum gap is 10−8 (10−11) for system size
16 × 16 (24 × 24), respectively. Hence, the Majorana edge
modes are stable against the effect of either single or random
boundary perturbation along the z direction.

Since, from our analysis for a uniform field [Eqs. (23)
and (24)], we know that the edge spectrum of our Hamiltonian
remains gapless under hx perturbations, we may additionally
conclude that Majorana modes remain gapless in the presence
of magnetic impurities (single or random) along x, whereas
magnetic impurities along the y direction will generally result
in gapped edge modes.

Although, as anticipated, we have focused above on the
2D case, a similar approach may be employed to determine
the magnetic field response for the 1D and 3D models. The
situation is straightforward in 1D: the exact phase diagram
under a z field can be determined as in Sec. IV A1 and, if
either z or y impurity fields are present, edge modes remain
gapless, unlike for an x field due to the OBC imposed along
x. In 3D, although z is no longer a special direction for the
zero-field Hamiltonian, we may still obtain the exact phase
diagram under a longitudinal magnetic field if we fix kz = kz,c

as we also did in Sec. II A. If we still impose OBC along y,
then similar to the 2D case, gapless edge modes remain gapless
for magnetic fields along the x or z directions, whereas they
become gapped for a field along y.

B. Majorana modes away from π -shifted gaps

Throughout our discussion so far we have assumed that
the superconducting pairing gaps are exactly π shifted, �c =
−�d . Both because this condition need not be (exactly)
satisfied in practice, and in order to gain additional insight
on the role it plays, it is interesting to ask what happens if it is
relaxed, while still treating the gaps as tunable parameters. For
simplicity, let us examine separately the two main mechanisms
by which the equality �c = −�d may break: (i) the two gaps
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FIG. 10. (Color online) Minimum gap �edge of the edge spectrum
of the 2D Hamiltonian HD on a cylinder, away from the symmetry
point �c = −�d . Top panel: effect of a TR-preserving amplitude
mismatch in the absence (ε = 0) or in the presence (ε = π ) of a
concomitant phase mismatch. Bottom panel: effect of a TR-breaking
phase mismatch perturbation. System size: (Nx,Ny) = (40,100).

may be mismatched in amplitude, that is, |�c| = |�d | but
the corresponding phases still obey θc − θd = π ; (ii) the two
gaps may be mismatched in phase, that is, |�c| = |�d | but
θc − θd = π , say, θc − θd = π + ε.

While TR symmetry is respected in case (i), this is
no longer the case unless ε = mπ , m ∈ Z, in case (ii).
Representative numerical results illustrating the effect of these
two perturbations in 2D are shown in Fig. 10, where the value
�edge is twice the energy difference between the edge and
zero-energy states. As the data clearly show, Majorana edge
states remain stable (gapless) against an amplitude mismatch
as in (i) (see also Ref. 32), whereas they become gapped for
a phase mismatch as in (ii), with a minimum gap that scales
linearly with ε.

Interestingly, it is possible to counter the effect of a nonzero
ε by applying a Zeeman longitudinal field in the bulk. In
particular, recalling the analysis of Sec. IV A 1, we find that in
order to restore gapless Majorana excitations, it is necessary
to have a sufficiently strong magnetic field to allow the
unperturbed Hamiltonians Ĥ ′

+,k (with u′
cd ≡ ucd + hz) and

Ĥ ′
−,k (with u′

cd ≡ ucd − hz) to belong to different phases in
the corresponding phase diagram (Fig. 2). Explicit numerical
results are shown in Fig. 11: in the top panel, the original
Hamiltonian with ε = 0, hz = 0 is in the TR-invariant TS
phase with CNs C+,+ = 1, C+,− = −1, supporting a TR
Kramers’ pair of Majorana modes on each edge. If ε = 0
and the Zeeman field strength is sufficiently large, hz � 0.6,
the CNs become C+,+ = 0, C+,− = −2, and the edge states
become correspondingly gapless, with two chiral (coprop-
agating) Majorana modes on each boundary (note that the
latter do not form a quasi-TR pair according to our definition).
Similarly, in the bottom panel, the original Hamiltonian with
ε = 0, hz = 0 is in the TR-invariant TS phase with CNs
C+,+ = −1, C+,− = 1. If, again, the Zeeman field strength is
sufficiently large, the CNs become C+,+ = −1, C+,− = 0, and
gapless Majorana excitations are restored. In fact, since one
of the original Majorana modes fuses with the bulk and thus
only one edge mode exists on each boundary, this mode retains
robustness against the effect of TR-preserving backscattering
perturbation, despite TR being explicitly broken.

In order to verify the physical relevance of using relatively
strong magnetic fields to restore Majorana excitations, we have
again also performed self-consistent calculations of the super-
conducting order parameter � for representative situations,

205414-13



SHUSA DENG, GERARDO ORTIZ, AND LORENZA VIOLA PHYSICAL REVIEW B 87, 205414 (2013)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

hz

Δ
e
d
g
e

= 0.05

= 0.1

= 0.2 μ = 0
ucd = 4
|Δ| = 0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

hz

Δ
e
d
g
e

= 0.05

= 0.1

= 0.2
μ = −1
ucd = 1
|Δ| = 4.5

FIG. 11. (Color online) Effect of a longitudinal Zeeman field in
restoring gapless Majorana excitations in the presence of a phase
mismatch ε = 0, for two different sets of parameters in 2D. In the
bottom panel, the minimum magnetic field strength required for
restoring gapless Majorana modes depends more strongly upon ε

as a result of the relatively large amplitude of |�|. System size:
(Nx,Ny) = (40,100).

in particular for the situation just discussed, corresponding to
the bottom panel of Fig. 11. Our results show that values of
the pairing gap |�| in the given range can still be achieved
self-consistently even in the presence of the required magnetic
field. Lower magnetic field strengths can also in principle be
obtained by suitably modifying the parameter ucd .

Mathematically, the fact that a magnetic field can restore
gapless Majorana excitations may be understood through
degenerate perturbation theory. Suppose that hz = 0 and
ε = 0, the TR pair of Majorana edge modes (γ1,2) in the
phase with C+,+ = −C+,− = 1 may be expressed as Eq. (22).
Now let �d = −�ce

iε = −�c − iε�c + O(ε2). Then, direct
calculation shows that the effect of the perturbing term in HD

scales as

〈�gs|γ †
2

(
−iε�c

∑
j

d
†
j,↑d

†
j,↓ + H.c.

)
γ1|�gs〉 ∼ ε, (25)

consistent with the behavior reported in Fig. 10. When a weak
magnetic field is applied in the above case, the TR pair of
Majorana edge modes become quasi-TR pair (since C+,+ =

−C+,− = 1 remains true), and maybe expressed in the form

γ̃1 =
Ny∑

jy=1

(
α̃jy

a
†
jy ,↑ + β̃jy

b
†
jy ,↓ + H.c.

)
,

(26)

γ̃2 =
Ny∑

jy=1

(
α̃′

jy
a
†
jy ,↓ − β̃ ′

jy
b
†
jy ,↑ + H.c.

)
for real expansion coefficients. [Notice that, in comparison
to Eq. (22) for a TR pair of Majorana modes, the form of
Eq. (26) is still the same, but the coefficients α̃′

jy
(β̃ ′

jy
) are

in general different from α̃jy
(β̃jy

).] One may then show that
Eq. (25) remains valid with γ1,2 replaced by γ̃1,2, leaving
the edge spectrum gapped, as seen in Fig. 11. On the other
hand, if ε = 0 and hz = 0 is large, as in the above case where
C+,+ = 0, C+,− = −2, the two chiral Majorana edge modes on
one boundary can no longer be regarded as a quasi-TR pair but
should rather be expressed as in Eq. (19). By introducing now
the effect of the phase-mismatch perturbing term as done above
(−iε�c), a similar calculation shows that the degeneracy
between the two Majorana modes can not be lifted, despite
the fact that they are not a quasi-TR pair.

This is interesting as it demonstrates that “unpaired”
Majorana modes need not be, a priori, less robust than modes
forming a (quasi-)TR pair: A TR Majorana pair is guaranteed
to behave robustly against perturbations that preserve TR
symmetry, however, once the latter is broken (via hz in our
example), it may happen that unpaired Majorana modes are
more robust against additional TR breaking (such as a phase
mismatch, and possibly even backscattering if only one mode
is present on each edge). Thus, the robustness of edge modes
ultimately depends on the specific form of the perturbations.

As implied by the above discussion, the application of a
TR-breaking Zeeman magnetic field allows for effectively
changing the helical nature of the original TR-invariant edge
spectrum of HD into a chiral one (Figs. 6 and 11). In fact,
the interplay between a phase mismatch in the pairing gaps
and an applied Zeeman field may be exploited to steer the
system across a topological QPT between helical and chiral
phases. This is explicitly demonstrated in Fig. 12, where for
clarity the edge modes propagating only on one boundary are
plotted. Starting from a TS phase at ε = 0 = hz supporting
a Kramers’ pair of helical Majorana modes [Fig. 12(a)], a
nonzero phase mismatch causes these two modes to become
gapped [Fig. 12(b)]. As a Zeeman field is turned on, both the
edge and bulk spectrum are modified [Fig. 12(c)] until for a
sufficiently strong field gapless Majorana modes are restored
[Fig. 12(d)]. As in Fig. 11 (top), there are still two Majorana
modes, which travel in the same direction along each edge, thus
forming a chiral pair. This helical-to-chiral transformation is
accompanied by a closing of the bulk gap, which we have
verified happens for parameter values intermediate between
Figs. 12(c) and 12(d) (data not shown).

As noted in discussing Fig. 11 (bottom), it is also possible
that upon increasing the Zeeman magnetic field, one of the
original Majorana modes dissolves into the bulk, leaving the
system in a topologically nontrivial chiral phase. Interestingly,
a topological QPT between a helical quantum spin Hall phase
and a chiral spin-imbalanced quantum Hall state was also
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FIG. 12. (Color online) Excitation spectrum for the 2D Hamiltonian HD + H
(z)
M on the cylinder, for μ = 0, ucd = 4, |�c| = |�d | = 1.

Only the excitation spectrum of the edge modes located on one boundary is plotted for clarity in all cases. (a) hz = 0, ε = 0. A pair of gapless
Majorana modes exist, with TR partners counterpropagating along the boundary. (b) hz = 0, ε = 0.2. Due to the phase mismatch, the helical
edge modes become gapped [compare to Fig. 11(top)]. (c) hz = 0.2, ε = 0.2. Gapped helical edge modes still exist with asymmetric bulk
excitation spectrum for the counterpropagating modes. The bulk gap closes at ε = 0.2, hz ≈ 1.0. (d) hz = 1.5, ε = 0.2. A pair of gapless
Majorana modes is restored, with both members propagating along the same direction along the boundary. System size: (Nx,Ny) = (80,100).

predicted in Ref. 55 for a 2D honeycomb fermionic lattice.
While such a QPT is induced by tuning a Rashba SO coupling
rather than a Zeeman field, our results point to suggestive
similarities between the underlying physics and additional
routes for topological phase manipulation.

V. CANDIDATE MATERIAL REALIZATIONS

Identifying superconducting materials for which the Hamil-
tonian HD in Eq. (2), or its spin-singlet variant H̃D in Eq. (11),
may provide an adequate physical model requires an in-depth
dedicated study which is beyond our current scope. In this
section, we nevertheless provide some perspective that may
be useful to guide further exploration, also in the context of
ongoing experiments.

Recently discovered materials such as CuxBi2Se3 (Refs. 34
and 36) and Sn1−xInxTe (Ref. 35) are attracting significant
attention as possible TR-invariant (centrosymmetric) TSs in
3D. In general, strongly SO-coupled doped semiconductors are
natural candidates to search for topological superconductivity.
The presence of a zero-bias conductance peak (ZBCP) in
the measured point-contact spectrum has been interpreted,
in particular, as a signature of the surface helical Majorana
fermions associated with a nontrivial topological behavior.
Experimentally, it is observed that such a ZBCP has a
distinctive magnetic field dependence, its amplitude being
strongly suppressed by a relatively weak Zeeman field applied
perpendicularly to the cleaved surface, consistent with delocal-
ization of Majorana modes.58 While a theoretical description
of CuxBi2Se3 has been proposed based on an unconventional
spin-triplet pairing with odd parity,25,59 scanning tunneling
spectroscopy measurements of the superconducting gap ap-
pear to be consistent, at least for current Cu concentration,
with a fully gapped s-wave spectrum and no mid-gap energy
state.36

With reference to our two-band model, there are two aspects
we would like to highlight in regard to the above discussion.
First, we have investigated the density of Majorana modes
(DMM) on the boundary as a function of the magnetic field
strength in both 2D and 3D. Suppose, specifically, that the
system is originally in a TS phase characterized by CNs
(C0

+,Cπ
+) = (1,0) in 3D and C+ = 1 in 2D, in which cases

a TR pair of Majorana modes at the Dirac cones exist on each
edge. When a weak magnetic field is applied, such that TR

is broken but the CNs remain unchanged, the two Majorana
modes become a quasi-TR pair and may thus be expressed as
in Eq. (26). Therefore, the DMM on a given boundary (say,
jy = 1) may be computed as

DMM = (|α̃1|2 + |β̃1|2 + |α̃′
1|2 + |β̃ ′

1|2) (27)

with an equivalent definition holding for the other boundary.
The numerically computed DMM in 2D (3D) is shown in the
main (inset) panels of Fig. 13, respectively. Clearly, in our
two-band TS, a weak applied magnetic field delocalizes the
Majorana fermions in both cases, qualitatively similar to the
observed ZBCP dependence.

Second, it is interesting to contrast the DMM behavior
to the one of a quantity which is more directly related to
the measured scanning-tunneling spectrum, namely, the local
density of states (LDOS), computed as

LDOS(jy,E) = 1

Nx

∑
n,kx

∑
i=1,4

[|ui(n,kx,jy)|2δ(E − εn,kx

)
+ |vi(n,kx,jy)|2δ(E + εn,kx

)]
, (28)

where (u1, . . . ,u4,v1, . . . ,v4)† is the single-particle eigenvec-
tor corresponding to energy εn,kx

of HD + H
(z)
M with PBC in

the x̂ direction and OBC in the ŷ direction. While a more

0 0.1 0.2 0.3 0.4 0.5
0.9

0.92

0.94

0.96

0.98

hz

D
M

M

0 0.2 0.4
0.56

0.6

0.64

hz

D
M

M

ucd = 5
Δ = 2

ucd = 4
Δ = 2

FIG. 13. (Color online) Density of Majorana modes on the
boundary [Eq. (27)] for the 2D (main panel) and 3D (inset)
Hamiltonian HD + H

(z)
M as a function of the applied magnetic field

strength hz, and μ = −1. System size: (Nx,Ny) = (40,100) for 2D
and (Nx,Ny,Nz) = (40,100,40) for 3D.
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FIG. 14. (Color online) Local density of states on the boundary
[jy = 1, Eq. (28)] for the 2D Hamiltonian HD + H

(z)
M for different

values of the applied magnetic field strength hz. The remaining
parameters are the same as in Fig. 13, except the system size is
now (Nx,Ny) = (400,80).

in-depth analysis will be presented elsewhere,60 numerical
results for the LDOS profile of the same 2D TS considered
in Fig. 13 are shown in Fig. 14, for selected values of the
applied Zeeman field. Despite the existence of zero-energy
Majorana modes in the fully gapped TS under consideration,
no peak is manifest at zero energy [unlike in 1D (Ref. 58)].
Although the absence of such a peak is consistent with
the measurements in Ref. 36, our DMM and LDOS results
taken together suggest that care is needed in diagnosing the
presence or absence of Majorana modes from such quantities,
as also remarked in Ref. 34. A conclusive determination will
likely require additional cross checks, including spectroscopic
measurements on higher-doped materials. Confirmation of
the absence of a zero-energy peak, along with evidence for
spin-singlet pairing and/or of a two-gap behavior, would
constitute experimental signatures in favor of our TS model
in describing these or possibly similar doped-semiconducting
materials.

A different intriguing possibility is provided by s-wave
pairing with a sign reversal of the superconducting order
parameter between different Fermi surface sheets, resulting
in so-called s± symmetry.61,62 While an unambiguous experi-
mental characterization has yet to be established, s± symmetry
is widely believed to be realized and play an important
role in iron-based superconductors of both the iron-pnictide
and the chalcogen-based family.29 Interestingly, for such
superconductors, it has been experimentally established that
the Cooper pairs consist of spin singlets, and their s± symmetry
would automatically realize the π -symmetry condition that
is required for our TR-invariant Hamiltonian to support
nontrivial topological phases and Majorana modes to emerge.
Although additional quantitative study is certainly needed
before any solid conclusion can be reached (see also Ref. 63
for a recent proposal on topological superconductivity via
proximity effects between s± wave iron-based superconductor
and semiconductors), we conjecture that iron-based materials
may provide a natural candidate for realizing our model in
nature, as first suggested in Ref. 30.

VI. CONCLUSIONS

We have continued our investigation of time-reversal-
invariant multiband s-wave topological superconductors as
introduced in Ref. 30. This class of superconductors involves
at least two spin- 1

2 fermionic bands, spin-orbit coupling, and
bulk s-wave superconducting fluctuations. In the two-band
case, provided that a sign reversal (π shift) between the
superconducting pairing gaps is realized, the model can be
analytically solved in 1D, 2D, and 3D upon restricting to
the excitation spectrum of time-reversal-invariant momen-
tum modes. Our model may then be interpreted as either
an intraband or an interband spin-singlet bulk topological
superconductor since there exists an exact unitary mapping
connecting both representations. From the standpoint of the
classification introduced in Ref. 39, our model belongs to the
DIII symmetry class, as shown in full mathematical detail
in Appendix A. In the absence of superconductivity, our
Hamiltonian describes a topological insulator, and thus one
may think of our superconducting state as emerging from a
doped topological insulator.

An important part of our work is the topological char-
acterization, into trivial as opposed to nontrivial topological
states, of the various possible phases generated as a result of
changes in the parameters of our model Hamiltonian. To this
end, we have introduced (and explained in Appendix D how
to numerically compute) corresponding bulk Z2 topological
invariants that are, in principle, generalizable to interacting
systems. In the time-reversal-invariant case, only one Kramers’
sector is included in the computation of the topological
invariants, while when TR symmetry is explicitly broken we
have showed how to modify these bulk topological invariants to
include all the states. Physically, these topological invariants
are key to understanding the bulk-boundary correspondence
between the (trivial and nontrivial) topological nature of the
bulk state and the existence of robust Majorana edge modes.
Topologically nontrivial superconducting phases support an
odd number of Kramers’ pairs (in the time-reversal-invariant
case) or an odd number (in the broken time-reversal case)
of Majorana modes on each boundary, respectively. Topo-
logically nontrivial phases are associated to robust Majorana
edge states: in the time-reversal-invariant case, they are robust
against perturbations that preserve such symmetry, while in the
broken time-reversal-symmetry case, they are robust against
different kinds of perturbations.

Throughout this work, emphasis has been put into exploring
(1) the relation between the spatial dimensionality of our
model and the emergence of nontrivial topological phases;
and (2) the stability/robustness of gapless Majorana edge
states under different mechanisms for breaking time-reversal
symmetry, such as applied or impurity magnetic fields or
broken time-reversal invariance due to a deviation from π -
shifted superconducting gaps. While a number of interesting
problems remain open for further investigation as indicated in
the text, our main findings may be itemized as follows:

(i) Nontrivial topological phases that exist in our 2D
two-band time-reversal-invariant model30 can be extended
to 1D and 3D. Topologically trivial and nontrivial s-wave
spin-singlet superconducting phases exist in all the spatial
dimensions studied.
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(ii) Lower-dimensional Z2 invariant can be extended to
characterize higher-dimensional topological phases.

(iii) Gapless pairs of Majorana modes that exist in a
topologically nontrivial phase in the absence of an applied
or impurity magnetic field may remain gapless under such a
perturbation. However, since these Majorana modes are no
longer protected by time-reversal symmetry, their degree of
robustness against subsequent perturbations is, in general,
different as compared to the original Kramers’ pairs, and
dependent upon the perturbation details.

(iv) Suitable static magnetic fields may be used to restore
Majorana edge modes when the phase of the gaps of the
superconductor is not π shifted.

(v) Under the effect of a Zeeman magnetic field, helical
Majorana excitations in our time-reversal-invariant model may
be transformed into chiral Majorana excitations, providing
an interesting example of a topological quantum phase
transition.

(vi) Candidate materials that may potentially realize our
proposal for time-reversal-invariant topological superconduc-
tivity and Majorana edge modes may be provided by strongly
spin-orbit-coupled doped semiconductors or iron-based super-
conductors with s± pairing symmetry.
(vii) The existence of Majorana edge modes in 2D (and

3D) fully gapped TS need not imply a zero-energy peak
in the local density of states on the surface. Thus, care is
needed in interpreting point-contact and scanning-tunneling
spectroscopy measurements and in identifying unambiguous
experimental signatures.
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APPENDIX A: SYMMETRY CLASS

Here, we provide an explicit representation of the discrete
symmetry properties of our basic Hamiltonian (2) as relevant to
the topological classification of Refs. 39 and 49. In addition, we
describe the hidden discrete symmetry mentioned in Sec. III B.

In second-quantized language, we define an antiunitary
TR operator T , with T 2 = −I , through its action on the
fermion creation and annihilation operators. Specifically, let
T ≡ UT K , where UT and K are a unitary operator and
complex conjugation, respectively, such that

T (Ak)jT −1 ≡
∑

l

(UT )j l(A−k)l , (A1)

where (Ak)j is the j th component of the vector Ak given after
Eq. (4) in the main text. Thus, if we define

UT = I4×4 ⊗ iσy,

then the above condition yields

T c(d)k,↑T −1 = c(d)−k,↓, T c†(d†)k,↓T −1 = −c†(d†)−k,↑,

T c(d)k,↓T −1 = −c(d)−k,↑, T c†(d†)k,↑T −1 = c†(d†)−k,↓.

Recall that HD = (1/2)
∑

k(Â†
kĤkÂk − 4μ), where the

single-particle Hamiltonian Ĥk is given in Eq. (5). Direct
calculation then yields

U
†
T Ĥ ∗

k UT = Ĥ−k. (A2)

Accordingly, satisfying the requirement of TR symmetry [cf.
Eq. (3) in Ref. 49 in momentum space].

Similarly, let us define an antiunitary PH operator C, with
C ≡ UCK and C2 = +I , through its action on the fermion
creation and annihilation operators, where UC is a unitary
operator, such that

C(Ak)jC−1 =
∑

l

(UC)j l(A−k)l . (A3)

Thus, if we define UC as

UC = σx ⊗ I4×4,

it follows that

Cd(c)k,σC−1 = d†(c†)k,σ , Cd†(c†)k,σC−1 = d(c)k,σ .

Direct calculation then yields

U
†
CĤ ∗

k UC = −Ĥ−k (A4)

satisfying the requirement of PH symmetry in the single-
particle representation [cf. Eq. (4) in Ref. 49 in momentum
space]. In addition, it is also straightforward to verify that HD

also possesses a unitary inversion symmetry [cf. Eq. (C29) in
Ref. 49]

U
†
I ĤkUI = Ĥ−k, (A5)

where the inversion operator may be expressed as

UI = σz ⊗ σx ⊗ I2×2,

independently of the system’s dimension D.
Interestingly, aside from exhibiting the above manifest

discrete symmetries, our Hamiltonian may also preserve
additional accidental “hidden” symmetries. While a charac-
terization is far from trivial, we have explicitly identified
one such Z2 ⊗ Z2 ⊗ Z2 ⊗ Z2 symmetry in the limit where
μ = 0, λ = t . In order to describe this symmetry, let us now in-
troduce the following new canonical Dirac fermion operators:

ãj,↑ = 1
2 (cj,↑ + dj,↑ + c

†
j,↓ − d

†
j,↓),

b̃j,↑ = 1
2 (cj,↑ + dj,↑ − c

†
j,↓ + d

†
j,↓),

ãj,↓ = 1
2 (cj,↓ + dj,↓ + c

†
j,↑ − d

†
j,↑),

b̃j,↓ = 1
2 (cj,↓ + dj,↓ − c

†
j,↑ + d

†
j,↑),

which actually take a simpler form once expressed in terms
of the a and b fermion operators defined in Eq. (7):

ãj,↑ = 1√
2

(aj,↑ + b
†
j,↓),

b̃j,↑ = 1√
2

(aj,↑ − b
†
j,↓),

(A6)

ãj,↓ = 1√
2

(aj,↓ + b
†
j,↑),

b̃j,↓ = 1√
2

(aj,↓ − b
†
j,↑).
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Upon expressing the Hamiltonian HD , with μ = 0 and λ = t ,
in terms of the newly defined fermion operators ãj,σ , b̃j,σ , the
following commutation relationships are found to hold:[

HD=1,
⊗
σ,c̃

(
eiπ

∑
j c̃

†
j,σ c̃j,σ

)] = 0,

[
HD=2,

⊗
σ,c̃

(
e
iπ

∑
jy

c̃
†
kx,c ,jy ,σ c̃kx,c ,jy ,σ

)] = 0,

[
HD=3,

⊗
σ,c̃

(
e
iπ

∑
jy

c̃
†
kx,c ,jy ,kz,c ,σ c̃kx,c ,jy ,kz,cσ

)] = 0,

where the products run over σ = ↑,↓ and c̃ = ã,b̃.
Recall that in Sec. III B we have considered the fate of the

Majorana edge modes under a boundary perturbation Hp in 3D
[Eq. (20)]. Thus, it is important to determine whether the total
Hamiltonian HD + Hp still belongs to the same symmetry
class. To this purpose, it is convenient to imagine that Hp acts
both on the surface and in the bulk, in which case we can
equivalently work under PBC. Thus, in place of Eq. (20), we
may consider

H ′
p =

∑
k,σ

up

(
c
†
kx ,ky ,kz,σ

c−kx ,ky ,−kz,σ

+ d
†
kx ,ky ,kz,σ

d−kx ,ky ,−kz,σ

) + H.c.

=
∑
k,σ

up

(
ã
†
kx ,ky ,kz,σ

b̃−kx ,ky ,−kz,σ

+ b̃
†
kx ,ky ,kz,σ

ã−kx ,ky ,−kz,σ

) + H.c. + const,

where in the last two lines we have rewritten the perturbation
using the new canonical operators ãk,σ ,b̃k,σ , and const is a
c number. Due to H ′

p, the dimension of the single-particle

Hamiltonian matrix Ĥk is now doubled (to 16 × 16), and the
matrices UT and UC for the TR and PH symmetries need to be
changed correspondingly, that is,

U ′
T = I8×8 ⊗ iσy, U ′

C = I2×2 ⊗ σx ⊗ I4×4,

respectively, and similarly for U ′
I . It can then be verified that

the new perturbed Hamiltonian still exhibits both TR and
PH symmetry, that is, Eqs. (A2), (A4), and (A5) still hold.
However, the perturbation Hp (H ′

p) does break the hidden
symmetry shown above, for D = 3. Notice that when the
perturbation acts on the surface only, the dimensions of UT

and UC are changed accordingly, nevertheless, the conclusion
that the perturbation still conserves the basic manifest discrete
symmetries remains true.

APPENDIX B: ROLE OF SELF-CONSISTENCY

Throughout most of the discussion in the main text, and in
particular in obtaining the phase diagrams of Figs. 1 and 2,
the superconducting pairing gap � has been treated as a free
control parameter, tunable at will. In real systems, however,
� can only be obtained by minimizing self-consistently the
total free energy. Let Vcc = Vdd ≡ V > 0 in Eq. (3) denote
the effective attraction strength in each band, and assume that
the π -symmetry condition is obeyed, �c = −�d . Then, in
2D and at zero temperature, this amounts to minimizing the
many-body ground-state energy

Egs = 2NxNy

�2

V
+

∑
k

(ε1,k + ε2,k − 2μ),

where the first term represents the condensation energy, and
similar expressions hold in 1D and 3D.

As shown in Ref. 30, for D = 2 all the topological phases
identified in the non-self-consistent regime are found to be
stable for suitable choices of the control parameters in the
self-consistent phase diagram, although new features may
also emerge (see Fig. 3 therein and related discussion). It
would be interesting to obtain a full self-consistent description
without imposing that Vcc = Vdd and �c = −�d , that is, by
leaving the two pairing gaps as independent parameters to
be determined separately for generic intraband parameters,
and also allowing for an interband scattering term Vcd = 0.
While such a complete study is beyond our current scope,
we have verified that, as long as Eq. (6) is obeyed, all
the trivial and the nontrivial topological phases in both 1D
and 3D remain physically accessible for suitable parameters
after imposing the self-consistency constraint. In a similar
spirit, self-consistent calculations have also been performed for
representative parameter values in the presence of a magnetic
field, as discussed in Sec. IV.

APPENDIX C: EXPLICIT FORM OF HAMILTONIAN
MATRICES

Consider the most general case of 3D geometry, under the
condition of π -shifted gaps �c = −�d = �. Recall that for
general parameter values and PBC, the Hamiltonian matrix
with respect to the operator basis {Ak} takes the form given
in Eq. (5). Upon transforming to the fermionic operators
{ak,σ ,bk,σ } defined in Eq. (7) and, for convenience, moving
to the slightly different operator basis

B̂
′†
k ≡ (a†

k,↑,b
†
k,↓,a−k,↑,b−k,↓,a

†
k,↓,b

†
k,↑,a−k,↓,b−k,↑),

the new Hamiltonian matrix Ĥ ′
k becomes

Ĥ ′
k =

⎛⎜⎝
−μ + λkx

σx + λky
σy + mkσz i�σy iλkz

σy 0
−i�σy μ + λkx

σx − λky
σy − mkσz 0 iλkz

σy

−iλkz
σy 0 −μ + λkx

σx − λky
σy + mkσz −i�σy

0 −iλkz
σy i�σy μ + λkx

σx + λky
σy − mkσz

⎞⎟⎠,

where as before we define �λk = −2λ
∑

ν∈uD
sin kνêν ≡ (λkx

,λky
,λkz

), and mk = ucd − 2t
∑

ν∈uD
cos kν . The above expression

makes it clear why, due to the SO component λkz
, a decoupled structure no longer arises in 3D for arbitrary momentum values.
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In the presence of an applied magnetic field with components (hx,hy,hz) as in Eq. (21), the general expression for the resulting
Hamiltonian matrix of HD + HM becomes

Ĥ ′′
k =⎛⎜⎝
−μ+ λkx

σx + λky
σy + m+,kσz i�σy iλkz

σy + hx − ihyσz 0
−i�σy μ+ λkx

σx − λky
σy − m+,kσz 0 iλkz

σy − hx − ihyσz

−iλkz
σy + hx + ihyσz 0 −μ+ λkx

σx − λky
σy + m−,kσz −i�σy

0 −iλkz
σy − hx + ihyσz i�σy μ+ λkx

σx + λky
σy − m−,kσz

⎞⎟⎠,

where m±,k ≡ mk ± hz, as also defined in the main text. The
above expression makes it clear that, when kz = kz,c ∈ {0,π}
(λkz

= 0), we may still obtain an analytical solution of the
excitation spectrum for a magnetic field in the z direction,
with respect to the above operator basis B̂

′
k. Similarly, it is

possible in principle to find a suitable basis (not shown) such
that an analytical solution of the excitation spectrum exists for
kν = kν,c, ν = x or y, in the presence of a magnetic field along
the x or y direction, respectively.

APPENDIX D: NUMERICAL EVALUATION
OF TOPOLOGICAL INVARIANTS

In numerical computations of topological invariants, it is
crucial to guarantee that the results be numerically gauge
invariant,43,44 otherwise one gets nonsensical results because
of the random phases generated from numerical diagonaliza-
tion of HD . We briefly describe here the procedure we followed
to ensure numerical gauge invariance.

Recall the definition of the Berry phase [Eq. (12)]:

Bn = i

∫ π

−π

dk 〈ψn,k|∂kψn,k〉,

in terms of normalized states 〈ψn,k|ψn,k〉 = 1. The phase
ϕ(n,k,k′) of the matrix element 〈ψn,k|ψn,k′ 〉 satisfies the
following relation:

i〈ψn,k|∂kψn,k〉 = −∂k′ϕ(n,k,k′)|k′=k

= −∂k′(Im ln〈ψn,k|ψn,k′ 〉)|k′=k, (D1)

where in the last line the definition of the phase ϕ(n,k,k′)
was used. Then, the Berry phase can be rewritten

as

Bn = −
∫ π

−π

dk ∂k′ϕ(n,k,k′)|k′=k,

admitting a simple discretized approximation43,44

Bn = lim
N→∞

N−1∑
i=0

�ϕ(n,i,i + 1)

= − lim
N→∞

Im ln
N−1∏
i=0

〈
ψn,ki

∣∣ψn,ki+1

〉
, (D2)

with the identification of the states (k0 = −π,kN = π )∣∣ψn,kN

〉 ≡ ∣∣ψn,k0

〉
.

In practice, one needs only a few (some tenths) points in the
above product for a stable result to be found.

Similarly, the CN Cn is given by [Eq. (15)]

Cn = 1

π

∫ π

−π

dkx

∫ π

−π

dky Im
〈
∂kx

ψn,k
∣∣∂ky

ψn,k
〉
.

In numerical computations of Cn, we approximate the inte-
grand in Eq. (15) as

Im
〈
∂kx

ψn,k
∣∣∂ky

ψn,k
〉

≈ 1

ε2
Im

[
ln

(〈
ψn,k

∣∣ψn,kx

〉〈
ψn,kx

∣∣ψn,ky

〉〈
ψn,ky

∣∣ψn,k
〉)]

,

where kν ≡ k + εk̂ν , k̂ν are unit vectors in momentum space,
and ε � 1. Finally, we compute Cn as

Cn = 1

π
Im

∏
k

ln
(〈
ψn,k

∣∣ψn,kx

〉〈
ψn,kx

∣∣ψn,ky

〉〈
ψn,ky

∣∣ψn,k

〉)]
.
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