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Electron-electron interaction correction and magnetoresistance in tilted fields in Si-based
two-dimensional systems
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We study the diffusive electron-electron interaction correction to conductivity by analyzing simultaneously
ρxx and ρxy for disordered 2D electron systems in Si in a tilted magnetic field. Tilting the field is shown to be
a straightforward tool to disentangle spin and orbital effects. In particular, by changing the tilt angle we prove
experimentally that in the field range gμBB > kBT the correction depends on the modulus of the magnetic field
rather than on its direction, which is expected for a system with isotropic g factor. In the high-field limit, the
correction behaves as ln(B), as expected theoretically [Lee and Ramakrishnan, Phys. Rev. B 26, 4009 (1982)].
Our data prove that the diffusive electron-electron interaction correction to conductivity is not solely responsible
for the huge and temperature-dependent magnetoresistance in a parallel field, typically observed in Si-MOSFETs.
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I. INTRODUCTION

A diffusive electron-electron interaction correction (EEC)
to the conductivity was predicted theoretically1 about 30 years
ago. In 2D systems, it is proportional to ln(h̄/kBT τ ) (τ is the
momentum relaxation time) and grows in amplitude as tem-
perature decreases. A way to experimentally single-out EEC
among other numerous effects is based on its property not to af-
fect the Hall component of magnetoconductivity tensor σxy in
a perpendicular magnetic field.2 EEC therefore gives birth to a
temperature-dependent and parabolic with field contribution to
the diagonal magnetoresistance ρxx(B) and a correction to the
Hall coefficient ρxy/B, both being proportional to ln(h̄/kBT τ ).
The predicted features were observed in numerous experi-
ments, mainly with n-type GaAs-based 2D systems.3–6 How-
ever, the quantitative level of agreement between theory and
experiment was achieved only in the 2000’s by the Minkov
group7 from simultaneous analysis of both Hall and diagonal
components of resistivity tensor. The suggested method was
later approbated by others.8–10 We note that the Zeeman
splitting effects were negligible in most of the studied systems.

The Zeeman splitting was predicted to decrease the EEC
value,11 the physical interpretation of this effect introduced
later in Ref. 12 consists in decreasing the effective number of
triplet channels with field. For the diffusive regime kBT τ/h̄ �
1, the EEC is predicted to be quadratic in field in the low-field
limit, and proportional to the logarithm of the field in the
high-field limit.

Experimentally, however, the effect of the Zeeman splitting
on EEC in the diffusive regime was only briefly considered
in Refs. 13–15. For the most ubiquitous 2D system known,
2DEG in Si-MOSFET, which fits well all theory requirements,
no convincing measurements of the EEC have been done
so far. At the same time, this system demonstrates positive
magnetoresistance in parallel field, the behavior expected for
EEC. In the 1980’s, there were attempts to reveal EEC in
Si from the temperature and magnetic field dependencies16–18

of resistivity; these attempts were based on not yet developed
theoretical concepts and did not lead to a self-consistent picture
of magnetotransport.

Interest to the Zeeman splitting effects was resumed in
1997 with the observation of a huge rise in resistivity of 2DEG
in clean Si-MOSFETs in parallel magnetic field,19–21 close
to metal-to-insulator transition. The interest further increased
with an interpretation of this magnetoresistance as a signature
of a magnetic quantum phase transition.22,23 In the 2000’s,
several attempts to treat the parallel field magnetoresistance
(MR) in terms of renormalization-group approach were taken
both theoretically24 and experimentally.25,26 This approach
is, in fact, a self-consistent generalization of the EEC for
arbitrary interaction strength and conduction. Independently,
another theoretical approach was developed in Refs. 27–29,
and successfully applied,30 which accounts for a resistivity
increase with field simply by renormalization of the density of
states and single impurity scattering time. The latter effect is
essentially different from the logarithmic EEC, which emerges
from multiple electron-impurity scattering.

The experimental situation, however, is more complicated:
studies31,32 showed a strong effect of disorder on the parallel
field magnetoresistance, that was discussed in terms of the
band tail effects in Refs. 33 and 34. Moreover, detailed
studies of the MR on different material systems14,18,35–37 did
demonstrate quantitative disagreement between the fitted-to-
EEC theory temperature and magnetic field dependencies of
the conductivity.

To summarize the present state of the field, there seems
to be a common agreement on the Zeeman nature of parallel
field MR in 2D carrier systems. However, two conceptually
different underlining mechanisms of MR were put forward:
(i) EEC (multiple-scattering effect) and (ii) screening change
in magnetic field (single-scattering effect). Which of them
is responsible for the experimentally observed strong MR in
parallel field? The answer is especially crucial in the vicinity of
the metal-to-insulator transition, where the MR is dramatically
strong. Unfortunately, both theories become inapplicable in
this regime of small conductances σ ∼ e2/2πh̄. To address this
issue, we have chosen to approach the problem from the large
conductance regime, where both theories have solid ground,
though the MR is low.
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In our paper, we contest possible origins of the parallel
field magnetoresistance of weakly interacting 2D electron gas.
In order to study EEC, we take detailed measurements of the
magnetoresistance tensor in tilted field, and analyze the data
using the procedure developed in Refs. 7 and 13. We stress
that our approach does not rely on any particular microscopic
theory, rather, it is ab initio phenomenological and uses only
the general property of the EEC in the diffusive regime to
affect σxx solely.

For the experiments, we have chosen the simplest model
system, the 2D electron gas in Si in the diffusive regime,
kBT τ/h̄ � 1, σ � e2/2πh̄. To vary the strength of the
Zeeman splitting, and thus, the EEC magnitude, we tilted the
magnetic field with respect to the 2D plane. This procedure
allowed us to extract EEC on top of other magnetoresistivity
effects and to establish two principally different regions:
(i) a high-field region, where EEC depends on the total
field and quantitatively agrees with the theoretically predicted
ln(B) asymptotics and (ii) a low-field region, where EEC
unexpectedly depends on the perpendicular field component,
grows with field, and does not match existing theories.

Our observations suggest a new insight on the origin of the
parallel field MR: (i) the high-field small and T -independent
EEC �σ (B) ∝ ln(B), revealed in the current study, can not be
responsible for large and T -dependent parallel field MR, and
(ii) application of even low gμBB ∼ kBT perpendicular field
component strongly suppresses MR. The latter fact proves not
purely spin nature of the parallel field MR and points at the
incompleteness of the existing theory of MR.

The paper is organized as follows. After a brief description
of experimental details in Sec. II, we give theoretical back-
ground in Sec. III, and describe the results in Sec. IV, first on
the EEC, then on the experimental proof of the Zeeman origin
of the magnetic field effect on EEC, and further we compare
the known EEC with the parallel field magnetoresistance to
show that the EEC is not the main origin of the parallel field
magnetoresistance. In Sec. V, we discuss the obtained results.

II. EXPERIMENTAL DETAILS

The ac-measurements (13 to 73 Hz) of the resistivity
were performed at temperatures 0.3–25 K in magnetic fields
up to 15 T with two (100) Si-MOS samples with 200-nm
oxide thickness: Si-40, (peak mobility μpeak = 0.2 m2/Vs
at T = 0.4 K) and Si-24 (0.22 m2/Vs). The samples were
lithographically defined as rectangular Hall bars of the size
0.8 × 5 mm2. To obtain the data for different orientations of
magnetic field relative to the 2D plane, the sample platform
was rotated in situ at low temperature using a step motor.
Because of the smallness of the studied effects and unavoidable
misalignment of potential contacts, there always was some
asymmetry (within less than a few percents) of both Vx and
Vy with respect to a field reversal at a constant jx (∼50 nA)
current direction. To compensate this asymmetry, the field
was swept from positive to negative values and the data
were symmetrized. The alignment of the sample parallel to
magnetic field was done using the resistivity peak due to
weak localization. The carrier density n was varied by the gate
voltage in the range (8–35) × 1011 cm−2. The field was tilted
in the zy plane, always perpendicular to the current direction,

which is, however, not crucial for Si because of weak spin-orbit
coupling.32

We have selected samples with moderate carrier mobility
in order to ensure studies deep in the diffusive regime 0.005 <

kBT τ/h̄ < 0.2, where EEC theory should be applicable, and at
the same time to achieve μB ∼ 1 in available magnetic field.
Other features that make the Si-MOS system preferable for this
study are (i) short-range and uncorrelated scatterers, which
make motion diffusive, (ii) large conductance kF l ∼ 2–15,
which ensures that the quantum correction theory is applicable,
(iii) very thin potential well <5 nm, which excludes orbital
effects in parallel magnetic fields up to 20 T, and (iv) filling of
the lowest size quantization subband solely for n < 3.5 × 1012

cm−2 with effective mass m∗ ≈ 0.2me.35,38

III. THEORETICAL BACKGROUND

The idea of the present study is based on a property of the
e-e correction to affect only the diagonal component of the
conductivity tensor:2,39

σ = neμ

1 + μ2B2
⊥

(
1 μB⊥

−μB⊥ 1

)
+

(
�σ 0

0 �σ

)
. (1)

Correspondingly, the procedure of the EEC extraction7

for arbitrary (�σ/neμ) value includes the following steps:
(i) by reversing the measured resistivity tensor one calculates
the conductivity tensor. (ii) From σxy one finds the mobility
μ value, using the experimentally determined density n.40

(iii) By subtracting neμ/(1 + μ2B2
⊥) from σxx , one finds

the correction �σ (B,T ). The mobility μ(B,T ,n) value is a
byproduct of this algorithm.

If the conductivity is large, neμ � �σ ∼ e2/2π2h̄, the
above algorithm leads to the following expressions for the
resistivity components:

ρxx = 1/neμ × [1 − (1 − μ2B2)�σ/neμ], (2)

ρxy = B⊥/ne × (1 − 2�σ/neμ). (3)

As we checked, these formulas are valid for all our data with
ρxx < 4 kOhm.

In practice, both �σ and mobility μ in Eqs. (1)–(3) might
depend on B and T thus incorporating other possible magne-
toresistance effects. Nevertheless, as follows from Eq. (3), no
matter how the mobility depends on field, the correction to the
Hall coefficient arises from EEC solely.

Depending on the geometry of experiment the following
cases are possible: (i) the field is directed normally to the
sample plane, B = B⊥, during the sweep (this case refers
to most of the previous studies). (ii) The field is inclined
by an angle θ relative to the 2D plane, in order to en-
hance the Zeeman effects, which depend on B = B⊥/ cos(θ ).
(iii) The field magnitude |B| remains constant while the sample
is rotated relative to the field direction; in the latter case, one
expects the Zeeman effects to remain unchanged, thus leading
to the angle-independent �σ . We note here that in the case
of geometry (ii) data processing requires knowledge of the
ratio B⊥/ne solely, rather than the tilt angle. According to

205406-2



ELECTRON-ELECTRON INTERACTION CORRECTION AND . . . PHYSICAL REVIEW B 87, 205406 (2013)

our definition of density,40 the B⊥/ne ratio is obtained from
the measured linear-in-total-field high-temperature limit of the
Hall resistance RHT

xy (B) = B⊥/ne. We find this limit by linear
extrapolation of Rxy(B) to the highest temperatures (typically
15 K) and by ignoring low-field effects (see below).

Making use of geometries (ii) and (iii) is the key feature
of the present study. We note here that the g factor in Si is
large (g = 2) and isotropic, which insures the Zeeman effects
to be tilt independent. In systems with an anisotropic g factor,
like holes in GaAs,13 one should take into account different
components of the g-factor tensor, which complicates the
problem.

According to the theory of interaction corrections1,41 in its
modern form,24,42,43 the EEC value at zero magnetic field in
the diffusive regime is44

�σ = e2 ln(kBT τ/h̄)

π2h̄

{
1 + nT

[
1 − ln

(
Fσ

0 + 1
)

Fσ
0

]}
, (4)

where Fσ
0 is a Fermi-liquid constant, nT = 4n2

v − 1 is the
number of triplet channels of interaction, nv is the valley
degeneracy (in the original formula1,41 nT = 3). In (001) Si-
MOSFETs, the electron system is twofold valley degenerate,
and the degeneracy, if perfect, should increase nT to 15.45

In fact, however, this degeneracy is never perfect, because of
the two sample-dependent parameters, a finite valley splitting
�v ,38 and intervalley scattering time τv ∼ 10τ ≈ 1/4 K−1

for the sample Si-40.46 Both effects decrease the number of
triplet terms, which was described theoretically24 and studied
experimentally.35,47

The problem with MOSFETs is that �v (which is typically
less than 1/τ ) can hardly be measured directly in zero- and
low-magnetic fields, because valley splitting of Shubnikov-de
Haas oscillations does not exceed level broadening and hence
can not be resolved.48 One could treat �v as an additional
free parameter, which vary in the range from 0 to 1/τ ,
strongly affecting predictions of the e-e interaction correction
theory.24,42 Within the present study, the uncertainty of the �v

value affects only the effective number of valleys nv that can
vary from nv = 2 to nv = 1. We therefore can use nv as an
adjustable parameter, which quantifies the effective degree of
valley multiplicity.

In 2001, the EEC was recalculated by Zala et al.43

and a new “ballistic” contribution was introduced that gave
explanation to ρ(T ) ∝ T dependence observed in different
2D systems in the regime kBT τ/h̄ > 1.36,49 It was shown
experimentally8,9,50 that the ballistic and diffusive corrections
differ fundamentally: diffusive EEC does not affect the Hall
component of conductivity tensor [see Eq. (1)], whereas the
ballistic contribution is basically the renormalization of the
single-impurity scattering time or mobility. In the present
study, we do not consider the ballistic contribution, rather, we
extract from the experimental data and analyze the diffusive
part of the EEC solely.

A theoretical prediction for the Zeeman splitting depen-
dence of the EEC was given in Ref. 11:

�σ = − e2

2π2h̄
λDg2(h), (5)

where h = gμBB/kBT , and the two asymptotics for g2(h)
function are

g2(h) = 0.084h2, h � 1, (6)

g2(h) = ln(h/1.3), h � 1. (7)

Within the same theoretical formalism, the Zeeman splitting
effect on ballistic and diffusive corrections to magnetoresis-
tance in parallel field was recalculated in Ref. 12. Although
the theory was successfully used to fit some data on parallel
field magnetoresistance,37 the procedure of the comparison
with theory is ill defined and requires careful separation of
the diffusive and ballistic EEC contributions in the crossover
regime. Since our method catches only the diffusive part, we
briefly discuss below modern theoretical expressions in the
diffusive regime kBT τ/h̄ � 1 solely:

�σ (h) = e2

2π2h̄
n2

v

0.091Fσ
0(

1 + Fσ
0

)2 h2, h � 1. (8)

This low-field limit is close to Ref. 11 for small |Fσ
0 | � 1. In

the high-field limit, the diffusive contribution from Ref. 12 is
given by

�σ = e2

2π2h̄
2n2

v

[
1 − ln

(
Fσ

0 + 1
)

Fσ
0

]
ln

h

Fσ
0 + 1

, h � 1.

(9)

Noteworthy, functional dependence on Fσ
0 is the same for

Eqs. (4) and (9). This fact has a transparent physical mean-
ing: application of high field h � 1 suppresses temperature
dependence of only 2n2

v triplets with sz = 0. This suppression
comes from an expansion of the ln(h) = ln(gμBB) − ln(kBT ).
Correspondingly, if we define

λ = 1 − ln
(
Fσ

0 + 1
)
/F σ

0 , (10)

we may rewrite the theoretical expectation for the low-
temperature (T � 1/τ � EF ) high-field (kBT � gμBB �
EF ) asymptotics:

�σ (T ,B) = C+ e2

2π2h̄

[(
1 + 2n2

vλ − λ
)

ln(T ) + 2n2
vλ ln(B)

]
.

(11)

Here, C is a T - and B-independent term. This expression
allows one to compare experimental data on low-temperature
high-field asymptotics of the EEC with the microscopic theory
predictions. Its meaning is as follows: in the high-field limit
h � 1, the magnetic field dependence is not affected by
temperature. In Appendix A, we show that from the practical
point of view, this limit is achieved already for h > 2.

To conclude this section, studying magnetoresistance in a
purely parallel field is insufficient to disentangle the ballistic
and EEC contributions. Tilting the field enables one to over-
come this drawback. As shown in the next section, application
of high tilted fields allows us to achieve in experiment the
asymptotical �σ (T ,B) behavior for which there is a firm
theory prediction.
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IV. RESULTS

This section is organized as follows: in the first section,
we discuss phenomenology, the low-field regime and an
experimental proof of the EEC dependence on the modulus
of the magnetic field rather than on its direction. In the second
section, we consider high-field asymptotics of the EEC, and
compare them with the Fermi-liquid theory expectations. In
the third section, we discuss magnetoresistance in parallel and
tilted fields.

A. Tilt angle independence of the EEC

We explore MR in the range of fields Btr < B⊥ <

1/μ, i.e., in the domain between weak localization, Btr =
(hc/e)(1/4πl2) and Shubnikov-de Haas oscillations (here, l

is the transport mean free path). Figure 1(a) shows mag-
netoresistance ρxx and Hall resistance ρxy versus B⊥ in a
field up to 1/μ ≈ 6 T. The data were collected at various
temperatures (0.6–4.2 K) in a standard geometry (magnetic
field perpendicular to the sample plane) for sample Si-40 at n =
1.25 × 1012 cm−2. The set of curves for Si [see Fig. 1(a)] does
not look similar to numerous data for n-GaAs 2D systems.3–9

Indeed, there are two important features: (i) unlike GaAs, for Si
in high fields [>1 T in Fig. 1(a)], the MR gets weaker and ulti-
mately even changes sign to positive as temperature decreases
and (ii) the Shubnikov-de Haas oscillations start to appear
already in fields B⊥ < μ−1 ≈ 6 T due to short-range disorder.

Because of the above features, the EEC is not seen
straightforwardly from the data. Therefore, in order to extract
it, we use the procedure described in the previous section. At
the first step, we invert the resistivity tensor and obtain the
conductivity one [solid lines in Figs. 1(c) and 1(e)]. The Hall
component of the conductivity tensor allows one to calculate
the mobility μ using Eq. (1) [shown in Fig. 1(d)]. Surprisingly,
the mobility appears to be field dependent (unlike that in
experiments with GaAs7); in strong fields (B > 1 T), the
higher is the temperature the stronger is the field dependence.
This effect is beyond the scope of the present study, we note
only that the sign of the μ(B) dependence is in line with
expectations from memory effects51 though such effects do
not produce a temperature dependence. The field-dependent
mobility was suggested to arise also from the ballistic cor-
rection δσxy(B,T ) ∝ √

T /B.52 Even though such a correction
looks qualitatively similar to our data, it is hardly relevant,
because originates from multiple cyclotron returns and should
be valid for kBT τ/h̄ � 1, h̄ωc � kBT , which is not the case.

In weak fields, the Hall mobility increases as B decreases
due to an increase of the Hall slope. Having the mobility
known, we calculate the Drude part of σxx , neμ/(1 + μ2B2)
[shown by dotted lines in Fig. 1(e)]. The correction to
conductivity �σ is calculated as a difference between σxx and
its Drude expectation [see inset to Fig. 1(e) for the graphical
definition]. The resultant �σ (B) is shown by solid lines in
Fig. 1(f). As it is clear from Eq. (3), the correction resembles
the behavior of the Hall coefficient ρxy/B [shown in Fig. 1(f)]:
the larger the Hall coefficient, the less the correction.

All �σ (B⊥) dependencies (collected at different tempera-
tures, densities, tilt angles, and for different samples) manifest
similar behavior; in low fields [region A in Fig. 1(g)], �σ

FIG. 1. (Color online) Magnetoresistivity tensor components for
various temperatures (0.6, 1.3, 2.5, and 4.2 K): (a) ρxx , and (b) ρxy

vs perpendicular magnetic field. (c) Hall conductivity σxy calculated
from the data. (d) Mobility μ, calculated from the Hall conductivity
using Eq. (1). (e) Solid lines: σxx calculated by inverting the measured
resistivity tensor [(a) and (b)]. Dotted lines: Drude value of σxx

calculated using mobility from (d). The inset blows up the data to
show graphically the definition of �σ . (f) Hall angle ρxy/B for the
same data set. (g) Solid lines: EEC vs magnetic field recalculated from
the data. Dashed lines: EEC at the very same set of temperatures vs
total magnetic field for the sample tilted by 45◦. Bold line separates
the low-field and high-field regimes, denoted A and B, respectively.
Sample Si-40, electron density n = 1.25 × 1012 cm−2.

grows as B increases, then reaches a maximum and decreases
in the high-field region B. In the low-field region A, the feature
in �σ originates from the nonlinearity of the Hall resistance
with field [as seen from Fig. 1(f)]. A similar low-field feature
was observed in numerous previous studies with various 2D
systems;10,53–55 it is still poorly understood. In Appendix B, we
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summarize our observations on the low-field Hall nonlinearity
and argue that this low-field feature does not follow contempo-
rary theories. Empirically, the boundary between the regions
A and B (a point where �σ is maximal) roughly follows the
equation Bcrossover ≈

√
B2

tr + (kBT /gμB)2.
The correction decreasing with increasing field in the region

B [see Fig. 1(g)] is qualitatively in line with the Zeeman
splitting effect.11–13 The latter should be direction independent,
as discussed above. To check this property, we set the tilt
angle to 45◦ and measured both ρxx and ρxy for the same
temperatures and recalculated the EEC. The resultant EEC
versus total magnetic field is shown in Fig. 1(g) by dashed
lines. In the high-field region B, the monotonic parts of
the EEC data (ignoring Shubnikov-de Haas oscillations) in
perpendicular and tilted field are quantitatively similar to each
other, even though the perpendicular component of the field
differs by a factor of

√
2. This observation proves the Zeeman

nature of the EEC in the high-field region.
Another instructive way to check whether �σ depends

on the total field is to rotate the sample in constant field.
During these measurements, the tilt angle θ was slowly swept
at a constant rate using a step motor. We used positions of
the specific sharp mirror symmetric features in the ρxx(θ )
dependence at θ = 0, π/2, π to calibrate the angle and
calculate the perpendicular component of the field. Figure 2
shows ρxx(B⊥) and ρxy(B⊥) for the same electron density
and different temperatures. The inset in Fig. 2 shows the
corresponding EEC. It is easy to see that gradual changes of
�σ with B⊥, which were seen in Fig. 1(g) almost disappeared
in the inset to Fig. 2; this demonstrates that EEC remains
unchanged in constant total field.

We stress the importance of this “rotating field” experiment;
indeed, the coincidence of �σ (B) curves in Fig. 1(g) for
different tilt angles is not a complete proof for direction-
independence of the EEC, because it does not exclude
corrections to conductivity ∝ln(B⊥) (see, e.g., Ref. 56). In
the latter case, one would see just a constant shift ∝ln[cos(θ )]
in a tilted field sweep experiment [see Fig. 1(f)] with no visible

FIG. 2. (Color online) Resistivity tensor components for sample
Si-40 at different temperatures (0.6, 1.7, 4, and 8 K) versus
perpendicular to the sample plane field component B⊥ = B0 cos(θ ).
n = 1.25 × 1012 cm−2. The data were obtained by sweeping angle θ

(geometry of the experiment is shown in the left part of the figure) at
constant magnetic field B0 = 6 T. Inset shows EEC vs B⊥ recalculated
from the data in the main panel (solid curves). Dotted lines are the
corresponding field-independent values of the EEC.

change in the functional form of the �σ (B) dependence. In
contrast, in the rotating field experiment, such corrections
would reveal themselves as inclined �σ (B⊥) lines, which is
not the case in the insert to Fig. 2.

B. High-field asymptotics of the EEC

The discussed above field direction independence of the
EEC was tested with two samples in the density range
n = (1–3) × 1012 cm−2, which corresponds to σ = (4–30)
e2/(2πh̄), and in the field range B⊥ < 1/μ. The data in the
high-field region B (B > T ) should follow the asymptotics of
Eq. (11). The field range for observing the logarithmic-in-field
behavior, however, is limited on the low-field side by the
low-field Hall feature (at B⊥ ∼ 1 T) and, on the high-field
side, by the onset of Shubnikov-de Haas oscillations (at
B⊥ ∼ 1/μ ∼ 6 T). For this reason, the field range for fitting
the data with a ln(B) dependence is less than one decade.

We performed detailed measurements of magnetoresistivity
tensor at different tilt angles in magnetic fields up to 15 T. The
high-field asymptotes were fitted with a function

�σ (B) = e2/(2π2h̄) [−D ln(B) + A ln(T ) + C], (12)

where A and D are two positive adjustable parameters, com-
mon for all curves. According to Eq. (11), A = (1 + 2n2

vλ − λ)
and D = −2n2

vλ.
An example of the data and the corresponding EEC are

shown in Fig. 3. One can see that the �σ (B) dependencies
for different temperatures follow almost parallel to each other,
being only shifted vertically; exactly such behavior should
be expected for the EEC correction according to Eq. (12).
The temperature prefactor A can be easily found from the
corresponding �σ (T ) dependence [see the inset in Fig. 3(b)];
for the given data set, A = 0.6 ± 0.04. The data in the inset
also demonstrate that the obtained A value is field independent
for B > 5 T, which confirms that the analyzed data follow the
high-field asymptotic behavior. As for the field-dependence
prefactor D, since the accessible field interval is less than a
decade and we do not know how far the low-field correction
(caused by the Hall anomaly) may extend, we can only roughly
estimate −0.3 < D < −0.15. Its lower bound is found from
the low-field, B < 6 T, data and the upper bound from the high
field (B > 10 T) data.

The next logical step would be to analyze the density
dependencies of the two prefactors, A and D, and to check their
consistency with each other and with a microscopic theory.
Figure 4 shows magnetoresistance and the corresponding EEC
for elevated density n = 2 × 1012 cm−2 and for the same tilt
angle. Since the conductivity increases here by a factor of
2.5, the effect of EEC becomes less pronounced on top of the
Drude conductivity, nevertheless, both the temperature and the
magnetic field dependencies of the EEC remain approximately
the same: A = 0.65; D = 0.2–0.4.

The resulting A and D values are summarized in Table I.
As we argued above, these parameters do not demonstrate
a pronounced density dependence. This fact is reasonable
because in the studied range of densities (i) the interaction
parameter rs = (πn)−1/2/a∗

B
38 is rather small ∼1.5–2.8, and

(ii) the conductivity is large compared to the quantum unit to
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FIG. 3. (Color online) (a) and (b) Resistivity tensor components
for sample Si-40 at various temperatures (0.3, 0.7, 1.6, 3, 7, and 15 K)
vs total magnetic field (bottom axis) and perpendicular component
(top axis). n = 1.25 × 1012 cm−2; θ = 62◦. (c) EEC calculated from
the data in (a) and (b) (solid curves). Dash-dotted lines are a
set of functions �σ = −0.15 ln(B) + C; dotted lines show �σ =
−0.3 ln(B) + C (C values are adjusted to fit the high-field asymptotes
of the EEC). An inset in (b) shows the obtained T dependence
of the EEC at B = 3 (crossed rectangles), 7.5 (empty rectangles),
and 15 T (filled rectangles). Solid line is a linear-in-ln(T ) fit of
�σ (T ,15 T) = e2

2π2h̄
0.65 ln(T/7.5 K), dotted line is a linear-in-ln(T )

fit of �σ (T ,3 T) = e2

2π2h̄
0.58 ln(T/5.6 K).

ensure smallness of the renormalization effects.45,57 In Table I,
we present Fσ

0 calculated from A and D values using Eqs. (10)
and (11) for the effective valley multiplicity nv = 1 and 2.
For comparison, we also show the Fσ

0 values experimentally
determined from Shubnikov-de Haas oscillations58 and from
R(T ) ballistic dependencies.35 Firstly, |Fσ

0 | extracted from
A decreases with density. Secondly, |Fσ

0 | values extracted
from A for nv = 2 are rather close to the earlier measured
values. If we adopt the effective valley multiplicity nv to
be somewhat smaller than 2, the agreement will become
even better. When making such comparison with earlier data,
one should keep in mind that previous results were obtained
in the high-temperature ballistic regime, where both valleys
contribute equally and nv = 2 exactly. One should also take
into account that the |Fσ

0 | values for the diffusive (this work)
and ballistic (previous data35,58) regimes should not coincide,
for the reasons discussed in Ref. 43. We therefore conclude the
temperature dependence of the diffusive EEC (i.e., A values) to
agree quantitatively with earlier data and to agree qualitatively
with theory.

FIG. 4. (Color online) (a) and (b) Resistivity tensor components
for sample Si-40 at various temperatures (0.3, 0.7, 1.6, 3.3, 7,
and 15 K) vs the total magnetic field (bottom axis) and the
perpendicular component (top axis). n = 2 × 1012 cm−2; θ = 62◦.
(c) EEC calculated from the data in (a) and (b) (solid curves).
Dash-dotted lines are a set of functions �σ = −0.22 ln(B) + C with
different C, which gives satisfactory high-field asymptotes of the
EEC (see text). An inset shows the obtained �σ (T ) dependence
collected at 2 (empty rectangles), 4 (crossed rectangles), and 8 T
(black rectangles). Solid line is a fit of the high-field (8 T) data
with a logarithmic function, �σ = e2

2π2h̄
× 0.65 ln(T/6.4 K); dashed

line is a fit of the low-field (2 T) data with a logarithmic function,
�σ = e2

2π2h̄
× 0.5 ln(T/8 K).

Possible reasons for the large uncertainty in D values and
their poor consistency with A values may be (i) the too narrow
range of fields accessible for identifying ln(B) dependence (see
above) and (ii) the effective number of valleys (1 < nv < 2)
may be different in the field and temperature dependencies.

TABLE I. Summary of interaction parameters found from the
EEC measurements.

n, 1012cm−2 0.9 1.25 2 3
ρD , kOhm 8 4 2 0.9
rs 2.77 2.35 1.86 1.52
F σ

0 exp.35,58 −0.25 −0.2 −0.13 −0.076
A 0.25 0.6 ± 0.04 0.65 ± 0.05 0.65 ± 0.06
F σ

0 (A) nv = 1 −0.72 −0.52 ± 0.04 −0.47 ± 0.05 −0.47 ± 0.06
F σ

0 (A) nv = 2 −0.2 −0.12 ± 0.01 −0.1 ± 0.02 −0.1 ± 0.02
D . . . 0.15–0.3 0.2–0.4 0.2–0.4
F σ

0 (D) nv = 1 . . . −0.20 ± 0.07 −0.17–−0.32 −0.17–−0.32
F σ

0 (D) nv = 2 . . . −0.06 ± 0.02 −0.05–−0.09 −0.05–−0.09
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For the lowest studied density n = 0.9 × 1012 cm−2, the
low-field feature broadens and obscures an observation of the
decreasing logarithmic �σ (B) dependence; this prevented us
from measuring the respective D values.

To summarize this section, we presented above three
firm experimental observations on the high-field and low-
temperature behavior of the EEC, as follows: (i) the observed
�σ (B,T ) dependencies do not demonstrate any anisotropy
with respect to the field direction, (ii) �σ is linear both in ln(B)
and ln(T ) in line with the expected asymptotics [see Eq. (11)],
and (iii) the observed field and temperature dependencies have
an anticipated magnitude. In total, the above listed facts prove
that the field and temperature dependencies of conductivity
indeed represent the EEC. The prefactor in the temperature
dependence of �σ reproduces |Fσ

0 | values that are decreasing
with density and are reasonably consistent with earlier data.
The prefactor in the ln(B) dependence does not contradict the
microscopic theory and earlier data though it was determined
with rather large uncertainty.

C. Magnetoresistance

A nonmonotonic magnetoresistance in perpendicular field
and at low temperatures in Si and p-SiGe has been observed
since 1982:14,16,59 as field increases, the drop in ρxx due to
weak localization is followed by the resistivity increase [see,
e.g., Fig. 1(a)]. Surprisingly, the effect has not been discussed
and understood yet. As can be seen from our data [see
Fig. 3(a)], field tilting makes this effect even more pronounced,
thus pointing to the Zeeman nature of the nonmonotonic
magnetoresistance. Qualitatively, this seems to be transparent:
the larger is the Zeeman field, the stronger is the positive
component of magnetoresistance. In the strictly parallel field
orientation there is no weak localization suppression and the
magnetoresistance is purely positive. Following Castellani
et al.,60 the magnetoresistance in the diffusive regime for 2D
systems was often attributed to EEC26 and used to evaluate
the interaction parameter.25,49 However, whether the observed
parallel field magnetoresistance may be entirely attributed to
EEC, has not been proven so far.

Having developed a technique to measure the Zeeman field
dependence of the EEC directly, with no adjustable parameters,
we can compare now EEC with magnetoresistance. Figure 5(a)
shows a set of magnetoresistance curves collected at different
temperatures for n = 1.25 × 1012 cm−2 in the parallel field
orientation. The high-field asymptotics of EEC for the same
sample and same density �σ = C + 0.15 ln(B) is also shown
in Fig. 5(a) by a dashed line (the prefactor 0.15 for this
particular density is found in the previous section). The
observed magnetoresistance appears to be (i) an order of
magnitude larger than EEC and (ii) has much stronger
temperature dependence; therefore it is mainly of a different
origin. This is one of the key results of the present study, it
brings into a question the validity of using the parallel field
magnetoresistance for finding the interaction constant.

We have shown above that the multiple scattering (EEC)
approach leads to much smaller magnetoresistance than that
observed; we test below whether or not single impurity scat-
tering processes play a dominant role in magnetoresistance.
We show in Fig. 5(a) (dotted lines) the magnetocondutivity

FIG. 5. (Color online) (a) Parallel magnetic field magnetoresis-
tance for Si-40, n = 1.25 × 1012 cm−2 (solid lines). The direction
of the temperature (0.6, 1.3, 2.2, and 4 K) change is indicated by
an arrow. Right axis is in conductivity units. Dotted curves are the
theory prediction12,37 for the two-valley system, F σ

0 = −0.2, �v = 0.
Dashed curve is the experimentally determined high-field limit of
the EEC [C + 0.15 ln(B)]. (b) Resistivity vs total magnetic field
for Si-40, n = 1.25 × 1012 cm−2, T = 0.6 K for different tilt angles
(shown in the figure) with the lowest curve being field perpendicular
to the sample plane 0o, and the highest positive slope curve 90o

being parallel to the sample plane. “6-T rotation” curve shows
magnetoresistance vs perpendicular component of the field for a fixed
total field of 6 T.

calculated according to Eq. (4) from Ref. 37 (two-valley
version of theory12) for a system with �v = 0, τ−1

v = 0, and
Fσ

0 = −0.2. The calculated theory curve seems to demonstrate
a reasonable agreement with the same experimental data.
This agreement [in contrast to above sharp disagreement,
see the dashed curve in Fig. 5(a)] has a simple physical
explanation: the calculated curve comprises mainly (more than
65%) single impurity scattering renormalization, and only 35%
of the diffusive EEC. We believe that by using two different
Fσ

0 values for ballistic and diffusive contributions43 and by
introducing finite valley splitting and intervalley scattering
rate42 (i.e., about four adjustable parameters), one can achieve
a perfect agreement with experiment. This exercise reproduces
an apparent successful comparison of the parallel field mag-
netoresistance data in Si-MOSFETs35,37 with theory.12

Is this the end of the story and have we achieved a
complete understanding of the magnetoresistance in the 2D
system? Our answer is no; in order to argue this point,
we apply a perpendicular field. Theoretically,52 the Zeeman
field-induced magnetoresistance should remain the same in a
tilted field. Figure 5(b) shows the magnetoresistance at fixed
T = 0.6 K and n = 1.25 × 1012 cm−2 for various tilt angles.
In a perpendicular field (0◦ curve), as field increases from
zero, weak localization becomes suppressed, leading to the
negative magnetoresistance; further, we observe almost flat
magnetoresistance until the onset of Shubnikov-de Haas oscil-
lations. Such classically flat magnetoresistance is a signature
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of a field-independent mobility. In the opposite limit of parallel
field (90◦ curve), we observe a huge, 25% magnetoresistance
in a field of 6 T. This fact itself is remarkable because we
did not expect much difference between the parallel and
perpendicular configurations in fields B > Btr within the above
simple considerations.

Although we do not believe in the orbital origin of the
parallel field magnetoresistance, let us assume for a moment
that only the parallel component of the field affects the
mobility. If this is so, then by tilting the field from a purely
in-plane direction (90◦) to slightly out of plane (75◦), when
the parallel component of the field decreases only by 4%, we
would expect roughly the same positive magnetoresistance as
that in the purely parallel field. Surprisingly, after a suppression
of the weak localization, we observed that the positive upturn
in magnetoresistance is quite shallow and is no more than
∼6%! For intermediate tilt angle (45◦), the magnetoresistance
[see Fig. 5(b)] only slightly deviates from the perpendicular
field data, which further confirms a suppression of the parallel
field MR by the perpendicular component.

To summarize our observations, the positive magnetoresis-
tance that is weak in perpendicular and tilted fields increases
dramatically when the field turns parallel to the 2D plane.
Such behavior is counterintuitive and qualitatively different
from that in GaAs-based structures.

V. DISCUSSION

In the present study, by using a magnetoresitance tensor
measurements technique in a tilted magnetic field, we ex-
tracted EEC and explored Zeeman effects in conductivity. We
demonstrated the fruitfulness of this approach and revealed the
anticipated11 high-field logarithmic asymptotics of the EEC.

Our measurements also reveal several puzzling features of
the magnetotransport in Si-MOSFETs. Firstly, the low-field
drop of the EEC (i.e., the increase in Hall resistance), detected
in our experiments, lacks an explanation. In order to clarify
this issue, one requires more precise very-low-field Hall
measurements with a variety of samples ranging in mobility
and conductance values, as well as a theoretical framework to
treat the problem.

Another important observation is that the parallel field
magnetoresistance is not produced by EEC solely. This
observation poses a question of the applicability of the EEC
theory for the determination of the interaction constant from
the parallel field magnetoresistance.18,25,37 Indeed, our data
prove that there is another unexplored mechanism that also
contributes to parallel field magnetoresistance; it is necessary
to disentangle different MR mechanisms, before extracting the
Fermi-liquid constant.

Finally, our key result is that the parallel field magnetore-
sistance is suppressed by a rather insignificant nonquantizing
perpendicular field component. This result directly contradicts
the predictions of the electron-electron interaction theory.52

If the parallel field magnetoresistance was caused by EEC,
such behavior could be straightforwardly explained by a
complete suppression of magnetoresistance already at μB⊥ =
1, according to Eq. (2). However, we have shown above, that
EEC is too small and alone can not be a reason for the parallel

field magnetoresistance. According to Eq. (2), it means that
the parallel field MR comes from mobility renormalization.

There are several potential mechanisms of such renormal-
ization: (i) the mobility may drop with parallel field due to finite
width effects.29 This mechanism, however, is not supported
by our data (compare the 90◦ and 75◦ curves in Fig. 5 that
show a factor of 3 diminished magnetoresistance in almost
the same parallel field) and is not very probable because of
the thin potential well in Si-MOSFETs (∼3 nm) compared
to the magnetic length lB[nm]= 25.7(B||[T])−0.5; (ii) the
mobility may depend on the Zeeman splitting in agreement
with the predictions of the screening theory.27–29 The latter
mechanism should produce direction-independent positive
magnetoresistance, exactly the behavior observed in heavily
doped multisubband thin Si quantum wells.64 This, however,
does not reconcile with our data. (iii) Surface roughness could
also affect MR through the weak localization suppression,63

however, this mechanism is hardly relevant because it produces
a negative MR in contrast to our observations.

Experimentally, we observe a picture opposite to the
common sense arguments: the parallel field magnetoresistance
is strongly suppressed when the sample is rotated in fixed total
field. This observation is not a property of particular studied
samples, rather, there are numerous examples in literature
where strong positive MR in parallel field coexists with almost
shallow or even negative MR in a perpendicular or tilted field:
for p-GaAs,65 strained Si,66 and Si/SiGe quantum wells.67 A
dramatic delocalizing effect of the perpendicular field was also
reported for high mobility Si-MOSFET samples in the low-
density/high resistivity (ρ � 2πh̄/e2) regime in the vicinity of
the metal-insulator transition.68 Such behavior is not explained
at all and the question why the parallel field MR is suppressed
by the perpendicular field component remains open.

We believe that the parallel field magnetoresistance sup-
pression in perpendicular field is somehow related to the
low-field Hall feature [region A in Fig. 1(g)]. The empiric
crossover between the low- and high-field regimes Bcrossover ≈√

B2
tr + (kBT /gμB)2 points to the localization-related nature

of the low-field Hall feature. We, therefore, suggest the
following model: a small part of electrons is localized in
low binding-energy states and coexist with mobile electrons.
We stress that these states are different from conventional
tail of localized states located below the mobility edge.33,34

The localized electrons do not contribute to the low-field
Hall coefficient because they can be treated as zero mobility
carriers. Let us assume also that the localized states promote
strong parallel field MR. This assumption does not contradict
the empirical observations of the disorder effect in MR.31

Application of a perpendicular field changes the symmetry
class of the system, favors delocalization of these electrons
and hence decreases the response of a 2D system to parallel
magnetic field. Such explanation initiates questions about the
source of 10–30% electrons that are out of the game in weak
fields and about the mechanism of their influence on the
parallel field MR.

The tilted field approach suggested in this paper might
be applied for a similar study of EEC with high-mobility
Si-MOSFETs where strong metallic conductivity (∂σ/∂T <

0) and metal-insulator transition are considered to be driven
by the EEC.69 This task is, however, rather challenging

205406-8



ELECTRON-ELECTRON INTERACTION CORRECTION AND . . . PHYSICAL REVIEW B 87, 205406 (2013)

experimentally because it requires a combination of mil-
likelvin temperatures (to ensure the deep diffusive limit
kBT τ/h̄ � 1 for an order of magnitude higher mobility
samples), field sweep, and sample rotation.

VI. CONCLUSION

In this paper, we applied a phenomenological technique of
resistivity tensor analysis to check the long-standing predic-
tion by Lee and Ramakrishnan11 about a Zeeman splitting
dependence of the electron-electron interaction correction
(EEC) to conductivity in the diffusive regime, kBT τ/h̄ � 1.
Our measurements reveal distinctly different behaviors of the
magnetotransport in the two domains of perpendicular field,
the low-B⊥ field (LF) and the high-B⊥ field (HF) one.

In the LF domain, the 2D system demonstrates a strong and
T -dependent magnetoresistance versus B‖ field, whereas the
Hall angle exceeds the Drude value by up to 30%, depends on
B⊥, and grows as T decreases. This Hall anomaly obscures
the determination of the quantum interaction correction from
the magnetotransport data in the LF domain.

In the HF domain, the Hall anomaly is washed out by
the B⊥ field that enables extracting the interaction quantum
correction from experimental data. The EEC was found to be
field direction independent, and linear in both ln(T ) and ln(B),
as expected.

Remarkably, the magnitude of the experimentally deter-
mined EEC appeared to be more than a factor of 10 smaller than
the parallel field magnetoconductance. Thus the parallel field
MR observed in Si-MOSFETs is not explained by the EEC
solely. Even more surprisingly, the observed strong parallel
field MR quickly diminishes when the perpendicular field
component is applied on top of the parallel field. This fact
is a direct evidence for the nonpurely Zeeman origin of the
parallel field magnetoresistance.

In total, our findings point at the incompleteness of the
existing theory of magnetotransport in interacting and disor-
dered 2D systems: too strong parallel field magnetoresistance,
its suppression by a perpendicular magnetic field, and the
low-field Hall anomaly require an explanation. We believe
that these three phenomena are interrelated and originate from
a destructive action of the perpendicular field on the localized
states.
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APPENDIX A: TEST OF THE APPLICABILITY OF THE
HIGH-FIELD ASYMPTOTICS

In the original papers,11,12 the interaction correction field
dependence, �σ (h), is expressed via an integral with known
low- and high-field asymptotics. This integral is inconvenient
in handling, therefore, we used its analytical asymptotics, see

FIG. 6. Theoretical magnetic field dependence of the EEC,
normalized by interaction factor. Solid line corresponds to high-field
asymptotics (11), dotted curve corresponds to the approximation from
Ref. 15 (see text), dashed and dash dotted curves are exact results
for F σ

0 = −0.1 and F σ
0 = −0.7, respectively. The curves are shifted

vertically to achieve coincidence in the high-field limit.

Eq. (11), instead. In Fig. 6, we compare the exact result
�σ (h) for several Fσ

0 values [see Eq. (15) in Ref. 12, note
that the dimensionless field scale differs by a factor 2π ] and
high-field linear in ln(B) asymptotics, see Eq. (11). To exclude
an interaction constant dependence in the high-field limit, all
results were divided by 2n2

vλ. Figure 6 shows that for h > 2,
the exact result for different Fσ

0 becomes indistinguishable
from the logarithmic high-field asymptotics. At the same
time, in the low-field regime, the curves substantially deviate
from each other: the closer Fσ

0 is to −1, the stronger is
the magnetoconductance. This fact has a simple physical
explanation: in the high-field limit, 2n2

v triplets (out of all
4n2

v − 1 triplet terms) become suppressed, thus excluding
any dependence on Fσ

0 . In the low-field regime, the closer
Fσ

0 ≡ (2/g∗ − 1) is to −1 (i.e., to the Stoner instability), the
larger is the effective g factor, and the stronger is the response
of conductivity to magnetic field.

An alternative approach used in Ref. 15 is based on the
approximation of the crossover function [see Eq. (4) from
Ref. 15]. For comparison, we present this approximation also
in Fig. 6.

From the practical point of view, the condition h > 2 means
that the total magnetic field B[T] should exceed 2.69 T [K].
This inequality is valid for our low-temperature high-field data
shown in Figs. 3 and 4.

APPENDIX B: LOW-FIELD NONLINEARITY OF THE
HALL RESISTANCE

The nonlinearity of the Hall resistance in the low field
domain affects both μ(B) and �σ (B) dependencies due to the
calculation procedure, based on Eq. (1). Most of scattering
mechanisms and quantum corrections, including low-field
weak localization and Maki-Thompson corrections, renormal-
ize mobility μ and do not renormalize the Hall effect.70 EEC
does affect Hall resistivity but has no peculiarities close to zero
field. The low-field Hall feature is thus unexpected in theory,
though its experimental observation is not surprising. The lack
of agreement between low-field Hall resistance and quantum
correction theory was pointed by Ovadyahu71 and reported
several times since then.10,53–55 Although there are some
theoretically suggested mechanisms,55,61,62 this phenomenon
is still poorly understood.
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FIG. 7. (Color online) �σ (B) dependencies for sample Si-40,
n = 1.25 × 1012 cm−2 at T = 0.6 K for three cases: perpendicular
magnetic field (dotted curve), perpendicular component of the field
for the sample tilted by 45◦ (dashed line, almost indistinguishable
by eye from the solid curve), and total magnetic field for the sample
tilted by 45◦ (dash-dotted curve).

Let us briefly summarize our experimental observations
of the low-field nonlinearity in the Hall resistance in Si-
MOSFETs: (i) the effect weakens as temperature increases
(see, e.g., Fig. 3). (ii) The amplitude of the effect may achieve
10e2/2π2h̄ at low temperatures, i.e., variations in the Hall
angle are as large as 30%. (iii) The �σ (B) dependence is de-
termined by the perpendicular field component. To prove this,
we compare in Fig. 7 �σ (B) for the perpendicular field orien-
tation, �σ (B⊥), and �σ (B) for θ = 45◦; (iv) The field range,
where the Hall resistance is nonlinear, broadens as density
(and hence conductivity) decreases. (v) The effect is observed
in low-mobility Si-MOSFETs (μ ∼ 0.2 m2/Vs) in the temper-
ature range 0.3–15 K (kBT τ/h̄ = 0.01–0.5). For high-mobility
samples (μ > 2 m2/Vs), we did not observe any nonlinearity
in the Hall resistance down to 0.05 K (kBT τ/h̄ ≈ 0.1).

It might be that the low-field Hall nonlinearity is some-
how related to weak localization, though weak localization
itself does not produce a correction to the Hall coefficient.
Indeed, let us estimate the transport field Btr = �0/4πl2

[�0 = (2πh̄c/e)], that is, the typical value of a perpendicular
field component where weak localization is suppressed.
By substituting the transport mean free path l from the
Drude formula l−1 = ρD × (2e2/2πh̄) × √

πn for a two-
valley system, we get Btr = nρ2

q × (2πh̄c/e), where ρq ≡
ρD × (e2/2πh̄) is the dimensionless Drude resistivity and ρD

for simplicity was taken equal to ρ(B = 0); this simplification
is justified for ρ � 2πh̄/e2 ≈ 26 kOhm. For practical use,
Btr[T] = 0.062 n [1012cm−2] (ρD[kOhm])2. The coincidence
of the estimated Btr ≈ 1.25 T value for the most intensively
discussed density n = 1.25 × 1012 cm−2 with a characteristic
field of the Hall anomaly suppression at the lowest temperature
(see Figs. 1, 3, and 4) points to the relationship between weak
localization and the anomalous low-field Hall slope.

Observation (iv) is in line with this scenario, because growth
of the resistivity pushes Btr to higher fields. A mechanism
of the weak-localization-related low-field nonlinearity in the
Hall resistance was suggested in Ref. 55, where the effect was
interpreted as the second-order correction to conductivity, i.e.,
a crossed term of the EEC (which controls the amplitude of
the effect) and weak localization (which controls the magnetic
field dependence). In our case, however, the sign of the effect
is opposite to that of Ref. 55, and the amplitude of the effect
is much stronger.

Similar sign of the effect (i.e., Hall coefficient decreasing
with field down to its nominal value 1/ne) follows from
memory effects.62 However, the memory effects do not
produce temperature dependent correction to Hall effect, as
we observed. Interaction in the Cooper (particle-particle)
channel56 produces the so-called DoS correction, which is
suppressed in magnetic fields of the order of B ∝ T/μ, similar
to what is seen in experiment. The observed effect, however,
is too big to be explained by quantum correction: indeed,
were the Hall nonlinearity, �σc ∼ 10e2/2π2h̄, caused by
DoS correction, one would observe an enormous temperature
dependence of the conductivity (of the insulting sign) at
zero field ∂σ/∂T ∼ 10e2/2π2h̄ × ln(T ) > 0, much stronger
than both EEC and weak localization. The absence of such
temperature dependence in our data points to the irrelevance
of the DoS correction to the observed weak field Hall anomaly.

Another model that might explain the field-dependent Hall
effect is a classical multi-component system. However, this
model can hardly be applicable to our data because the Hall
coefficient nonlinearity should be accompanied by a large
positive magnetoresistance, and should occur in fields ∼1/μ,
i.e., much higher than we observe. To conclude this discussion,
the origin of the low-field Hall anomaly currently is not
clear and requires both theoretical reconsideration and detailed
experimental study.
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