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Optical absorption in twisted bilayer graphene

Pilkyung Moon and Mikito Koshino
Department of Physics, Tohoku University, Sendai 980–8578, Japan

(Received 25 February 2013; revised manuscript received 22 April 2013; published 2 May 2013)

We theoretically study the optical absorption property of twisted bilayer graphenes with various stacking
geometries and demonstrate that the spectroscopic characteristics serve as a fingerprint to identify the rotation
angle between two layers. We find that the absorption spectrum almost continuously evolves in changing the
rotation angle, regardless of the lattice commensurability. The spectrum is characterized by series of peaks
associated with the van Hove singularity, and the peak energies systematically shift with the rotation angle. We
calculate the optical absorption in two frameworks: the tight-binding model and the effective continuum model
based on the Dirac equation. For small rotation angles, less than 10◦, the effective model well reproduces the
low-energy band structure and the optical conductivity of the tight-binding model and, also, explains the optical
selection rule analytically in terms of the symmetry of the effective Hamiltonian.
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I. INTRODUCTION

Recent advances in fabrication of atomically thin
materials1–5 have realized a new kind of two-dimensional
superlattice in which the lattice mismatch between neighbor-
ing layers gives rise to an additional potential modulation.
One example of such systems is twisted bilayer graphene
(TBG), in which two graphene layers are stacked in an
arbitrary orientation.1,6–10 In TBG, the interlayer interaction
between two misoriented layers significantly modifies the
low-energy band structure, creating novel electronic features
distinct from intrinsic graphene. In decreasing the rotation
angle, the interference between two lattice periods produces
a Moiré pattern with a long wavelength, where the charac-
teristic features such as band gaps and van Hove singularity
appear in the far-infrared region, and the band velocity
of Dirac cone is significantly reduced.2,7,11–16 Recently,
the band properties of TBG have been probed by Raman
spectroscopy,2,17–20 optical spectroscopy,20,21 angle-resolved
photoemission spectroscopy,22 and terahertz time-domain
spectroscopy.23

The purpose of this paper is to reveal the optical absorption
properties of TBGs with various stacking geometries. The op-
tical absorption measurement is widely adopted for graphene-
based systems to investigate the electronic structures.24–35

Theoretically, the optical absorption for light incident perpen-
dicular to the layer is related to the dynamical conductivity,
and it was calculated for monolayer graphene,36–39 AB-
stacked graphene bilayer and multilayers,40–45 and also TBG
at a specific rotation angle.21,46,47 In particular, a recent
theoretical work calculated the dynamical conductivity of a
TBG using two-mode approximation, considering two Dirac
cones separated by the primitive superlattice wave vector.47

In this paper, we calculate the optical absorption in various
TBGs with a wide range of rotation angles and demonstrate
that the spectroscopic characteristics serve as a fingerprint to
identify the stacking angle. Here the dynamical conductivity
is calculated in two different frameworks: the tight-binding
model and the effective continuum model based on the Dirac
equation, in both of which the effect of the periodic potential
is fully taken into account. For the latter, we develop a
general treatment to derive the effective model from arbitrary

tight-binding parametrization. We find that the spectrum is
characterized by series of peaks associated with the van
Hove singularity, of which the transition energy continuously
shifts as the rotation angle is changed. For small rotation
angles, less than 10◦, the effective model nicely reproduces the
low-energy band structure and the dynamical conductivity of
the tight-binding model. It also explains the optical selection
rule analytically in terms of the symmetry of the effective
Hamiltonian.

II. THEORETICAL METHODS

A. Atomic structure and Brillouin zone

Graphene is a single layer of carbon atoms arranged in
a honeycomb lattice structure, whose unit cell includes two
inequivalent sublattice sites, A and B. The stacking geometry
of bilayer graphene is characterized by the relative rotation
angle θ combined with the lateral translation δ between the
layers. Here we define the structure of TBG by rotating layers
1 and 2 of the AA-stacked bilayer around a common B site
by −θ/2 and +θ/2, respectively, and then translating layer
2 relative to layer 1 by δ. We define a1 = a(1,0) and a2 =
a(1/2,

√
3/2) as the lattice vectors of the AA-stacked bilayer

before the rotation, where a ≈ 0.246 nm is the lattice constant.
The lattice vectors of layer l after the rotation are given by
a(l)

i = R(∓θ/2)ai with ∓ for l = 1,2, respectively, where R(θ )
represents the rotation by θ .

When δ is fixed to 0, the rotations θ = 0 and 60◦ give AA

and AB stacking, respectively. 60◦ − θ is equivalent to −θ

followed by a relative translation of layer 2 from site A to site
B.48,49 Also, θ and −θ are mirror images sharing equivalent
band structures. Therefore, it is reasonable to characterize the
geometry of TBG by the combination of θ (0 � θ � 30◦) and
δ.

The lattice structure of TBG is not periodic in general
angles because the periods of two graphene layers are generally
incommensurate with each layer. But in some special angles
where two periods happen to match, the structure becomes
rigorously periodic, giving a finite unit cell. This takes place
when θ coincides with the angle between v1 = ma1 + na2

and v2 = na1 + ma2 with certain integers m and n, because
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FIG. 1. (Color online) Atomic structures of TBGs with (a) θ =
21.8◦ and (b) θ = 5.09◦. Dashed (orange) and solid (green) lines
represent the lattices of layers 1 and 2, respectively. Brillouin zone
of TBGs with (c) θ = 21.8◦ and (d) θ = 5.09◦. Dashed (orange)
and solid (green) large hexagons indicate the first Brillouin zone of
layers 1 and 2, respectively, and the thick small hexagon is the folded
Brillouin zone of TBG.

then the lattice points v1 on layer 1 and v2 on layer 2 of the
nonrotated bilayer graphene merge after the rotations θ/2 and
−θ/2, respectively. The lattice vectors of the superlattice unit
cell are thus given by48

L1 = ma(1)
1 + na(1)

2 = na(2)
1 + ma(2)

2 (1)

and L2 = R(π/3)L1. The rotation angle θ is related to (m,n)
by

cos θ = 1

2

m2 + n2 + 4mn

m2 + n2 + mn
. (2)

The lattice constant L = |L1| = |L2| is

L = a
√

m2 + n2 + mn = |m − n|a
2 sin(θ/2)

. (3)

Figures 1(a) and 1(b) show the atomic structures of
TBG with two rotation angles, θ = 21.8◦ [(m,n) = (1,2)]
and 5.09◦ [(m,n) = (6,7)], respectively. We assume δ = 0
unless otherwise noted, and we discuss the effect of δ �= 0
in Sec. III C. Figures 1(c) and 1(d) show the corresponding
Brillouin zone in the extended scheme. In each figure, the
dashed (orange) and solid (green) large hexagons correspond

to the first Brillouin zones of layers 1 and 2, respectively, and
the thick small hexagon to the folded Brillouin zone of TBG.
K (l) and K ′(l) denote the two inequivalent valleys of layer l.
The four valleys K (1), K ′(1), K (2), and K ′(2) of the two layers
are folded back to the two Dirac points, K̄ and K̄ ′, in the folded
Brillouin zone.13

When the rotation angle is small, the mismatch between
the lattice vectors of the two layers gives rise to a Moiré
pattern with a long spatial period as shown in Fig. 1(b).13,50

The local lattice structure near a certain point r approximates
a nonrotated bilayer graphene with displacement δ, which
depends on the position as

δ(r) = 2 sin(θ/2)(ez × r), (4)

where r is measured from the center of the rotation, and ez

is a unit vector perpendicular to the plane. The period of the
Moiré pattern LM

i can be obtained by the condition that δ(LM
i )

coincides with a primitive lattice vector of the original AA-
stacked bilayer. We may choose

LM
1 = (−a1 + a2) × ez

2 sin(θ/2)
, LM

2 = −a1 × ez

2 sin(θ/2)
, (5)

giving δ(LM
1 ) = −a1 + a2 and δ(LM

2 ) = −a1. The lattice con-
stant LM = |LM

1 | = |LM
2 | is

LM = a

2 sin(θ/2)
. (6)

The Moiré superlattice vectors LM
i can always be defined

for any θ , even when the lattice structure is incommensurate.
At commensurate angles, the rigorous superlattice period L

is exactly |m − n| times bigger than the Moiré period LM. In
Fig. 2, we illustrate the lattice structures of θ = 13.2◦ [(m,n) =
(2,3)], θ = 11.0◦ [(m,n) = (5,7)], and θ = 9.43◦ [(m,n) =
(3,4)]. We can see that the atomic structure exactly matches the
Moiré pattern in 13.2◦ and 9.43◦(|m − n| = 1), while in 11.0◦,
the exact period L is twice as large as LM since |m − n| =
2, and accordingly the atomic structure is slightly different
between neighboring units in the Moiré pattern.

B. Tight-binding model

We calculate the eigenenergies and eigenfunctions in TBG
using the tight-binding model for pz atomic orbitals. The
Hamiltonian is written as

H = −
∑
〈i,j〉

t(Ri − Rj )|Ri〉〈Rj | + H.c., (7)

where Ri and |Ri〉 represent the lattice point and the
atomic state at site i, respectively, and t(Ri − Rj ) is the
transfer integral between site i and site j . We adopt an
approximation,14,51–53

−t(d) = Vppπ

[
1 −

(
d · ez

d

)2 ]
+ Vppσ

(
d · ez

d

)2

,

Vppπ = V 0
ppπ exp

(
−d − a0

δ0

)
, (8)

Vppσ = V 0
ppσ exp

(
−d − d0

δ0

)
,
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(a) θ = 13.2° [(m,n)=(2,3)] (b) θ = 11.0° [(m,n)=(5,7)] (c) θ = 9.43° [(m,n)=(3,4)]

: Superlattice unit cell (atomic period): Moiré unit cell

FIG. 2. (Color online) Atomic structures of TBGs with (a) θ = 13.2◦, (b) θ = 11.0◦, and (c) θ = 9.43◦. Dashed (red) and solid (blue)
parallelograms correspond to the Moiré unit cell and rigorous superlattice unit cell, respectively.

where a0 = a/
√

3 ≈ 0.142 nm is the distance of the neigh-
boring A and B sites on the monolayer, and d0 ≈ 0.335 nm
is the interlayer spacing. V 0

ppπ is the transfer integral between
the nearest-neighbor atoms of monolayer graphene and V 0

ppσ

is that between vertically located atoms on the neighboring
layers. Here we take V 0

ppπ ≈ −2.7 eV and V 0
ppσ ≈ 0.48 eV to

fit the dispersions of monolayer graphene and AB-stacked
bilayer graphene.14 δ0 is the decay length of the transfer
integral and is chosen as 0.184a so that the next-nearest
intralayer coupling becomes 0.1V 0

ppπ .14,52 The transfer integral
for d > 4a0 is exponentially small and can be safely neglected.

C. Effective continuum model

When the rotation angle is small and the Moiré superlattice
period is much larger than the lattice constant, the interaction
between the two graphene layers has only the long-wavelength
components, allowing one to treat the problem in the effective
continuum model. The continuum approaches for TBG have
been introduced in several articles.11,15,16,54 Here we develop
a general treatment to construct an effective model directly
from the tight-binding Hamiltonian in Eq. (7). To construct
the Hamiltonian matrix, we define the Bloch wave basis of a
single layer as

|k,Al〉 = 1√
N

∑
RAl

eik·RAl

∣∣RAl

〉
,

(9)

|k,Bl〉 = 1√
N

∑
RBl

eik·RBl

∣∣RBl

〉
,

where the position RAl
(RBl

) runs over all A(B) sites in the
layer l(=1,2), N is the number of monolayer unit cells in the
whole system, and k is the two-dimensional Bloch wave vector
defined in the first Brillouin zone of the monolayer on layer l.

The intralayer matrix element of each layer occurs only
within the same wave vector, and it is given by

hAlAl
(k) ≡ 〈k,Al |H |k,Al〉 = h(k,0),

hAlBl
(k) ≡ 〈k,Al |H |k,Bl〉 = h(k,τ 1), (10)

hBlBl
(k) = hAlAl

(k),

where τ 1 = (2a2 − a1)/3 is a vector connecting site B site to
site A, and

h(k,τ ) =
∑
n1,n2

−t(n1a1 + n2a2 + τ )

× exp [−ik · (n1a1 + n2a2 + τ )] . (11)

The low-energy spectrum of the monolayer graphene is
approximated by effective Dirac cones centered at K and
K ′ points.55–59 We take K = (2π/a)(−2/3,0) and K′ =
(2π/a)(2/3,0) as the K points of nonrotated graphene. The
K points of layer l are then given by K(l) = R(∓θ/2)K and
K′(l) = R(∓θ/2)K′, with ∓ for l = 1 and 2, respectively.
When k is close to either K or K ′ the intralayer matrix element
is approximately written as59

hAlBl
(k)

≈
{

−h̄v
[(

kx−K (l)
x

) − i
(
ky−K (l)

y

)]
e−iη(l)

(k ≈ K),
−h̄v

[ − (
kx−K ′(l)

x

)−i
(
ky − K ′(l)

y

)]
eiη(l)

(k ≈ K′),

(12)

where η(l) = ±θ/2 for l = 1 and 2, respectively. The parameter
v is the band velocity of the Dirac cone, which is given in the
present tight-binding parametrization as

v ≈
√

3

2

a

h̄
V 0

ppπ (1 − 2e−a0/δ0 ), (13)

where the first and second terms in parentheses originate from
the hopping between the first and the second nearest AB pairs,
respectively. In the following, we neglect the phase factor
e−iη(l)

, assuming θ � 1. Indeed, we numerically checked that
the neglected phase gives a slight energy shift, of the order of
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θ2 at most. The diagonal matrix element hAlAl
(k) = hBlBl

(k) is
shown to be of the order of |k − K|2 and |k − K′|2 near points
K and K ′, respectively, and is neglected in the following.

For the interlayer coupling, we first consider a nonrotated
bilayer graphene with θ = 0 and a fixed lattice displacement
δ. The unit cell is spanned by the monolayer lattice vectors, a1

and a2, which are now shared by both layers. As the system
has the same periodicity as the monolayer, interlayer coupling
occurs within states belonging to the same k. The interlayer
matrix element is written as

UA2A1 (k,δ) ≡ 〈k,A2|H |k,A1〉 = u(k,δ),

UB2B1 (k,δ) ≡ 〈k,B2|H |k,B1〉 = u(k,δ),
(14)

UB2A1 (k,δ) ≡ 〈k,B2|H |k,A1〉 = u(k,δ − τ 1),

UA2B1 (k,δ) ≡ 〈k,A2|H |k,B1〉 = u(k,δ + τ 1),

where

u(k,δ) =
∑
n1,n2

−t(n1a1 + n2a2 + d0ez + δ)

× exp [−ik · (n1a1 + n2a2 + δ)] (15)

u(k,δ) can be immediately calculated by taking a summation
over some small ni’s, since t(d) rapidly vanishes in |d| � a.

When θ is slightly shifted from 0 to a small finite angle, the
local lattice structure is approximately viewed as a nonrotated
bilayer graphene, where the displacement δ is slowly varying
in space in accordance with Eq. (4). Then the interlayer
interaction couples wave vectors k and k′, which are close to
each other such that |k′ − k| � 2π/a. The interlayer matrix
element is approximately written as

〈k′,X′
2|H |k,X1〉

≈ 1

�M

∫
�M

dr UX′
2X1

[
k + k′

2
,δ(r)

]
e−i(k′−k)·r, (16)

where X and X′ are of either A or B, UX′
2,X1 are the interlayer

coupling in the nonrotational bilayer in Eq. (14), and �M =
|LM

1 × LM
2 | is the Moiré superlattice unit cell. The derivation of

Eq. (16) is detailed in the Appendix. UX′
2X1 [q,δ(r)] is periodic

in r with the Moiré superlattice periods, and therefore the
matrix element, Eq. (16), is nonzero only when k′ − k =

E
ne

rg
y

0

(i) (i)

(ii)

K’ region K region

(iii)

FIG. 3. (Color online) Schematic band structures of TBG in the
extended zone scheme along the line K ′(2)-K ′(1)-K (2)-K (1). (i), (ii) and
(iii) indicate the saddle points.

n1GM
1 + n2GM

2 , where GM
i is the reciprocal lattice vector

satisfying LM
i · GM

j = 2πδij , and ni is an integer.
In TBG, the low-energy physics is still dominated by the

states near points K and K ′ because the interlayer coupling
is much smaller than intralayer coupling. Besides, the states
near K and those near K ′ are far apart in the wave space when
θ is small, so that they are not hybridized by the interlayer
coupling. Therefore, we may consider two valleys separately
in constructing the Hamiltonian, and the factor (k + k′)/2
in Eq. (16) can be replaced with K or K′. In the real-space
representation, the effective Hamiltonian near K is concisely
written in the basis of {|A1〉,|B1〉,|A2〉,|B2〉} as

Heff =
(

H1 U †

U H2

)
, (17)

with

Hl = −h̄v(k̂ − �K(l)) · σ ,
(18)

U =
(

u(K,δ) u(K,δ + τ 1)
u(K,δ − τ 1) u(K,δ)

)
,

where k̂ = −i∂/∂r, σ = (σx,σy) is the Pauli matrices,
�K(l) = K(l) − K, and δ = δ(r) is defined in Eq. (4). When
deriving Hl in Eq. (18) from Eq. (12), we replace k with
k̂ + K, i.e., measure the wave number relative to the common
point K for both layers. The Hamiltonian for K ′ is obtained
by replacing K with K′ and k̂x with −k̂x above. In the present
choice of the tight-binding parameters V 0

ppπ , V 0
ppσ , and δ0,

the effective interlayer coupling u(K,δ(r)) is approximately
written in terms of only a few Fourier components as

u(K,δ(r)) ≈ (0.103 eV) × [
1 + e−iGM

2 ·r + e−i(GM
1 +GM

2 )·r],
(19)

where u(K′,δ) is given by u(K,δ)∗. The expression of u(K,δ)
explicitly depends on the choice of the K vector out of three
equivalent corners in the Brillouin zone.

θ

M

K

K

K'

FIG. 4. (Color online) (a) Band structure and (b) density of states
of TBG with θ = 3.89◦. Solid (blue) and dashed (pink) arrows
represent the excitation corresponding to the major peaks in the
optical absorption, and the dotted (green) arrow is a process optically
forbidden (see text).
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(a) θ = 9.43  [(m,n)=(3,4)] (b) θ = 3.89  [(m,n)=(8,9)] (c) θ = 2.65  [(m,n)=(12,13)] (d) θ = 1.47  [(m,n)=(22,23)]

FIG. 5. (Color online) Atomic structures (top) and band structures (bottom) of TBGs with (a) θ = 9.43◦, (b) θ = 3.89◦, (c) θ = 2.65◦, and
(d) θ = 1.47◦, calculated by the tight-binding model [solid (black) lines] and the effective continuum model [dashed (red) lines]. The Dirac
point energy is set to 0.

In the k-space representation, the Hamiltonian matrix can be
written in the space of the single-layer bases at discrete k points
k = k0 + n1GM

1 + n2GM
2 , where k0 is a vector defined in the

superlattice Brillouin zone spanned by GM
1 and GM

2 . k0 = 0
corresponds to the M̄ point. To obtain the energy spectrum
and eigen–wave function, we choose k points satisfying
h̄v|k| � Emax with a sufficiently large Emax and diagonalize
the Hamiltonian within the limited wave space. To avoid a
discrete change in the number of bases in varying k0, we adopt
a soft cutoff which gradually reduces the matrix elements for
the single-layer bases beyond Emax.

It is straightforward to show that the Hamiltonian, Eq. (17),
has a certain symmetry expressed as


̂−1Heff
̂ = −H ∗
eff, (20)

where


̂ =
(

0 σx

−σx 0

)
. (21)

This immediately demonstrates that if ψ is an eigenstate of
Heff belonging to energy E, 
̂ψ∗ is an eigenstate of energy
−E.

D. Dynamical conductivity

Using the eigen–wave functions obtained by the tight-
binding model or the effective continuum model, we calculate

the dynamical conductivity

σxx(ω) = e2h̄

iS

∑
α,β

f (εα) − f (εβ)

εα − εβ

|〈α|vx |β〉|2
εα − εβ + h̄ω + iη

, (22)

where the sum is over all states, S is the area of the
system, f (ε) is the Fermi distribution function, εα (εβ)
and |α〉 (|β〉) represent the eigenenergy and the eigenstate
of the system, vx = −(i/h̄)[x,H ] is the velocity operator,
and η is the phenomenological broadening, which is set to
3 meV in the following calculations. The optical absorption
intensity at photon energies h̄ω is related to the real part of
σ (ω). The transmission of incident light perpendicular to a
two-dimensional system is given by60

T =
∣∣∣1 + 2π

c
σxx(ω)

∣∣∣−2
≈ 1 − 4π

c
Re σxx(ω). (23)

III. RESULTS AND DISCUSSION

A. Band structure

The band dispersion of TBG can be intuitively understood
in terms of coupled four Dirac cones centered at the valleys
K (l) and K ′(l) (l = 1,2). Figure 3 shows the schematic band
structures of TBG along the line K ′(2)-K ′(1)-K (2)-K (1) in the
extended zone scheme. Here dashed and solid dispersions
represent the energy bands of layers 1 and 2, respectively.
The interlayer coupling gives rise to band anticrossing at the
intersection, and the resultant energy band is characterized by
saddle points accompanied by the van Hove singularity in the
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FIG. 6. DOS of TBGs with various rotation angles 0◦ < θ < 30◦ in (a) wide and (b) narrow ranges of energy. The DOS of uncoupled
bilayer graphene (i.e., twice the monolayer’s DOS) is shown as light-gray lines. Peaks marked with symbols correspond to three different types
of van Hove singularity (see text).

density of states (DOS). The saddle points are classified as (i),
(ii), and (iii) as shown in Fig. 3, where (i) and (ii) result from the
band intersection of different layers, while (iii) originates from
the original monolayer’s band structure. In the limit θ → 0,
K (1) and K (2) (equivalently, K ′(1) and K ′(2)) get closer, so that
(i) approaches the Dirac points, while (ii) goes to the midpoint
between K and K ′ in the high-energy region. (iii) remains at
the constant energy.

Figures 4(a) and 4(b) show the band structure and the
DOS, respectively, of TBG with θ = 3.89◦ [(m,n) = (8,9)]
actually calculated by the tight-binding model, Eq. (7). The
band structure can be viewed as the monolayer’s Dirac cone
folded into the superlattice Brillouin zone with some band
anticrossing at the zone corner.7,11,12,61–64 The lowest band
exhibits a linear dispersion near K̄ and K̄ ′, while we see
a large splitting in energy near point M̄ , from ±0.2 to
±0.4 eV, respectively, corresponding to band anticrossing
(i) in Fig. 3.8,64,65 The DOS has a sharp peak around ±0.2 eV,
which is associated with the saddle point near point M̄ .

Each energy band can be classified into either those
originating from the monolayer’s K region (i.e., K (1) and K (2))
or those from the K ′ region (i.e., K ′(1) and K ′(2)), because two

valleys are hardly mixed by the interlayer interaction with this
small rotation angle. Here K and K ′ should not be confused
with K̄ and K̄ ′ for the folded Brillouin zone. The monolayer’s
band near K and that near K ′ are independently folded into the
same Brillouin zone without mixing with each other. Indeed,
the lowest band in Fig. 4(a) is composed of nearly degenerate
branches, where dashed (pink) and solid (blue) lines are the
bands from K and K ′, respectively. These two bands are
degenerate along K̄-�̄ and M̄-K̄ ′, reflecting the C2 symmetry
in the real-space lattice structure.64

Figure 5 shows the energy bands of TBGs with different
rotation angles, from θ = 9.43◦ down to θ = 1.47◦. The
structures are similar to each other, while the overall energy
scale shrinks as the rotation angle decreases, roughly in
proportion to the size of the folded Brillouin zone. The width of
splitting at the M̄ point is about 0.2 eV in every case, which is of
the order of the interlayer coupling V 0

ppσ . In TBGs with small
rotation angles, less than 2◦, the energy scale of the folded
Dirac cone becomes comparable to the band splitting so that
the band velocity near the Dirac cone is significantly reduced
from the monolayer’s.2,7,11–16 In Fig. 5, we also plot the band
energies calculated by the effective continuum model, Eq. (17),
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θ

σ

FIG. 7. (Color online) Middle: Dynamical conductivity of TBG
with θ = 3.89◦ as a function of the transition energy. Arrows indicate
the excitation energies of the transitions shown in Fig. 4(a). Top and
bottom: Spectral weight maps in the superlattice Brillouin zone at
several transition energies.

as dashed (red) lines, to be compared with the solid (black)
curves obtained by the original tight-binding model. We see
that the low-energy band structure agrees quite well, except
that the effective model fails to reproduce a small electron-hole
asymmetry in the original model, since it assumes a symmetric
Dirac cone for the intralayer Hamiltonian.

Figure 6 shows the DOS of TBGs with various rota-
tion angles 0◦ < θ < 30◦ with wide [Fig. 6(a)] and narrow
[Fig. 6(b)] energy ranges. To each curve, we append the DOS
of uncoupled bilayer graphene (i.e., twice the monolayer’s) as
a light-gray line. We observe a number of characteristic peaks
associated with van Hove singularities (i), (ii), and (iii) argued
in Fig. 3. As the rotation angle increases, peaks (i) move away
from the Dirac points, and peaks (ii) move towards the Dirac
points, while peaks (iii) stay at an almost-constant energy. In
TBGs with small rotation angles, we see a number of additional
peaks since the interlayer coupling of higher order in the Moiré
wave number becomes significant.

B. Optical absorption

In Fig. 7, we plot the dynamical conductivity of TBG
with θ = 3.89◦ calculated with the tight-binding model. The
conductivity is plotted in units of

σmono = gvgs

16

e2

h̄
, (24)

which is the universal dynamical conductivity of monolayer
graphene under a linear band regime, where gs = 2 and gv = 2

are the spin and valley (K , K ′) degeneracy, respectively.24,36–39

The spectrum is characterized by a peak around 0.5 eV and a
considerable reduction right below the peak energy. Otherwise
the conductivity is close to 2σmono. The top and bottom panels,
numbered from (1) to (4), show spectral weight maps at
specific photon energies, which highlight the wave vectors
that contribute to the optical transition. A sudden rise in the
conductivity between (3) and (4) is due to bright spots near
point M̄ in the weight map. This actually corresponds to the
transition from the saddle point in the lowest valence band
to the second conduction band, which is marked by a solid
(blue) arrow in the band diagram in Fig. 4(a). The similar
transition indicated by the dashed (pink) arrow occurs at a
slightly higher energy due to the electron-hole asymmetry.
Below the peak energy, the dynamical conductivity is signif-
icantly reduced and becomes lower than 2σmono, because the
number of available states largely decreases due to the band
anticrossing.

It should be noted that the transition does not occur between
the saddle points of the lowest conduction and valence bands
[dotted (green) arrow in Fig. 4(a)], because it is optically
forbidden in this particular system. This can be clearly
explained by the effective continuum model as follows. The
lowest electron and hole states at point M̄ , which are connected
by the dotted arrow in Fig. 4, are an electron-hole pair related
by the symmetry of Eq. (20), and thus these wave functions
are written as ψ and 
̂ψ∗. The matrix element of vx between
the two states is obviously 0, because

〈
̂ψ∗|vx |ψ〉 =

⎛
⎜⎜⎜⎝

ψ∗
4

ψ∗
3

−ψ∗
2

−ψ∗
1

⎞
⎟⎟⎟⎠

†(
vσx 0

0 vσx

)⎛
⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎠

= v(ψ4ψ2 + ψ3ψ1 − ψ2ψ4 − ψ1ψ3) = 0,

(25)

and thus the transition is optically inactive. This symmetry
does not limit the optical selection rule at points other than M̄

[the origin of the wave number in the effective Hamiltonian,
Eq. (17)], since ψ and 
̂ψ∗ generally reside at different
Bloch wave vectors and are not connected by the optical
transition.

In Fig. 8(a), we plot the optical absorption spectra at
various rotation angles in a wide frequency range. The
spectrum exhibits characteristic conductivity peaks ranging
from terahertz to ultraviolet frequencies. The peaks are again
classified into three groups similarly to the DOS. When the
rotation angle increases from 0◦ to 30◦, peak (i) [(ii)] moves to
higher (lower) energies, while peak (iii) remains unchanged.
Figure 8(b) shows magnified plots of the low-frequency range
for several small angles. There the spectrum is characterized by
a single peak belonging to group (i), similarly to Fig. 7, and its
transition energy monotonically shifts with the rotation angle.
In θ = 1.47◦, the spectrum exhibits a complicated structure
in accordance with the strong band deformation observed in
Fig. 5. In Fig. 8(b), we also present the spectrum of the effective
continuum model as dashed (red) curves, to be compared with
the original tight-binding calculation. The results agree quite
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well except for the peak splitting due to the electron-hole
asymmetry, which is pronounced in θ � 10◦.

As argued in Sec. II A, the rigorous superlattice period L in
Eq. (3) discontinuously changes, depending on the commensu-
rability of the lattice periods. Nevertheless, the DOS in Fig. 6
and the optical absorption spectrum in Fig. 8 show that the
peak structure almost continuously evolves with the rotation
angle, suggesting that the exact lattice commensurability is not
quite important for the physical property. Although we cannot
rigorously handle incommensurate TBGs due to the infinite
unit cell size, its optical spectrum should be approximated
by interpolating those of commensurate TBGs with similar
rotation angles. The only property in which the actual lattice
period L matters is found as tiny peaks in the conductivity
indicated as dashed (blue) circles in Fig. 8, which exist only
when |m − n| > 1. They are related to the transition at the
corner of the exact superlattice Brillouin zone.

It is interesting to ask what the optical spectrum looks like
in the limit of vanishing rotation angle θ . When θ is small but
finite, the local lattice structure is approximately viewed as a
nonrotated bilayer graphene with a certain lattice displacement
δ, which is slowly varying in space; i.e., the system includes
AA, AB, or any intermediate structures within a long spatial
period. Since the system can then be regarded as an ensemble
of nonrotated bilayers with all possible δ’s, we expect that

the absorption spectrum approaches its average over δ. This
should be checked by actually averaging the optical spectra,
and it is left for a future study.

C. Effect of lattice displacement

The electronic structure of TBG generally depends on
the lattice displacement δ, which was set to 0 in the above
calculations. When the superlattice unit cell is of the order
of the atomic scale, in particular, the lattice structure depends
considerably on δ, and it seems to dramatically influence the
band structure and the optical absorption. We have the largest
variation when θ = 0, where the lattice constant L coincides
with a. There AA stacking is transformed to AB stacking by
a translation δ, and indeed the band structure and the optical
spectrum are significantly different as shown in Figs. 6 and 8,
respectively.

The TBG with (m,n) = (1,2) (θ = 21.8◦) has the next
smallest primitive unit cell of L = √

7a. Here we calculate
the optical spectra of the two most distinct cases, δ = 0
and (a(2)

1 + a(2)
2 )/3, whose atomic structures are displayed

in Figs. 9(a) and 9(b), respectively. Figures 9(c) and 9(d)
show the electronic structure and the dynamical conductivity,
respectively, of the two different TBGs. Even though the
atomic structures are still apparently different between the

0

4

8

12

16

20

24

28

32

36

R
e 

σ x
x 

(in
 u

ni
ts

 o
f σ

m
on

o)

)b()a(

FIG. 8. (Color online) Dynamical conductivities of TBGs with various rotation angles in (a) wide and (b) narrow frequency ranges,
calculated by the tight-binding model [solid (black) lines] and the effective continuum model [dashed (red) lines, only for (b)]. Peaks marked
with symbols represent the excitations associated with the van Hove singularity in Fig. 6. Dashed (blue) circles indicate the tiny peaks which
appearonly when the actual lattice period L is larger than the Moiré period LM (see text).
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θ
δ

δ

δ

′

σ
σ

FIG. 9. (Color online) Atomic structures of TBGs with θ = 21.8◦

with different translation vectors: (a) δ = 0 and (b) (a(2)
1 + a(2)

2 )/3. (c)
Band structures and (d) dynamical conductivities of the two distinct
TBGs.

two, the energy bands are almost equivalent, except that there
is a tiny difference near point M̄ for which the energy scale
is of the order of 10 meV. In the dynamical conductivity, this
is reflected in a small difference in the peak structure near
the energy of 3 eV. The inset in Fig. 9(c) magnifies the band
structure in the vicinity the Dirac points. We observe a small
difference of the order of 1 meV, where one takes a form like
the AA bilayer and the other like the AB bilayer,48,49,62 while it
gives no noticeable difference in the dynamical conductivity in
Fig. 9(d). The dependence on the lattice displacement becomes
even smaller in all other TBGs since their superlattice unit

cells are generally larger than that of θ = 21.8◦. The variation
is completely absent in any incommensurate angles at which
the unit cell is infinite. Thus, concerning the energy range of
interest, we conclude that the optical spectrum of TBG does not
depends much on the lattice displacement, except for θ = 0.

IV. CONCLUSION

We have theoretically investigated the optical absorption
properties of TBGs with various stacking geometries using
the tight-binding model and the effective continuum model.
We have shown that the spectrum is characterized by series
of absorption peaks associated with the van Hove singularities
in the band structure, and the peak energies systematically
shift upon a change in the rotation angle. The optical spectrum
almost continuously evolves upon changing the rotation angle,
regardless of the rigorous commensurability between two
layers, suggesting that the optical absorption measurement
provides a convenient way to identify the rotation angle of
TBG. We have developed the effective continuum model based
on the tight-binding model used here and demonstrated that
it well reproduces the low-energy band structure and the
dynamical conductivity of the tight-binding model for θ <

10◦, and it also explains the optical selection rule analytically
in terms of the symmetry of the effective Hamiltonian.
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APPENDIX: DERIVATION OF EFFECTIVE
INTERLAYER COUPLING

Here we derive the effective interlayer matrix element,
Eq. (16), for TBGs with small rotation angles. The matrix
element of the Hamiltonian, Eq. (7), between the single-layer
bases in the different layers is explicitly written as

〈k′,X′
2|H |k,X1〉

= 1

N

∑
RX′

2
,RX1

−t
(
RX′

2
− RX1

)
exp

[−ik′ · RX′
2
+ ik · RX1

]

= 1

N

∑
RX′

2
,RX1

−t
(
RX′

2
− RX1

)

× exp
[−ik̄ · (

RX′
2
−RX1

)]
exp

[
−i�k · RX′

2
+RX1

2

]
,

(A1)
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where

k̄ = k + k′

2
, �k = k′ − k. (A2)

Since the Moire lattice constant LM is much larger than
a in TBGs with small rotation angles, we need to consider
only k and k′ which are close to each other, or |�k| � 2π/a.
Then the last exponential term in Eq. (A1) is slowly varying
in space, while the other terms change in the atomic length
scale. To separate out the long-wave component, we introduce
a smoothing function g(r) which satisfies the following
conditions:59 g(r) varies in r in an intermediate length scale
lg , which is much larger than the lattice constant a but much
smaller than the Moiré superlattice period LM. g(r) is a peak
centered at r = 0 and rapidly decays in r � lg . The area is
normalized as ∫

g(r)dr = �M, (A3)

where �M is the Moiré superlattice unit cell, and the integral
is taken over the whole system area unless otherwise stated.
Almost equivalently, we have

∑
RX

g(r − RX) = �M

�0
, (A4)

where X is of either A1, B1, A2, or B2, and �0 = |a1 × a2| is
the area of the monolayer’s unit cell.

Using Eq. (A4), the matrix element, Eq. (A1), is written as

〈k′,X′
2|H |k,X1〉

= 1

N

∑
RX′

2
,RX1

[
1

�M

∫
g
(
r − RX1

)
dr

] [−t
(
RX′

2
− RX1

)]

× exp
[−ik̄ · (

RX′
2
− RX1

)]
exp

[
−i�k · RX′

2
+ RX1

2

]
.

(A5)

Now the argument (RX′
2
+ RX1 )/2 in Eq. (A5) can be replaced

with RX1 , because the last exponential term varies slowly with
the length scale of LM, and also the hopping integral t(RX′

2
−

RX1 ) occurs only in the atomic scale distance. This is further
replaced with r, since the smoothing factor g(r − RX1 ) works
as the δ function for the slowly varying function with the scale
LM. By including this, we obtain

〈k′,X′
2|H |k,X1〉

≈ 1

N�M

∫
dr e−i�k·r ∑

RX1

g
(
r − RX1

)

×
∑
RX′

2

[−t
(
RX′

2
− RX1

)]
exp

[−ik̄ · (
RX′

2
− RX1

)]

= 1

�M

∫
�M

dr e−i�k·rUX′
2X1 [k̄,δ(r)], (A6)

where we used Eq. (A4) and
∫

dr/(N�0) = ∫
�M

dr/�M. The
last equation is the final result of Eq. (16).
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