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Screened empirical bond-order potentials for Si-C
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Typical empirical bond-order potentials are short ranged and give ductile instead of brittle behavior for materials
such as crystalline silicon or diamond. Screening functions can be used to increase the range of these potentials.
We outline a general procedure to combine screening functions with bond-order potentials that does not require
refitting any of the potential’s properties. We use this approach to modify J. Tersoff’s [Phys. Rev. B 39, 5566
(1989)], P. Erhart and K. Albe’s [Phys. Rev. B 71, 35211 (2005)], and T. Kumagai et al.’s [Comput. Mater.
Sci. 39, 457 (2007)] Si, C, and Si-C potentials. The resulting potential formulations correctly reproduce brittle
materials’ response and give an improved description of amorphous phases.
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I. INTRODUCTION

Empirical and semiempirical classical interatomic po-
tentials have been used in computer simulations for more
than two decades. Bond-order potentials (BOPs)1—a class
of semiempirical formulations—have proven to yield rea-
sonably accurate potential energy landscapes for covalently
bonded2–19 and metallic20–30 materials. The bond-order ap-
proach can be systematically derived from the tight-binding
approximation.8,20,21,31,32 This furnishes the hope that although
simple, BOPs should show transferability to a wide number of
situations.

The rigorous derivation of BOPs by Pettifor and
co-workers8,31,32 was predated by empirical formulations that
are the scope of this article.2,3,33,34 The parameters of these
empirical BOPs are adjusted to match ground-state properties,
such as the cohesive energies or elastic constants, for one
or more phases of an element or compound. For covalently
bonded materials, the interaction between atoms is usually
limited to nearest neighbors and also limited to short distances.
Both limitations are independent of each other, although a
short interaction range is typically used to limit the interaction
to nearest neighbors. This is possible because in crystalline
structures second-nearest neighbors are well separated from
first neighbors. They show up as well-distinguishable peaks in
the atomic pair distribution functions. It is less clear that limit-
ing the interaction range works in liquids or amorphous solids
where such separation is not necessarily given. Additionally,
the short range makes the description of transition events
such as the dissociation of a bond inaccurate. Qualitatively
unphysical behavior is obtained in particular when a transition
is driven by external forces.1,35,36

An example of this latter problem is a crack that is
driven through a brittle material. In contrast to physical
reality, empirical BOPs consistently predict ductile behavior
for materials such as silicon or carbon.35 This problem is
usually circumvented by using full quantum calculations37,38

or by embedding a quantum region around the crack tip in
a classical potential.39,40 However, the interaction between
multiple cracks, driving a crack in an amorphous material, or

a series of mode II cracks such as a tribological interface41–47

would be notoriously difficult to model with either approach. A
classical interatomic potential that reproduces brittle fracture
is therefore highly desirable.

We have shown in an earlier work36 that brittle behavior can
be restored by decoupling the condition for nearest-neighbor
relationship from the range of the potential. This potential was
based on the second-generation reactive empirical bond-order
potential (REBO2),10 and nearest-neighbor relationship was
determined using the screening functions first introduced
by Baskes and co-workers48 in the context of the modified
embedded atom method. This modification kept the REBO2’s
ground-state properties of crystalline structures and molecules
untouched. Here, we add two silicon-carbide potentials and
one pure silicon potential to the family of screened BOPs.
The first two are based on Tersoff’s 3rd4 and Erhart &
Albe’s13 potentials. The Si-only potential is based on the
parametrization by Kumagai et al. that was optimized for the
melting point of silicon.49 The particular form of Kumagai’s
potential has a desirable feature that Tersoff’s and Erhart &
Albe’s are lacking. All potentials are modified in a manner that
does not change the properties of crystalline ground states.

II. SECOND-MOMENT BOND-ORDER POTENTIALS

In bond-order potentials of the Tersoff-Brenner type, the
cohesive energy E of a structure is expressed as a sum over
bonds. For each bond the energy has a purely repulsive, φ(r),
and a purely attractive, β(r), contribution. The strength of
the attractive contribution is modulated by the bond order, a
quantity that depends on the environment of the bond and that
is related to Coulson’s bond-order concept.1,50 The particular
expression we use here is

E =
∑
i<j

Sij [φ(rij ) − bijβ(rij )], (1)

where φ(rij ) and β(rij ) are pairwise positive functions. The
function bij is the bond order. Sij is a switching function that
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switches the interaction off under certain conditions and will
be described in more detail below.

The expression for the bond order is

bij = (
1 + χ

η

ij

)−δ
(2)

with

χij =
∑
k �=i,j

Sikh(rij ,rik)g(θijk), (3)

where

h(rij ,rik) = exp{[2μik(rij − rik)]m}. (4)

Here, g(θ ) is some function with angular periodicity and η,
δ, μ, and m are free parameters. Abell51 used a Bethe lattice
analysis to show that the bond-order should be bij ∝ Z1/2

where Z is the local coordination number. Hence η = 1 and
δ = 1/2 is the choice consistent with chemical pseudopotential
theory. The bond-order enables a directional dependence of
bonding and hence stabilizes the open cagelike structures (e.g.,
diamond) that covalently bonded materials form.

In what follows, we will discuss potentials where the
pairwise functions φ and β are given by exponentials of the
form

β(r) = KD0

K − 1
exp

[
−α

√
2

K
(r − r0)

]
(5)

and

φ(r) = D0

K − 1
exp[−α

√
2K(r − r0)]. (6)

With these choices, the dimer potential energy curve β(r) −
φ(r) has its minimum at r0 with energy D0 and curvature α.
It has been shown51 that Eqs. (5) and (6) together with (1) are
consistent with binding energy universality52,53 and Pauling’s
relation between bond length and energy,54 and also with ab-
initio calculations of light elements. The angular function is
typically given by

g(θ ) = γ

(
1 + c2

d2
− c2

d2 + [h + cos θ ]2

)
, (7)

where γ,c, d, and h are free parameters. The parameter
K characterizes the relationship between equilibrium bond
energy and bond length for different crystal structures.

The range of all distance-dependent functions is limited to
nearest neighbors by a switching function Sij = fC(rij ) that
depends on the distance between atoms i and j only. Generally,
fC drops from a value of one to zero between two distances
r1 and r2, respectively. A common choice of cutoff function
that is also employed in Refs. 4 and 13 uses trigonometric
functions and is given by

fC(r) =
⎧⎨
⎩

1 if r � r1,
1
2

[
1 + cos

(
π r−r1

r2−r1

)]
if r1 < r < r2,

0 if r � r2.

(8)

The interatomic potential that is defined by Eqs. (1)–(8)
with minor differences in the choices of φ(r), β(r), bij has
been used to parametrize, among others, the interaction of B-
C-N,7,9 C-H,5,6,10 C-O,12 C-O-H,18 Ga-As,11 Fe-C,27,29 Pt-C,22

Si-C,2–4,13 Si-C-H,19 Si-O,16,17 W-C-H,24 and Zn-O.25 While

it is possible to go beyond second moments to higher chemical
accuracy, such potentials have only been developed for few ele-
ment combinations, such as Mo,23 W,28 Fe,30 C-H,8,14 and Si.15

III. SMOOTHNESS OF INTERATOMIC POTENTIALS

Experience tells that potential energy surfaces as obtained
for example from density functional theory (DFT) calculations
are smooth. This fact is underlined by the recent success
of using Gaussian processes55 to extrapolate from a finite
set of energies obtained from DFT calculations to arbitrary
configurations.56 A couple of DFT calculations typically suf-
fice to reconstruct high-accuracy potential energy surfaces. In
Gaussian processes, smoothness is intrinsically programmed
into the extrapolation by the covariance function.

The potential energy landscape obtained from Eqs. (1)–(8)
is not smooth because the cutoff function Eq. (8) forces
energies to zero within a short distance interval. This leads
to a failure in the description of transition states that is most
easily demonstrated for the dimer. Figure 1 shows the energy
and tensile force of the carbon dimer as computed using
Tersoff’s and Erhart & Albe’s potential. The energy drops
to zero steeply as the cutoff is approached. This leads to an
overestimation of the force required to break this bond, with
implications for the simulation of cracks and tribology. We
here generalize the meaning of the switching function Sij with
Sij = 1 meaning that a bond exists. This allows us to unlock
the asymptotic behavior that is programmed into φ(r) and β(r)
for any structure.

As already mentioned above, the cutoff function is designed
to allow interaction of nearest neighbors only. Physically, this
can be motivated by the fact that the bond integral (here
the attractive part β of the potential) follows a different

FIG. 1. Energy E and tension f = dE/dr as a function of
distance r for the carbon dimer. Shown are results obtained using
the original formulation of the potentials and the screened version
(denoted by + S) that unlock the asymptotic behavior of the
interaction.

205410-2



SCREENED EMPIRICAL BOND-ORDER POTENTIALS FOR Si-C PHYSICAL REVIEW B 87, 205410 (2013)

functional form for second and farther neighbors that is
smaller in magnitude.57 The interaction of second and farther
neighbors is “screened” by the nearest-neighbor atom. A
central approximation in empirical bond-order potentials is to
assume perfect screening for second and farther neighbors and
set their bond integrals to zero. This approximation works best
for half-filled bands.51 In a tight-binding (molecular orbital)
picture, the physics of screening functions can be traced back
to nonorthogonality.58

A. Cutoff procedure

Besides finding nearest neighbors, a cutoff criterion needs
to be able to smoothly interpolate upon transitions that
involve changes in coordination number. We have recently
proposed to determine nearest-neighbor relationship36 from
the screening function introduced by Baskes et al.48 that fulfills
this condition. Later, Kumagai et al.59 have proposed an almost
identical scheme.

The procedure is a follows: Instead of counting atoms
within a certain distance towards a bond, we look for third
atoms in the vicinity of the bond. If any third atom sits close to
the bond it is screened, if it sits far away, the bond is allowed to
persist. In this picture a bond is unscreened if there is a line of
sight between the two atoms participating in the bond. A simple
empirical and quantitative measure for this intuitive picture is
given by constructing ellipsoids of revolution through two
atoms. If a third atom sits inside this ellipsoid the bond is
screened.

Let rij denote the distance between atom i and atom j

for which we would like to compute whether interaction is
possible. We construct an ellipsis through a third atom k [see
Fig. 2(a)]. With Xik = (rik/rij )2 the coefficient

Cijk = 2(Xik + Xjk) − (Xik − Xjk)2 − 1

1 − (Xik − Xjk)2
(9)

gives the square of the ratio of the two half axes’ lengths.
We now consider a bond between atoms i and j to be entirely
screened by atom k if the coefficient falls below a critical value
Cmin, while an unscreened bond corresponds to Cijk > Cmax.
A geometric explanation for the Cijk coefficient is given in
Fig. 2.

We now impose the cutoff on the value of Cijk rather than
rij . We define the screening function �ij of bond i-j to be given
by �ij = 0 if the bond i-j is entirely screened and otherwise
by48

�ij =
∏

k,Cijk<Cmax

exp

[
−

(
Cmax − Cijk

Cijk − Cmin

)2]
. (10)

The product runs over all atoms k which are neighbors to
the bond i-j . For each neighbor k we test whether atom k

might screen the bond, and multiply the contributions to the
screening function accordingly. Additionally, we do not want
the screening to be active in high-pressure situations, where
solids may be compressed to highly coordinated structures.
Hence, we define an inner core region where screening is
inactive by choosing the switching function to be [see Fig. 2(b)]

Sij = fS(rij ) + [1 − fS(rij )]�ij . (11)

FIG. 2. (a) Screening of the bond i-j : If an atom k moves into
the vicinity of the bond i-j we construct an ellipsis through atoms
i, j , and k such that bond i-j constitutes one of the half axes. The
square root of the coefficient Cijk is then the ratio of the lengths of
second half axis to first half axis. The Cijk is an empirical measure
for how close atom k sits to bond i-j . (b) Our screening approach
distinguishes two cutoff radii. The bond i-j always exists if rij < r1.
For r2 < rij we compute the screening function of panel (a) and
determine whether bond i-j exists from the value of Cijk . If an
atom sits in the inner gray region where r1 < rij < r2 we interpolate
between the screened and unscreened cutoff function [see Eq. (11)].
For reasons of computational efficiency we furthermore turn the
interaction completely off for rij > r∗

2 .

Here fS is a function that drops from unity to zero between
radii r1 and r2 where we switch from a bond that cannot be
screened to a bond that can be screened by its neighbors. Note
that �ij is differentiable more than twice. To make the overall
potential energy landscape differentiable more than twice we
use

fS(r) =
⎧⎨
⎩

1 if r � r1,

exp
[ − (

2 r−r1
r2−r1

)3]
if r1 < r < r2,

0 if r � r2.

(12)

This switching procedure does not introduce an additional
(artificial) length scale and is intrinsically infinitely ranged.
The “infinite range” is manifested by the fact that all distances
occurring in Eq. (9) are normalized by the bond distance rij .

B. Long-ranged limits of the bond-order term

The long-rangedness necessitates an additional modifi-
cation to traditional empirical bond-order potentials. The
switching function S appears in the total energy Eq. (1), but
also in the definition of the bond order Eq. (3). Since for
most potentials μ = 0 we find h(rij ,rik) = 1 and hence the
bond order bij becomes independent of the actual bond length
and approaches the wrong limit in some situations. One of
these situations occurs when a crystal is cleaved to expose two
surfaces. As we pull the crystal apart to introduce two free
surfaces the total energy of the system needs to asymptotically
approach the energy of two separated systems.

For the specific bond i-k shown in Fig. 3 the bond-length
rik increases continuously with increasing separation x. The
values of φ(rik) and β(rik) then drop to zero as rik → ∞.
However, bond i-j feels the presence of atom k in the three-
body term bij . For h = 1, this term is given by

bij =
⎡
⎣1 +

⎛
⎝ ∑

κ �=i,j

Siκg(θijκ )

⎞
⎠

η⎤
⎦

−δ

, (13)
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FIG. 3. (Color online) The bond-order bij of bond i-j that sits at
the surface of an exemplary diamond (110) surface depends on all
neighbors. This includes neighbor k that sits on an opposite surface.
At sufficient separation the influence of k on bij needs to vanish.

and independent of the absolute length riκ of bond i-κ if that
bond is unscreened and Siκ = 1. For the particular bond i-k
shown in Fig. 3 we have Sik = 1. Without any mechanism
to eliminate the influence of atom κ = k to the bond order
in bij in Eq. (13) the bottom surface will feel the top
surface’s presence at arbitrary distances since Sik = 1. Without
screening functions we have Sik = fC(rik) depend only on
distance, and the contribution of k will have vanished once the
atom has moved out of the cutoff radius of atom i, i.e., once
rik > r2.

Here we argue that in order to provide a well-defined
limiting value for the bond order with increasing bond length
we must choose μ > 0. The exponential term h(rij ,rik) then
provides the necessary asymptotics of the bond order at large
distances. In the above example, the contribution of bond i-k
to bij will decay exponentially as rik increases. Usually, μ

is treated as an adjustable parameter, but tight-binding bond
theory tells us that for an expansion up to second moments and
ignoring the contribution of π orbitals the total energy needs
to be31

E= 1

2

∑
i<j

Sij

[
φ(rij ) − β2(rij )√

β2(rij ) + ∑
k �=i,j Sikβ2(rik)g(θijk)

]
.

(14)

This is compatible with the empirical Tersoff-Brenner formu-
lation if we choose η = 1, δ = 1/2 (see alsoo Ref. 35), and

h(rij ,rik) =
(

β(rik)

β(rij )

)2

. (15)

Using the functional form Eq. (4) for h(rij ,rik) and Eq. (5) for
β(r) we obtain m = 1 and

μ = α

√
2

K
. (16)

Unfortunately, for m = 1 the value of μ contributes to the
C44 shear modulus of the material. This is easily seen from the
definition of this particular modulus: C44 is given by60

C44 = 1

3V

∂2E

∂ε2
, (17)

where V is the volume of the crystal and E its total energy.
The strain ε characterizes the shear transformation where all
atoms are transformed from position �r to �r ′ = (1 + T )�r with

T =
⎛
⎝ 0 ε/2 ε/2

ε/2 0 ε/2
ε/2 ε/2 0

⎞
⎠ . (18)

This particular transformation stretches some bonds in the
diamond structure and contracts others. The second derivative
of Eq. (17) then involves terms such as

∂2h

∂rij ∂rik

= −m(m − 1)(2μik)m(rij − rik)m−2h(rij ,rik)

−m2(2μik)2m(rij − rik)2m−2h(rij ,rik). (19)

In the equilibrium diamond structure rij = rik and this deriva-
tive vanishes only if m > 2. Choosing m = 1 would hence
require a complete readjustment of all parameters to a set of
material properties. For small deviations from the crystalline
ground state, m = 3 removes the contribution of μ to the
energy. While this is not fully consistent with Eq. (15), we use
m = 3 in the following for convenience and to avoid refitting
the potential. Since μ needs to have units of inverse length, we
empirically choose μik = r−1

0 to be the inverse of the dimer
length r0 of elements i-k.

The silicon potential of Kumagai et al. has a value of μ �= 0
that is independently fit. Here we therefore retain m = 1. Note
that Kumagai et al. fit μ = 1.8 Å

−1
while from Eq. (16) we

obtain a value of μ = 1.4 Å
−1

. We also note here that in our
earlier screened REBO2 potential we enforced the proper
limiting behavior for bij by an additional cutoff function
h(rij ,rik) = f h

C (rik) that depended on the distance rik only. For
the potentials presented in this paper, we use the expression
given by Eq. (4) because we believe that choosing a functional
form close to that given by tight-binding bond theory is crucial
for the transferability of the interatomic potential.

C. Computational considerations

A full cutoff-free formulation as presented in the preceding
sections is possible by computing a Voronoi tessellation of
the atomic configuration in each time step. The screening
functions would then be computed for atoms whose respective
Voronoi cells share a face. However, this approach is com-
putationally expensive and not linear scaling. In all practical
cases, we therefor smoothly cut the interaction off at a certain
distance to be able to use the usual linear scaling linked cell
algorithms.61 If this distance is large, the modulation of the
bond integrals will be weak and their asymptotic behavior
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TABLE I. Parameters for the screened Tersoff (TIII), Erhart &
Albe (EA), and Kumagai potentials.

C-C Si-Si Si-C

all potentials TIII + S EA + S

r1 (Å) 2.00 2.50 2.24 2.40
r2 = 1.2r1 (Å) 2.40 3.00 2.68 2.88
r∗

1 (Å) 2.00 3.00 2.45 2.40
r∗

2 = 2r∗
1 (Å) 4.00 6.00 4.90 4.80

Cmin 1.0
Cmax 3.0

TIII + S
μ = r−1

0 (Å−1) 0.69 0.57 0.44

EA + S
μ = r−1

0 (Å−1) 0.70 0.56 0.54

essentially conserved. The final expression for the switching
function we use is hence

Sij = fS(rij ) + [1 − fS(rij )]f ∗
C (rij )�ij (20)

with f ∗
C (r) = fS(r) that switches between radii r∗

1 and r∗
2 .

The specific parameters for the potentials presented in
this article are given in Table I. The parameters are chosen
with the following considerations in mind: r1 and r2 must lie
between the first and second neighbor shell in the diamond
or 3C structure (for C, Si, and Si-C) and between the first
and second neighbor shell in graphite (for C). Furthermore, r1

and r2 for Si-Si must be smaller than the first Si-Si neighbor
shell in 3C Si-C. The latter constraint is the reason why
r1 and r2 for Si-Si are smaller than for C-C and Si-C if
compared to the crystalline bulk bond length. The outermost
cutoff r∗

2 must be large enough to eliminate spurious peaks
in the dimer force curves and the cohesive stress functions
discussed below. This is usually achieved at about r∗

2 ≈ 2.5rnn

where rnn is the nearest neighbor distance in the diamond
or 3C structure. We furthermore empirically fix r2 = 1.2r1

and r∗
2 = 2r∗

1 . For the Tersoff potential we use the original
Tersoff-Lorentz-Berthelot4 mixing rule rSiC = √

rCrSi for r1

and r∗
1 . The values of Cmin and Cmax are chosen such that for

three atoms located on the corners of an equilateral triangle
three unscreened bonds exist, and for four atoms on the corners
of a square four bonds exist.

IV. PROPERTIES OF THE SCREENED POTENTIALS

We report some select properties of the screened potentials
and compare those to their unscreened counterparts and
higher level quantum calculations.62 In what follows, we
denote Tersoff’s third-generation potential4 as TIII, and the
screened incarnation as TIII + S. Similarly, we denote Erhart
and Albe’s potential13 as EA, and the screened incarnation
as EA + S. Kumagai et al.’s49 potential will be referred to
as Kumagai and Kumagai + S in its unscreened and screened
incarnation, respectively. For completeness, we also compare
to results obtained with the REBO210 and screened REBO2
(REBO2 + S)36 potential for carbon, and the Stillinger-Weber
(SW) potential for silicon.

If not otherwise noted, DFT reference calculations are
carried out by us and employ the local density approximation65

and projector augmented waves.66 The wave functions are
expanded on a real-space grid. We use the GPAW code.67,68

Table II lists some properties of diamond, silicon, and 3C
silicon carbide as obtained from the classical potentials and
this particular DFT method.

A. Fracture

1. Cohesive stress

We compute the cohesive stress functions by separating
the ideal bulk of the crystal for diamond, silicon, and 3C
silicon-carbide to create (100), (110), and (111) surfaces.
These calculations are carried out unrelaxed, and the cohesive
stress function that is shown in Fig. 4 is the first derivative
of the total energy curves normalized by the exposed surface
area. The value of x denotes the distance of the newly created
surface such that x = 0 is the limit of the bulk crystal and
x → ∞ are two free surfaces.

The maximum force obtained for all structures and all
surfaces probed here is in reasonable agreement with the DFT
calculations. However, the asymptotic behavior of the cohesive
stress is significantly lower than the values obtained from DFT
calculations for the (110) and even worse for the (111) surface.
Since the surface energy is the area beneath the cohesive stress
functions of Fig. 4, this difference can be attributed solely
to a mismatch in surface energy. We list the energies for
these surfaces in Table II. While all potentials give reasonable
values for the high-energy (100) surface, the agreement with
DFT calculation for the (110) and (111) surfaces is worse. For
carbon and 3C silicon carbide, the order of the energetics of
(110) and (111) surfaces is reversed in DFT calculations and
experiments. All potential except for the REBO2 + S follow
the experimental order. It is somewhat surprising that these
classical potentials appear to capture the peak force at the
transition state more accurately than the equilibrium surface
energies.

For opening a (100) diamond surface we find that the force
for TIII + S and EA + S has two distinct peaks, with the peak
at the larger separation having a higher force. These peaks
are less pronounced, but also visible, for the silicon-carbide
(100) surface, but do not show up on the (110) or (111)
surfaces. The origin of this is a too sudden drop in χij that
stems from choosing m = 3, and not m = 1 in Eq. (3) as the
rigorous bond-order theory suggests.31 This in return leads to
an overestimation of bij for the transition state and hence a
potential that is too attractive in that region.

Finally, we note that the potential energy landscape of
the REBO2 + S is more corrugated than the one obtained
for TIII + S, EA + S, and Kumagai+S. This is related to the
treatment of π electrons in the REBO formalism. In brief,
an additive correction is applied to bij and χij [given in
Eqs. (2) and (3), respectively]. The value of that correction
depends on the coordination numbers of the atoms in the
vicinity of the bond and was fitted to the atomization energies
of a select set of hydrocarbon molecules. Since coordination
numbers are integer values, transitional values upon changes
in coordination are obtained from a cubic spline interpolation.
This cubic spline is the origin of the additional corrugation

205410-5



PASTEWKA, KLEMENZ, GUMBSCH, AND MOSELER PHYSICAL REVIEW B 87, 205410 (2013)

TABLE II. Properties of diamond, silicon, and 3C silicon carbide. Unless referenced, DFT results are LDA (see text). Values in parentheses are for the
unscreened potential, if different from their screened counterpart. C0

44 is the C44 modulus obtained without relaxation of atomic positions. The (111) surface is
cut at the shuffle plane.

diamond

DFT-LDA BOP

Expt. this work TIII + S EA + S REBO2 + S

Ec (eV) −7.37a −9.03e −8.95 −7.371 −7.373 −7.370
a0 (Å) 3.567b 3.528e 3.535 3.566 3.566 3.566
C11 (GPa) 1076c 1060f 1094 1074 1088 1076
C12 (GPa) 125c 125f 147 102 125 125
C44 (GPa) 577c 562f 584 641 641 720
C0

44 (GPa) 591 671 673 738
γ{111} (J m−2) 5.3d 6.43g 6.37 2.75 2.06 5.37
γ{110} (J m−2) 6.5d 5.93g 5.90 4.04 2.96 3.12 (3.35)
γ{100} (J m−2) 9.2d 9.40g 9.34 7.09 (6.66) 5.88 (5.59) 7.84 (11.0)
γ 2×1

{100} (J m−2) 5.71g 5.43 6.61 (6.33) 5.93 (5.65) 5.27 (6.16)

graphite
DFT-LDA BOP

Expt. this work TIII + S EA + S REBO2 + S

Ec (eV) −7.374m −8.61e −8.93 −7.395 (−7.396) −7.374 −7.414 (−7.395)
a0 (Å) 2.461h 2.440e 2.445 2.530 2.555 2.458 (2.460)
c0 (Å) 6.710h 6.681e 6.532 [6.710]p [6.710]p [6.710]p

silicon
DFT-LDA BOP

Expt. this work TIII + S EA + S Kumagai + S SW

Ec (eV) −4.62i −4.63c −4.75 −4.630 −4.628 −4.630
a0 (Å) 5.431b 5.400c 5.406 5.432 5.429 5.429
C11 (GPa) 166b 159k 160 143 169 166
C12 (GPa) 64b 61k 63 75 64 65
C44 (GPa) 80b 85k 82 69 60 77
C0

44 (GPa) 111k 112 119 105 121
γ{111} (J m−2) 1.23j 1.74g 1.72 1.20 1.00 0.89 1.36
γ{110} (J m−2)o 1.510j 1.70g 1.68 1.52 1.23 1.08 1.67
γ{100} (J m−2) 2.130j 2.39g 2.37 2.16 (2.27) 1.90 (1.95) 1.70 (1.77) 2.35
γ 2×1

{100} (J m−2) 1.45g 1.53 1.48 1.13 1.07 1.44

3C silicon carbide
DFT-LDA BOP

Expt. this work TIII + S EA + S

Ec (eV) −6.34l −7.42n −7.37 −6.165 −6.339
a0 (Å) 4.358m 4.344n 4.338 4.321 4.359
C11 (GPa) 390l 390n 405 437 383
C12 (GPa) 142l 134n 145 118 144
C44 (GPa) 256l 253n 247 257 240
C0

44 (GPa) 273n 279 311 305
γ{111} (J m−2) 4.17q 1.85q 1.67q

γ{110} (J m−2) 3.29 2.40 2.29
γ{100} (J m−2) 5.46q 4.12 (4.21)q 3.87 (3.93)q

γ 2×1
{100} (J m−2) 3.48q 2.87 (2.85)q 2.92 (2.85)q

aReference 69.
bReference 70.
cReference 71.
dFracture energy, Reference 72.
eReference 73.
fDFT-GGA, Reference 74.
gReference 75.
hRefs. 76–78.
iReference 79.
jReference 80.
kReference 81.
lReference 82.
mReference 83.
nReference 84.
oThe Si (110) surface reconstructs in DFT-LDA. The empirical potentials do not capture this reconstruction.
pFixed to the experimental value.
qEnergies obtained by creating a silicon and a carbon terminated surface.
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FIG. 4. (Color online) Cohesive stress σ (derivative of the energies obtained by separating a bulk crystal normal to certain surfaces
normalized by their area) for carbon, silicon, and 3C silicon-carbide. Here we show this function for the creation of low-index (100), (110),
and (111) surfaces. Broken lines show results for the unscreened interatomic potentials. Solid lines show their screened counterparts and DFT
results. Curves are shifted vertically to be distinguishable. The (111) surface is cut at the shuffle plane.

seen for the REBO2 + S in Fig. 4. We also note that for
(110) and (111) surfaces the coordination number jumps from
4 for a bulk atom to 3 for a surface atom. On the (100)
surface, the coordination number jumps from 4 in the bulk
to 2 at the surface giving rise to an additional transition state
with coordination number 3 that is the origin of the peaks
seen in Fig. 4 for REBO2 + S on this particular surface. The
simpler formulation given by Eqs. (1) to (8) without the spline
corrections that is the basis of the TIII, EA, and Kumagai
potentials has the advantage that it yields a smoother potential
energy landscape, albeit at the cost of limited accuracy in
particular in complex molecular systems.

2. Static crack

In addition to the cohesive stress function we compute
bond-breaking events in a mode I crack geometry using the

method by Pérez and Gumbsch.37,38 In brief, we consider
a small atomistic region around the crack tip and fix the
boundary atoms of this region using the near-field solution
of the displacements from linear elastic fracture mechanics.
Then, the stress intensity factor K is increased stepwise, the
system is relaxed,85 and we monitor the length of the bond in
front of the crack tip. We also investigate the closing of a crack
by decreasing the stress intensity factor and monitoring the
length of the bond behind the crack tip. In all calculations the
crack tip is centered on the bond of interest. More information
on the technique can be found in Refs. 37 and 38.

Results for a crack on the (110) surface with a [11̄0]
crack front for diamond, silicon, and 3C silicon carbide are
shown in Fig. 5. We do not show the unscreened potentials
which do not break bonds in this kind of simulation. For
TIII + S and EA + S the agreement with DFT calculations
is reasonable. For diamond and silicon, the TIII + S follows
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FIG. 5. (Color online) Bond length r before the crack tip (left
three curves) and after the crack tip (right three curves) for a crack on
the (110) surface with a [11̄0] crack front in carbon, silicon, and 3C
silicon carbide as a function of the stress intensity factor K . The bond
length r is here scaled by the bond length r0 in the bulk crystal, and
the stress intensity factor is scaled by the factor KG obtained from
Griffith’s criterion using relaxed surface energies.

the DFT results almost exactly in predicting the correct stress
intensity factor K for bond breaking and bond formation.
EA + S overestimates the stress intensity factor K+ required
for breaking and underestimates the stress intensity K− for
bond formation hence giving a too large lattice trapping region
�K = K+ − K− for carbon. For silicon, the width of the
lattice trapping region �K is well described by both potentials.
For 3C silicon carbide, TIII + S and EA + S give almost
identical results but overestimate the lattice trapping �K .
Additionally, the opening of the bond in our DFT calculations
proceeds more smoothly. This could be related to charge

TABLE III. Melting points of crystalline diamond, silicon, and
3C-Si-C in kelvins for the different potentials studied here. The
melting point was determined by equilibrating a (100) surface
with the melt. Error is the standard deviation of the temperature
fluctuation in an equilibrated NVE ensemble of 18 432 atoms.

Ca Si 3C-Si-C

Expt. 3500–5000b, 4713c 1687e 2818 ± 40e

TIII d 2580 ± 15 3045 ± 15
TIII + S 5240 ± 30 2330 ± 15 3190 ± 15
EA d 2510 ± 15 3220 ± 15
EA + S 4210 ± 25 2365 ± 15 3235 ± 15
REBO2 d

REBO2 + S 3950 ± 20
Kumagai 1725 ± 10
Kumagai+S 1625 ± 10
SW 1636 ± 5f

aAt 12.4 GPa.
bReference 87.
cReference 70.
dA diamond/melt interface is unstable in the unscreened potentials;
see text.
eReference 88.
fSystem size of 65 536 atoms total.

transfer that occurs in silicon carbide and is not captured by
our potentials.

B. Melting

We determine the melting point for diamond, silicon, and
3C silicon carbide by equilibrating a crystal-melt interface
in a simulation without heat exchange with some external
bath. In these simulations, the crystal-melt interface advances
or recedes until the system is equilibrated to the melting
temperature. In all cases the (100) surface is exposed to the
melt and the pressure is controlled by an anisotropic Andersen
barostat86 that controls the box size independently in all three
Cartesian directions.

The results of these calculations are summarized in Table
III. The melting points for diamond are taken at the pressure
of the diamond/graphite/melt triple point (12.4 GPa) and lie in
the range of experimental values for all screened potentials. We
note that while 4713 K seems to be the universally referenced
melting point of diamond, the experimental values spread
over a much larger range with initial melting reported at
temperatures as low as 3500 K.87 No melting point could be
obtained for the unscreened potential because bulk diamond
spontaneously transforms into a graphite under these pres-
sure/temperature conditions. Since the interaction range of
the unscreened case is considerably smaller than the interlayer
graphite spacing this conversion can proceed without a volume
expansion and hence without performing work against the
external pressure. The screened potentials have a longer range.
The individual graphitic sheets do interact and inhibit this
transition at sufficiently high pressures.

The melting point for silicon at zero pressure is overesti-
mated by about 1000 K by both the TIII and EA potentials.
This overestimation has been noted before,13,89 and Kumagai
and co-workers pointed out that it is related to the angular
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term.49 The Kumagai potential employs a different angular
term and does correct the melting point as independently
confirmed by Schelling90 and here. However, the improved
melting point comes at an expense of surface energies that
are considerably lower than TIII and EA energies which
themselves are an underestimation of the respective DFT
results (see Table II). For silicon carbide we obtain melting
points that are only about 400 K too high. TIII and EA
solids melt at roughly identical temperatures. In all cases, the
screening function changes the melting point compared to the
respective unscreened potential by about 5% to 15%.

C. Glass formation

1. Hybridization of amorphous carbon

Classical empirical bond-order potentials notoriously fail at
describing the properties of amorphous carbon that is quenched
from the melt. One particular property that is also accessible
from experiments and ab initio calculations is the fraction
of diamond-like, sp3 hybridized atoms as a function of the
density of the amorphous sample. For example, the Tersoff,
REBO,5,6 and REBO2 potentials are known to fail to describe
this relationship. They yield 20% to 40% of sp3 close to the
density of diamond where the sp3 fraction should saturate at
about 80%.36,91,92 For deposition processes, a common cure
is to slightly increase the cutoff range of the potential but
keeping it between the first and second nearest neighbor shell
of graphite and diamond.93,94 This cure only works above a
certain density.14

Here, we compute sp3(ρ) curves by quenching liquid
carbon within 0.5 ps from 5000 K to 300 K at constant
volume. The same procedure has been used in ab initio95 and
nonorthogonal tight-binding (NOTB)36 calculations that will
be used as a reference here. We also report the experimental
analysis of physically deposited amorphous carbon of Ref. 96
for comparison. An atom contributes towards the sp3 fraction
if it has four neighbors within a distance of 1.85 Å.

All this data, along with results for the screened and
unscreened potentials discussed in this work, are shown in
Fig. 6. The TIII + S potential follows the NOTB data almost
exactly, albeit yielding an sp3 fraction that is lower by a
few percent. EA + S also follow the NOTB curve, but the
sp3 fraction is lower than the one obtained by TIII + S. All
unscreened potentials are worse, predicting at best 50% to
60% sp3 at densities of 3.5 g cm−3, where the sp3 fraction
should be around 80%.

2. Supercooling amorphous silicon from the melt

In computer simulations, amorphous silicon is typically
quenched from the melt at constant pressure rather than
constant volume.97–99 We here carry out such simulations at
zero external pressure and quench rates of 1 K ps−1 using
Berendsen temperature and pressure control100 with relaxation
time constants of approximately 1 ps for temperature and 10 ps
for pressure. The quench starts from the melt equilibrated at
3000 K.

We first note that the density of the melt does notably
depend on the potential under consideration. Figure 7 shows
the atomic volume V as a function of temperature T during

FIG. 6. (Color online) Carbon: Fraction of sp3 in amorphous
carbon that is quenched from a 5000 K melt to 300 K with a time
constant of 0.5 ps. Experimental data are from Ref. 96, DFT data are
from Ref. 95, and NOTB data are from Ref. 36.

the quench. The volume at the highest temperature (3000 K) is
the equilibrated melt. All potentials but the screened TIII + S
predict a liquid phase that is denser than the supercooled
amorphous that is shown at 300 K. However, only Kumagai,
Kumagai + S, and the SW potential predict a liquid phase that
is denser than the crystalline. The densest liquid phase is given
by the Kumagai potential which is the only potential to re-
produce a liquid phase density consistent with experiments.101

The screened and unscreened Kumagai potential give similar
results. The screened Kumagai however seems to be
marginally better at reproducing the slope dV/dT of the
experimental temperature dependence that was reported by
Rhim et al.101

The temperature at which the density peaks during so-
lidification is typically associated with the glass transition
temperature Tg .99 Both Kumagai and SW potentials give a Tg

of about 1000 K in excellent agreement with measurements.102

TIII and EA overestimate both glass transition and melting
temperature by about 50%.

FIG. 7. (Color online) Silicon: Volume per atom as a function of
temperature when quenching from the liquid phase to 300 K at a rate
of 1 K ps−1 and zero external pressure. The periodic cell contained
4001 atoms in all cases. Experimental data are taken from Ref. 101.
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FIG. 8. (Color online) Silicon carbide: Pair distribution functions
for stochiometric silicon carbide. The final amorphous structure was
obtained by quenching a box of 4000 atoms from the melt to 300 K
at a rate of 1 K ps−1 and zero external pressure. Curves are shifted
vertically to be distinguishable. The experimental data are taken from
Ref. 103.

3. Pair distribution functions of amorphous silicon carbide

Finally, we also report pair distribution functions of
quenched amorphous silicon carbide. Silicon carbide is
quenched at zero external pressure using the procedure out-
lined in the previous section for silicon. Figure 8 summarizes
the results alongside experimental data from Ref. 103. All po-
tentials reproduce the experimental pair distribution functions
reasonably. The unscreened potentials give pair distribution
functions that are essentially indistinguishable from their
screened counterparts and therefore not shown. In all cases,
the experimental data are broader than the data obtained from
our simulations. This is probably attributable to additional
line broadening mechanisms that are active in the respective
experimental setup. Also, the experimental amorphous Si-C
was created by ion irradiation and not by quenching, which
could be the origin of some of the observed differences.

The notable differences between the two potentials are the
heights of the nearest-neighbor peaks. The TIII + S potential
overestimates the height of the first-neighbor peak signifi-
cantly. From the distribution functions for pure amorphous
carbon (not shown) we see that this peak corresponds to

the C-C bond length. The TIII + S potential also appears to
overestimate the peak at 2.5 Å that is barely visible in the
EA + S simulation and the experimental data. This length
corresponds roughly to the Si-Si bond lengths. Hence, the
TIII + S appears to favor dimerization over the formation of a
homogeneous melt, leading to a somewhat different structure
than that found in experiments.

V. CONCLUSIONS

We have presented a simple method to augment existing
bond-order potentials by changing their cutoff procedure. This
fixes a number of issues with the description of nonequilibrium
properties of matter, such as fracture or amorphous phase
formation. We here stress that without any reparameterization
of the potentials we are able to obtain correct cohesive stresses,
proper bond-breaking in mode I cracks, and appropriate
properties of the amorphous phase. Both the Tersoff III and
Erhart & Albe’s potential are fitted to ground-state properties,
yet they are able to reasonably describe these transition states.
The potential energy expression given by Eqs. (1) to (7) is
hence an exquisite extrapolation scheme. Surely, this is due
to the fact that there are good theoretical arguments31,32,51,104

for this particular functional form. Future work will focus on
augmenting a recent potential for the ternary Si-C-H system
in a similar manner.19 Force routines for the potentials of this
paper are available at the location given in Ref. 62.
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37R. Pérez and P. Gumbsch, Phys. Rev. Lett. 84, 5347 (2000).
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