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We present a detailed theoretical study of transverse exciton-polariton patterns in semiconductor quantum
well microcavities. These patterns are initiated by directional instabilities (driven mainly by polariton-polariton
scattering) in the uniform pump-generated polariton field and are measured as optical patterns in a transverse
plane in the far field. Based on a microscopic many-particle theory, we investigate the spatiotemporal dynamics
of the formation, selection, and optical control of these patterns. An emphasis is placed on a previously proposed
low-intensity, all-optical switching scheme designed to exploit these instability-driven patterns. Simulations and
detailed analyses of simplified and more physically transparent models are used. Two aspects of the problem
are studied in detail. First, we study the dependencies of the stability behaviors of various patterns, as well as
transition time scales, on parameters relevant to the switching action. These parameters are the degree of built-in
azimuthal anisotropy in the system and the switching (control) beam intensity. It is found that if the parameters
are varied incrementally, the pattern system undergoes abrupt transitions at threshold parameter values, which
are accompanied by multiple-stability and hysteresis behaviors. Moreover, during a real-time switching action,
the transient dynamics of the system, in particular, the transition time scale, may depend significantly on the
proximity of unstable patterns. The second aspect is a classification and detailed analysis of the polariton
scattering processes contributing to the pattern dynamics, giving us an understanding of the selection and control
of patterns as results of these processes’ intricate interplay. The crucial role played by the (relative) phases of the
polariton amplitudes in determining the gains and/or losses of polariton densities in various momentum modes
is highlighted. As a result of this analysis, an interpretation of the actions of the various processes in terms of
concepts commonly used in classical pattern-forming systems is given.
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I. INTRODUCTION

Laser beams propagating through a nonlinear medium
can under certain conditions undergo directional instabili-
ties. These instabilities are driven by phase-conjugate wave-
mixing processes,1–8 leading to spontaneous generation and
build-up of intensity in modes with propagation directions
other than those of the input beams. The system’s trans-
verse translational symmetry is thus spontaneously broken,
resulting in periodic or quasiperiodic modulational patterns,
e.g., stripes and hexagons, in the intensity profile. These
spontaneously formed optical patterns have been observed in
experiments with lasers,9,10 and such passive optical systems as
atomic gases,11–14 liquid crystal light valves,15 photorefractive
crystals,16 and, most recently, semiconductor quantum well
microcavities.17 (For general reviews, see, e.g., Refs. 18–20.)
In a broader context, these developments are instances of
spontaneous pattern formation found in a wide range of
nonequilibrium physical systems such as classical fluids and
chemical reaction systems.21,22

The occurrence of directional instability patterns in optics
has also indicated the potential of using them for low-intensity
all-optical switching. It was demonstrated in Ref. 14 that the
orientation of transverse patterns in a rubidium vapor can be
all-optically and reversibly switched by the application of

a weak control beam. Subsequently, it was proposed that a
similar switching scheme can also be implemented in a semi-
conductor quantum well microcavity.8 Another analysis also
shows the possibility to optically control transverse patterns in
planar semiconductor structures.7 A review of these activities
was given in Ref. 23. The switching scheme devised in Ref. 8
has recently been experimentally demonstrated in a quantum
well double-cavity system.17 In this context, it is worthwhile
to note the different physical origins of pattern formation in
these systems. In an optically excited atomic vapor,14 nonlin-
earities stem from partial saturation of the atomic resonances,
and three-dimensional phase-matching conditions have to be
satisfied with counterpropagating pump beams for efficient
off-axis four-wave mixing of light to take place. In contrast,
in a planar quantum well based microcavity, nonlinearities
arise from the parametric scattering of exciton-polaritons24–26

(polariton four-wave mixing), which is predominantly driven
by the Coulomb interaction between the polaritons’ excitonic
constituents,27–30 with additional smaller contributions from
phase-space filling. Two-dimensional phase matching, in the
cavity’s plane, has to be fulfilled to render the scattering
processes efficient.

While setting the conceptual foundation of the directional
switching action in semiconductor microcavities in Ref. 8
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FIG. 1. (Color online) (a) Sketch of the semiconductor quantum well microcavity. Two distributed Bragg reflectors (DBR) form a photonic
cavity with an embedded semiconductor quantum well (QW). The pump is in normal incidence to the quantum well plane. When transverse
instabilities are present, off-axis patterns can be observed in the far field. The orientations of these patterns can be rotated by applying a weak
control beam. (b) Cavity polariton energy vs in-plane momentum. The uncoupled exciton and cavity photon modes are shown as dotted and
dashed lines, respectively. The solid lines represent the upper (UPB) and the lower (LPB) polariton branches. The displayed dispersion relations
do not include the effects of (nonlinear) exciton interactions. The pump frequency and scattering of two pump-induced polaritons to off-axis
modes are also indicated.

and implementing the switching in Ref. 17 were important
steps forward, further work is required to fully understand
the underlying complicated dynamics. In this paper, we study
this problem theoretically as an instance of competitions
among various transverse patterns formed by the nonlinear
interactions of exciton polaritons. The switching action of
the control beam is viewed as destabilizing the initial pattern
while stabilizing another. Two aspects of this investigation are
reported in this paper. First, we study the dependencies of the
stability behaviors of various patterns, as well as transition time
scales, on parameters relevant to the switching action. These
parameters are the degree of built-in azimuthal anisotropy
in the system and the control beam intensity. Second, we
analyze in detail the actions of physical processes contributing
to the dynamics and form an understanding of the selection
and control of patterns as results of these processes’ intricate
interplay.

The nonlinear optical and many-boson aspects of polaritons
in semiconductor microcavities are an active area of current
research.31 Besides modulational intensity patterns, more
complicated spatial instability structures such as solitons32 and
vortices33 are also being investigated in these systems. Optical
parametric oscillation in various pump/signal configurations
have been demonstrated in quantum well microcavities.34–36

This process shares a common underlying mechanism—
parametric polariton scattering—with the directional instabil-
ities studied here.

The quantum well microcavity configuration used in this
paper is sketched in Fig. 1(a). A photonic cavity is formed
by a pair of distributed Bragg reflectors (DBRs), and a
semiconductor quantum well (QW) is placed inside the cavity.
One cavity photon mode is tuned to coincide with the lowest
1s heavy-hole excitonic resonance, leading to strong coupling
between the two and the formation of an upper (UPB) and
a lower (LPB) polariton branches. The dispersion relations
(energy versus in-plane momentum) of these linear optical
excitations for the parameters used in this paper are plotted
in Fig. 1(b). A pump beam comes in at normal incidence to

the cavity’s plane and is spectrally tuned above the bottom
of the lower polariton branch but well below the bare exciton
resonance. It excites (virtual) polaritons with zero in-plane
momenta, pairs of which can scatter near resonantly into
modes with finite, opposite transverse (in-plane) momenta on
the LPB, as indicated in Fig. 1(b). The scattered polaritons
have a certain probability to emerge from the microcavity as
photons. Under favorable conditions, when the pump intensity
is above a threshold, the emerging photons in the off-axis
directions become intense and coherent beams, characteristic
of parametric, directional instabilities of the pump beam. The
instability reduces the system’s symmetry from transverse
translational to azimuthal. This azimuthal symmetry may be
further broken by the nonlinear interactions among the off-axis
polariton field amplitudes, thereby favoring patterns with
density in a finite number of clusters of k modes (i.e., modes
in transverse momentum space), e.g., a hexagon or its subsets.
Schematically illustrated in Fig. 2, the low-intensity switching
scheme proposed in Ref. 8 involves transitions between two
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FIG. 2. (Color online) Schematic representation of the switching
process. The sites labeled 1 to 6 represent the projected positions on
a transverse plane in the far field of six off-axis momentum modes,
forming a hexagon. On the left, an optical pattern is shown with the
mode pair 1 and 4 being spontaneously generated by phase-conjugate
instabilities and favored by a built-in anisotropy of the system. When
a control beam is directed at mode 2, the pattern is rotated to directions
2 and 5. When the control is then turned off, the pattern reverts to its
original orientation.
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two-spot patterns residing on the same hexagon. (Note the role
of the built-in azimuthal anisotropy in the preparation of the
initial pattern.) Instead of coherent polariton scattering, the
instabilities may equivalently be interpreted as arising from
phase-conjugate four-wave mixing of the coherent polariton
field.

The conditions for the formation of hexagons and two-spot
patterns are quite well understood in other disciplines of
physics.21 However, the additional degrees of complexity,
anisotropy and external real-time control, make pattern for-
mation in our system, and in the system in Ref. 14, a much
more involved issue than found in commonly studied sys-
tems. Moreover, unlike macroscopic pattern-forming systems,
where the field is real valued, our polariton field is quantum
mechanical and therefore complex valued, and the mutual
activating and inhibiting actions of the mode densities on
each other are entwined with their relative phases. This makes
building physical intuition about these actions and hence how
patterns are selected a nontrivial exercise.

Our theoretical approach is based on a microscopic theory
of excitonic optical response of the semiconductor quantum
well27,28 coupled to a classical treatment of the light field. Only
pairwise interactions among excitons, evaluated in the Hartree-
Fock (HF) approximation, and Pauli blocking modifications
of the light-exciton coupling are included in the nonlinear
exciton dynamics. The theory is discussed in more detail
in Sec. II below. To facilitate conceptual understanding, we
treat only the simple case of a circularly polarized polariton
field in a single quantum well cavity (see Fig. 1). Owing
to the spin dependence of the exciton-exciton interaction,28

the parametric scattering for linearly polarized polaritons is
different from that in the circularly polarized case.37 There
are indications17,35,37 that transverse instabilities are more
favored in the linearly polarized case. Moreover, using a double
cavity also makes pattern formation easier.17 We believe the
conclusions drawn in this paper about physical mechanisms
also apply to these more complicated cases.

We solve the equations of our theory in various model
state spaces. At the most complete level, we solve the
real(r)-space version of our equations directly on a grid.
While such simulations are realistic, they are computationally
demanding and it is not easy to disentangle the roles played
by various dynamical processes in generating the results.
For this latter purpose, we also evaluate the theory within
reduced model state spaces consisting of small numbers of
k modes, the relative simplicity of which makes them much
more amenable to analysis. In our parameter-dependency study
and our analysis of the contributing dynamical processes, we
make heavy use of a single-hexagon model that has a state
space consisting of one pump mode (k = 0) and six off-axis
k modes arranged in a regular hexagon. Larger models are
also used to analyze competitions among hexagons and more
extended patterns.

This paragraph and the next summarize our findings. For
typical GaAs parameters, even if the system has complete
azimuthal isotropy, a ring pattern in momentum space is
destabilized in favor of a single hexagon with arbitrary
orientation. A small anisotropy is sufficient to destabilize the
hexagon in favor of a two-spot pattern. As one increases
the anisotropy continuously from zero, the transition from

hexagon to two-spot is abrupt, and below this transition, a
range of anisotropy values exist where both patterns are stable.
In the switching scheme, a two-spot pattern stabilized by
anisotropy is set up as the initial signal, and the control beam
is directed at another mode pair (see Fig. 2). For our chosen
material (GaAs) and pump beam parameters, the pattern can
be switched by a control beam of intensity 1/6500 times
the intensity of the two-spot signal. In a detailed parameter
variation study, when the control intensity is increased from
zero, the stable state transits from the two-spot pattern favored
by the anisotropy, through an asymmetric hexagon (i.e., a
hexagon with asymmetric distribution of intensity), to the
two-spot pattern favored by the control. The transitions are
again abrupt, with a bistable region at each transition. The
switching time scale is normally of the order of 1 ns but
diverges as the control intensity approaches from above the
higher critical value for transition.

The analysis of the mechanisms underlying these phenom-
ena has yielded the following picture. The dynamics of the
polariton amplitude in a particular (off-axis k) mode is driven
by pairwise scatterings for which the mode in question is
one of the outgoing modes. We classify the processes as
linear, quadratic, or cubic according to how many of the
other three modes involved in the scattering are off-axis
(see Fig. 14). The linear gain processes provide the basic
instability mechanism to the pump-excited uniform polariton
field. For a pump intensity slightly above threshold, the set
of k modes experiencing linear instability growth form a ring
of finite thickness around the origin in (in-plane) momentum
space. As the polariton amplitudes grow in these modes,
the quadratic and cubic scattering processes, which represent
interactions among the off-axis modes, come into play. They
drive the competitions among phase-conjugate mode pairs
[pairs with equal but opposite momenta (k and −k)], which
in turn determines whether a particular pattern (ring, hexagon,
two-spot, etc.) is stable. Because of momentum conservation,
the quadratic scatterings take place only among off-axis modes
that are on a regular hexagon (see Fig. 14 below), whereas the
cubic processes are not subjected to this restriction. Therefore
competitions among modes residing on different hexagons are
driven only by the cubic processes. It is important to note that
the scatterings occur among coherent amplitudes: the relative
phases of the involved polariton amplitudes play a crucial role
in determining whether a particular process contributes to a
gain or a loss in density for the mode in question. Because of
the complex feedback between the dynamics of the phase and
the magnitude of the polariton field, it is difficult to cleanly
disentangle the gain/loss effects of the different processes.
Even so, from the simulation results one can still characterize
their effects using concepts common in classical pattern
forming systems as follows. For the typical GaAs parameters
used here, the stability of the hexagonal pattern over two-spot
patterns (in the isotropic case) indicates that the net effect of
the quadratic processes is “cross-activating,” i.e., the presence
of density in one conjugate mode pair favors the increase of
density in other mode pairs. The main effect of the cubic
processes is to bring about saturation of the off-axis polariton
density. One can subdivide them into “self-saturating” (the
density in a conjugate mode pair inhibiting its own growth) and
“cross-saturating” (the density in one mode pair inhibiting the
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growth of density in other pairs) processes. The spontaneous
breaking of the azimuthal symmetry of the system, favoring
the radially localized hexagons over a ring pattern, indicates
that the cross-saturating processes are stronger than the self-
saturating ones.

The above findings are based mostly on analyses of
models in which the pump intensity is infinitely localized
in momentum space (in the mode k = 0), or equivalently,
uniformly distributed over the 2D real space of the cavity’s
plane, and the state space is truncated. Further investigations
into the effects of a finite pump laser spot size and inclusion
of more modes in the state space will be carried out within the
full 2D real-space simulation model.

The paper is organized as follows. We first describe and
discuss our theoretical approach in Sec. II. In Sec. III, we
show a set of results from a 2D r-space simulation and
discuss two reduced models in truncated sets of k modes. In
Sec. IV, we introduce and validate the single-hexagon model
through comparison with the previous models. In Sec. V, we
present the effects of variations of anisotropy and control
beam intensity on pattern selection and switching behavior
in the single-hexagon model. In Sec. VI, we classify the
scattering/four-wave mixing processes among the polariton
modes, and the complex interplay of these processes are
analyzed in Sec. VII. An analysis of the competitions among
modes belonging to different hexagons is carried out in
Sec. VIII. Section IX contains some concluding comments.

II. THEORY OF NONLINEAR OPTICAL RESPONSE
OF A QUANTUM WELL MICROCAVITY

This section outlines the microscopic theory of the third-
order nonlinear response of a quantum well microcavity, from
which our working equations are derived. The theory can
conceptually be divided into two parts: the nonlinear response
of the quantum well to the presence of cavity photons and the
coupling between the relevant cavity photon modes and the
light field outside of the cavity. Since we work in the regime
of strong linear coupling between the QW exciton and a cavity
photon mode, it is beneficial to consider the polaritons as
elementary excitations of the QW microcavity and the cavity’s
nonlinear response as being due to the interactions among the
polaritons. For the theory of nonlinear QW optical response,
a more detailed account can be found in, e.g., Refs. 27,28,38,
and 39. An account of our present theory was given in Ref. 23.

In Ref. 23, our treatment of the passage of light into and
out of the cavity, when a given polaritonic excitation is present
inside the cavity, was only very briefly explained. We start
this section with a fuller account of this part of our theory.
Numerically, the most accurate way to propagate light waves
across the microcavity is, of course, to solve the Maxwell
equations throughout the DBR + QW structure using, e.g.,
a transfer matrix method27,40,41 or a finite-difference time-
domain method.42 However, since we are concerned with
obtaining an overall picture of parametric dependencies rather
than simulating a specific experimental setup, we have chosen
to use a simple model that approximates the wave propagation
effects as a coupling between the radiation field outside of the
cavity and the chosen cavity mode. We will call the former
the “macroscopic field.” In this model, the whole microcavity

is treated as a zero-thickness structure, which confines both
the cavity photon field and the exciton field in the longitudinal
direction and lets them extend across the entire transverse
plane. The effect of the cavity photon field on the macroscopic
light field is represented as a “polarization density” in the wave
equation governing the latter. Explicitly, we write the electric
displacement of the macroscopic field (which includes the
incident, reflected, and transmitted waves) as

D(r,t) = ε0n
2
sE(r,t) − h̄tcEcav(x,y,t)δ(z), (1)

where E(r,t) is the macroscopic electric field, ε0 is the vacuum
permittivity, ns is the refractive index of the substrate outside
of the cavity, Ecav(x,y,t) is the cavity photon field, and tc is
a coupling strength. For later convenience, the dimension of
h̄tc is chosen to be that of electric charge. In Eq. (1), we have
set up a coordinate system in which the z axis is along the
longitudinal direction and the cavity is positioned at z = 0.

The incident waves (pump and control) come in from the
left and are all “+”-circularly polarized. The exciton spin states
in the QW are quantized along the z axis so that an obliquely
incident (+)-polarized beam may also generate excitons with
the spin −1 which, after interacting with other excitons, may
generate a (−)-polarized component in the outgoing waves.
However, the polar angles of the off-axis beams are usually
quite small, and we, for simplicity, ignore this complication
and take all outgoing fields to be (+)-polarized. The algebraic
development within the model is detailed in Appendix, with
the following results. Under the assumption that each of the
waves involved is a slowly varying envelope modulating a
plane wave with a common carrier frequency ωp, the electric
field in the half-space z < 0 can be written in the form

E(r,t) =
∑

k

ei(kxx+kyy)ê+{Ek,inc[t + kz(k,ωp)z/ωp]

−Ek,refl[t − kz(k,ωp)z/ωp]}, z < 0, (2)

where k = (kx,ky), k = |k|, and kz(k,ωp) =
+

√
ω2

pn2
s /c

2 − k2, c is the light speed in vacuum, and
ê+ is the unit helicity vector for the (+)-polarized field. For
each transverse momentum k, Ek,inc is the incident field and
Ek,refl is the reflected field. In the z > 0 half-plane, the field
can be written as

E(r,t) =
∑

k

ei(kxx+kyy)ê+Ek,trans[t − kz(k,ωp)z/ωp], z > 0,

(3)

where Ek,trans is the transmitted field. The cavity field, which by
our argument above is also (+)-polarized, is also decomposed
into its spatial Fourier modes:

Ecav(x,y,t) =
∑

k

ei(kxx+kyy)ê+Ek(t). (4)

We stress that Ek(t) here denotes a momentum-space com-
ponent of the cavity field and is not to be confused with the
macroscopic field E(r,t). The k sums in Eqs. (2)–(4) range
in principle over the whole (transverse) momentum space, but
they are restricted to a finite set of k modes in the reduced-mode
model calculations discussed in this paper. For each k mode,
the transmitted (Ek,trans) and reflected (Ek,refl) light fields are
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solved in terms of the incident (Ek,inc) and the cavity (Ek)
fields in the Appendix. The result is

Ek,trans = Ek,inc − Ek,refl, (5)

Ek,refl = − h̄tc

2nscε0

dEk

dt
. (6)

We next postulate the equation of motion of the cavity field
under the actions of the macroscopic light and the exciton
fields. In writing down the equation, we make the reasonable
assumption that each transverse k mode of the cavity field, Ek,
is a simple oscillator driven linearly by the other two fields. The
proportionality coefficients in the coupling terms are chosen
in such a way that |Ek|2 can be interpreted as mode photon
density (see Appendix). The equation is

ih̄
dEk

dt
= h̄ωc

kEk − �kpk + h̄tcE
eff
k,inc, (7)

where ωc
k is the uncoupled mode dispersion relation for a

cylindrically symmetric cavity: ωc
k =

√
ωc

0
2 + c2k2/n2

b, ωc
0

being the cavity mode energy at k = 0, and nb being an
effective refractive index of the cavity’s medium, which
characterizes the transverse propagation speed of the cavity
mode. pk denotes the exciton field, which will be identified
below with the 1s heavy-hole exciton contribution to the
interband polarization in the QW, so that |pk|2 is the exciton
density (number of excitons per unit area) in the k mode.
(Strictly speaking, |pk|2 and |Ek|2 only represent the coherent
parts of their respective densities, but since the incoherent
densities are expected to be small and are ignored in this paper,
we will drop the qualifier “coherent.”) The exciton-photon
coupling strength �k is an input parameter in Eq. (7), but
will be given a microscopic meaning in terms of electron-
hole dynamics below. Eeff

k,inc is the (limiting value of the)
macroscopic electric field at the cavity’s position. Within our
model, we have

Eeff
k,inc(t) = Ek,trans(t). (8)

The coupling coefficient tc was introduced in Eq. (1) above.
If we set the incident field Ek,inc and the exciton field pk to
zero, Eqs. (5)–(8) would reduce to a homogeneous equation
for Ek from which we can extract a radiative decay rate (in
energy units) � = ωph̄

2t2
c /(2ε0cns) for the cavity. We reiterate

that Eq. (7) is written down as a postulate based on physically
reasonable assumptions. This treatment is sufficient for our
purposes here. Alternatively, it could be derived as a classical
approximation in a theory that starts with the cavity photon
field being quantized.

We next briefly describe the microscopic theory of the
excitonic optical response of quantum wells that gives the
equation of motion of pk.27,28,38,39 It starts with a many-particle
Hamiltonian operating on the Fock space of electrons and
holes. Referring to Fig. 1 again, for the quantum well, we
consider a GaAs-type semiconductor band structure around
the fundamental band gap with an exciton size of about
10−6 cm. For the present study, the single-particle basis
includes only one parabolic conduction and one parabolic
valence bands, i.e., the heavy-hole band. The Hamiltonian
contains the charge carriers’ kinetic energy, pairwise Coulomb
interactions among them, and a coupling to the cavity photon

field that either creates or annihilates an electron-hole pair
in the rotating wave approximation. Thus the only material
parameters in the theory are the electron mass, the hole
mass, the background dielectric constant, and the interband
dipole coupling. With this Hamiltonian, equations of motion
of observables (certain expectation values of products of
charge carrier creation/annihilation operators) are derived. The
dynamical variable relevant to us, the exciton field pk(t), is
defined in this microscopic theory as the interband polarization
restricted to the heavy-hole 1s exciton subspace:28

pk(t) = 1

L2

∑
k′

φ̃(k′ + βk)〈ah,−k′ (t)ae,k′+k(t)〉, (9)

where ae,q(t) is the Heisenberg-picture annihilation operator
of a conduction band electron with momentum q at time t

and ah,q(t) is the corresponding operator for a hole state, and
〈· · ·〉 represents the expectation value in the initial state of
the electron-hole system. β = mh/(me + mh) is the ratio of
the hole mass to the total exciton mass, L2 is the area of
the normalization box, and φ̃(q) = √

2πa0/[1 + (a0q/2)2]3/2

is the two-dimensional internal 1s exciton wave function in
the space of relative electron-hole momentum, with a0 =
h̄2εb/(e2mr ), εb and mr being the (3D) exciton Bohr radius, the
background dielectric constant, and the reduced mass of the
electron-hole pair respectively. The restriction to the 1s state is
valid because we limit the pump intensity so that the maximum
generated polariton density is of the order of 1010 cm−2. At this
density and the chosen pump frequency, which is tuned to a
frequency within the lower polariton branch [see Fig. 1(b)],
the excitations in the quantum well are expected to stay
predominantly in the 1s heavy-hole exciton state. For a more
detailed analysis on the validity of the 1s approximation, see
Ref. 28. Since we restrict our considerations to (+)-polarized
excitons, the electron and the hole in Eq. (9) have spins −1/2
and 3/2, respectively.

Starting from the electron-hole vacuum as the initial state,
the equation of motion for the pk(t) is derived up to third order
in the light field amplitude38,39,43 on the Hartree-Fock-level. In
the derivation, the single-pair electron-hole basis is restricted
to the 1s state as mentioned. In this limit, the equation for
a system of co-circularly-polarized excitons in the coherent
third-order regime is8,27,28

ih̄
dpk

dt
= (

εx
k − iγx

)
pk − �kEk + 1

L2

∑
qk′k′′

(2Ã�k′′p∗
qpk′Ek′′

+VHFp
∗
qpk′pk′′)δq,k′+k′′−k. (10)

Here, εx
k is the free exciton energy and γx is a phenomenolog-

ical dephasing rate, which represents all nonradiative losses,
including the transfer of coherent excitons to the incoherent
population. The photon-exciton coupling �k, which is an input
parameter in the cavity photon equation, Eq. (7), is given in
the present microscopic theory by (in SI units)

�k = e〈r〉ehφ∗(0)fγ (zQW)
√

h̄ωc
k/ε0εb, (11)

where 〈r〉eh is the interband dipole matrix element, φ∗(0) =
2
√

2/(a0
√

π ) is the two-dimensional real space 1s exciton
wave function [Fourier transform of φ̃(q)] at zero electron-hole
separation, fγ (z) is the resonant cavity photon wave function
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along the coordinate axis (z axis) normal to the cavity’s
plane, normalized to unity:

∫ ∞
−∞ dz|fγ (z)|2 = 1 and zQW is

the position of the quantum well on the z axis.
Of the two third-order terms, the term with the pp∗E

structure stems from Pauli blocking, or phase-space filling
(PSF), among the fermionic components of the exciton that
are created by photon absorption and those of excitons
already in the system. The strength is given by Ã = 2πa2

0/7.
The other term is due to mean-field, or Hartree-Fock (HF),
Coulomb interaction among the excitons, with strength VHF =
2πEba

2
0(1 − 315π2/4096) ≈ 1.52Eba

2
0 , where Eb is the (2D)

exciton Rydberg energy. Both Ã and VHF actually depend on
the momenta of the involved excitons and photons, but since
the dependencies are rather weak and the relevant momenta
are not excessively large, we approximate them by their values
at zero momentum. Each exciton interaction or PSF term
can be visualized as either a four-wave mixing process with
wave-vector and frequency matching or a polariton-polariton
scattering process with momentum and energy conservation.
The full set of third-order terms also includes a time-retarded
Coulomb correlation between two excitons, which is neglected
here. Because of its time-nonlocal structure, including the
Coulomb correlation term in Eq. (10) would increase the
complexity in solving the equation substantially. It was
previously shown27,28 that it is much less important than the
PSF and HF terms when the two interacting excitons are
co-circularly polarized and have energies far below the exciton
resonance. So dropping the retarded-Coulomb term in our case
is expected to be a good approximation. A detailed study of
its effects on polariton pattern formation will be a subject for
future work.

Moreover, the dynamical effects of the dephased excitons
are not considered. A more comprehensive theory would
include a description of the transfer by dephasing and the
subsequent interactions between the coherent and incoherent
populations. Equations of motion serving this purpose could
be derived within the microscopic frameworks that produce
Eq. (10). While recent experiments indicate that the inco-
herent exciton population remain small36 in the density and
frequency regions that we consider, its cumulative effects
should be studied more carefully. Similar considerations apply
to three-exciton and larger-cluster correlations, which would
be accounted for in an extended theory beyond the χ (3) regime.

To recapitulate, Eqs. (5)–(8) and (10) are the working
equations in the present paper. With the incident macroscopic
light field Ek,inc(t) as input, the response of the quantum well
microcavity, Ek(t) and pk(t), as well as the resulting output
light fields, Ek,trans(t) and Ek,refl(t), are calculated by solving
this set of equations simultaneously.

III. SIMULATIONS AND REDUCED MODELS

In this section, we show some representative numerical
results on transverse pattern competition and control in a
quantum well microcavity by solving, at various levels of
approximation, Eqs. (5)–(8) and (10) laid down in the previous
section. To set the stage for our discussion, we first summarize
in Sec. III A the linear instabilities of the pump-induced
uniform steady state against finite-|k| fluctuations. We will
then present in Sec. III B a set of representative results of our

full two-dimensional simulations, showing the formation of a
hexagonal pattern. We will next introduce, in Sec. III C, two
reduced models—the “multi-|k|” and the “ring” models—in
which the equations of motion are solved over selected sets
of k modes. These two models essentially reproduce the
representative results of the full 2D simulations. We will
extend our investigations using these models, presenting, in
particular, a switching process between two patterns controlled
by a weak applied beam. Based on these investigations, we
will argue at the end of this section that the analysis of an
even simpler model, the state space of which consists of
the k = 0 mode and a hexagonal set of six off-axis modes,
could be expected to provide the critical insights to understand
the patterns’ behaviors in the more comprehensive models.
This “single-hexagon” model will be analyzed in detail in the
following sections.

For the calculations, material parameters appropriate for
GaAs are used: Eb ≈ 13 meV, a0 ≈ 170 Å, εx

0 = 1.497 eV,
γx = 0.4 meV, �k ≡ � = 8 meV, ns = nb = 3.6, and εb =
n2

b. With the given values of Eb and a0, VHF ≈ 0.57 ×
10−10 meV cm2, and 2Ã� is about three times weaker. For the
cavity mode, we choose h̄ωc

0 = εx
0 , and tc is chosen such that

the radiative decay rate is � ≈ 1.5 meV for h̄ωp around 1.5 eV.
The incident pump is tuned to 5 meV below the bare exciton
resonance, i.e., h̄ωp = 1.492 eV, and its steady-state flux
intensity, which we denote by Ipump, is about 91.0 kW cm−2.

A. Linear instabilities of the uniform polariton state

The linearized Eqs. (7) and (10) at the lossless limit, i.e.,
with VHF, Ã, γx , and tc set to zero, give the linear polariton
spectrum and the polariton eigenvectors in the photon-exciton
basis. With the other parameters set as above, the linear
polariton spectrum is plotted in Fig. 1. Returning to the
full nonlinear equations, one can easily verify that when the
input field is incident normally on the cavity (pump only),
there exist solution(s) that preserve the planar translational
symmetry of the input beam (pk and Ek vanish for all k 
= 0).
At steady state, p0 and E0 oscillate at the pump frequency ωp.
The exciton density |p0|2 calculated for the above parameter
values is plotted as a function of the incident field intensity
Ipump = 2cnsε0|E0,inc|2 in Fig. 3. A linear stability analysis
with off-axis (k 
= 0) perturbations on the uniform solution is
performed, and the range of instability against this class of
perturbations is also shown in Fig. 3. The stability matrix is
block diagonal in k space with the fields pk, Ek,p−k, and E−k
for each k coupled together. For each value of |p0| within the
off-axis instability range, the uniform state is unstable against
small random perturbations in a set of k modes, which form a
ring of finite radial thickness in k space. The mean radius of
this ring is approximately determined by phase matching that
fulfills the resonance in the polariton scattering, as illustrated
in Fig. 1(b). The dispersion relations in Fig. 1(b) are calculated
without the exciton interactions in Eq. (10), which shift the ex-
citon energy, and hence the (lower) polariton energy, upwards.
As a result, the actual resonant |k| value is smaller than that
shown in Fig. 1(b). The point (|E0,inc|, |p0|) corresponding to
the incident field strength used in our calculations is marked
in Fig. 3. For this value, the instability-triggering k modes
lie in the range 1.25 × 10−4 cm−1 � |k| �1.40 × 10−4 cm−1.
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FIG. 3. (Color online) Steady-state pump-generated exciton den-
sity in the quantum well as a function of the pump beam intensity.
For densities inside the red, dashed segment, the uniform polariton
field is unstable against finite |k| perturbations. The cross marks the
pump intensity used in the simulations here.

More detailed discussions of the linear stability analysis of
the uniform state may be found in Refs. 37 and 44. In our

calculations, starting from the uniform state under steady pump
irradiation, the polariton field (the lower polariton branch) for
each mode inside the “ring of instability” initially grows in
time exponentially from random fluctuations. Subsequently,
the interactions among these off-axis polariton modes, and
the k = 0 mode, govern the long-time competition dynamics
among them.

B. 2D real-space simulations

The full 2D simulations are performed in real space by
solving the Fourier transforms of Eqs. (7) and (10). We show
a representative set of results here. A more comprehensive
discussion of these simulations will be presented in a future
publication. The configuration space is a square (spatial) grid
with a step size of x = y = 0.45 μm in a box of length
90 μm on one side. The initial state of the system is the
polariton “vacuum,” i.e., the ground state of the semiconductor
microcavity. The pump beam is switched on at t = 0, its
intensity becoming steady after 8 ns. Shown in Fig. 4(a),
the steady-state pump profile is broad and flat so that its
corresponding (transverse) momentum distribution is narrowly

FIG. 4. (Color online) Two-dimensional real-space simulations of hexagonal pattern formation. (a) The pump profile in two-dimensional
real space. (b) The exciton density profile in the QW with modulations stemming from transverse instabilities. (c) Hexagonal pattern in
transverse momentum space formed by the exciton field in (b). The density in the center (in the pump mode) has been masked for clarity. See
text for details of the simulations.
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peaked at k = 0. As time progresses, coherent polariton
amplitudes in several off-axis k modes form “spontaneously,”
causing density patterning inside the cavity. The calculated
real-space exciton density distribution inside the QW at t =
18 ns is shown in Fig. 4(b). The corresponding momentum
distribution is plotted in Fig. 4(c), which shows a dominant
hexagonal pattern situated within the ring of linear instability.
The azimuthal orientation of the hexagon is random.

C. Reduced models

The linear off-axis instability spontaneously breaks the
(transverse) translational symmetry of the system’s setup but
preserves the latter’s azimuthal symmetry. In the full 2D sim-
ulations, when the off-axis polariton fields are being built up,
their mutual interactions also break the azimuthal symmetry,
resulting in a stable hexagonal structure. As explained above,
the simulation results indicate that the collection of modes
taking part in the pattern dynamics are relatively localized
in k space. We take advantage of this fact and use reduced
models in the following to investigate the competitions among
different patterns, their control, and the physical mechanisms
underlying these competitions.

In the reduced models, we restrict our state space to a
selected finite set of k modes. We introduce two such models
in this section. (i) The multi-|k| model: for the state space
in this model, we choose six directions corresponding to
the vertices of a regular hexagon centered at k = 0. The
hexagon’s orientation is arbitrary. N evenly spaced points
along a radial segment in each direction are included in the
state space, as illustrated in Fig. 5(a). Explicitly, we write the k
points as

kh,i = (k0 + hδk)êi , h = 1, . . . ,N, i = 1, . . . ,6, (12)

1
2

3
4

5

6
pump pump

(b)(a)

kx

ky

1
2

3
4

5

6
pump

(c)

FIG. 5. (Color online) Sketches of the state spaces, made up of
modes in transverse momentum space, of the three reduced models
used in this paper. (a) Multi-|k| model: beside the origin, the modes
lie on six radial segments (thick dashed lines) arranged hexagonally.
(b) Ring model: the off-axis part of the state space is a ring of linearly
unstable k modes. (c) Single-hexagon model: the state space is the
origin plus a six-mode subset of the ring model state space that form
a regular hexagon.

where êi ,i = 1, . . . ,6 are unit vectors in the vertex directions,
and the minimum radius k0 and the grid size δk are run-time
parameters in the numerical calculations. (ii) The ring model:
in this model, we choose the |k| modes to lie on a circle
centered at the origin, regularly spaced in the angle coordinate,
as illustrated in Fig. 5(b). We also organize the points into N

hexagons, writing them as

kh,i = kr êh,i , h = 1, . . . ,N, i = 1, . . . ,6, (13)

where ê1,i is a unit vector in an arbitrarily selected direction,
êh+1,i is obtained by rotating êh,i counterclockwise through
the angle π

3N
, and the radius of the circle, kr , is a run-time

parameter.
By considering the momentum conservation constraint in

the nonlinear terms in Eq. (10), one can see that, for both
models, Eq. (10) reduces to equations of the following form
(we have simplified the notation pkh,i

to ph,i and p0 to p0): the
k = 0 (on-axis) equation reads

ih̄ṗ0 =
[
εx

0 − iγx + VHF

(
|p0|2 + 2

∑
h,i

|ph,i |2
)

+ 2Ã�
∑
h,i

p∗
h,iEh,i

]
p0 − �

[
1 − 2Ã

(
|p0|2 +

∑
h,i

|ph,i |2
)]

E0

+p∗
0

∑
h,i

(2Ã�ph,iEh,i+3 + VHFph,iph,i+3) + 2
∑
h,i

p∗
h,i[Ã�(ph,i+1Eh,i−1 + ph,i−1Eh,i+1) + VHFph,i+1ph,i−1]. (14)

The off-axis equations, for h = 1, . . . ,N and i = 1, . . . ,6, read

ih̄ṗh,i =
[
εx
h,i − iγx + 2VHF

(
|p0|2 − 1

2
|ph,i |2 +

∑
h′,i ′

|ph′,i ′ |2
)

+ 2Ã�

(
p∗

0E0 +
∑
h′,i ′

p∗
h′,i ′Eh′,i ′

)]
ph,i

−�

[
1 − 2Ã

(
|p0|2 − |ph,i |2 +

∑
h′,i ′

|ph′,i ′ |2
)]

Eh,i + 2p∗
h,i+3

{
Ã�

[
p0E0 +

∑
h′,i ′

ph′,i ′Eh′,i ′+3

− (ph,iEh,i+3 + ph,i−3Eh,i)

]
+ VHF

[
1

2
p2

0 +
∑
h′

(ph′,i+1ph′,i−2 + ph′,i+2ph′,i−1) +
∑
h′ 
=h

ph′,iph′,i−3

]}

+ 2p∗
0[Ã�(ph,i+1Eh,i−1 + ph,i−1Eh,i+1) + VHFph,i+1ph,i−1] + 2p0[Ã�(p∗

h,i+2Eh,i+1 + p∗
h,i−2Eh,i−1)

+VHF(p∗
h,i+2ph,i+1 + p∗

h,i−2ph,i−1)] + 2Ã�(p∗
h,i+2ph,i+1 + p∗

h,i−2ph,i−1)E0. (15)
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When the off-axis direction number subscript i is outside the
range 1–6, it represents the direction either i − 6 for i greater
than 6 or direction i + 6 for i smaller than 1. For simplicity,
we have neglected the k dependence of �k and replaced it by
� = �0. The cavity field equations, Eqs. (5)–(8), remain the
same for each kh,i , with analogous notations being used for
the cavity and macroscopic fields: Eh,i , etc.

On the right-hand side of Eq. (14), the χ (3) terms represent,
in the order of their appearance, the HF shift in the exciton
energy, photon scattering off an exciton density grating, Pauli
blocking of the photon-exciton coupling, and various density
transferring scattering processes. The terms in Eq. (15) can
also be interpreted the same way. We will discuss the density
transferring processes in more detail below.

1. The multi-|k| model: results

Within this model, we explore the competitions among
patterns that exist in a hexagonal geometry and the radial
distributions of these patterns in k space. The state space
consists of N = 256 points in the direction of each of the six
hexagonal vertices. We use a grid size of 22.5 cm−1 along each
radial segment so that the state space is spread over the range
from 1.10675 × 104 to 1.6805 × 104 cm−1 in each segment.
In this state space, Eqs. (5)–(8), (14), and (15) are solved in the
rotating frame of the incident field, i.e., with e−iωpt factored
out of all the fields in the equations. The time stepping is
performed with the fourth-order Runge-Kutta method with a
time step of 20 fs. This time step is sufficient for simulating
the system dynamics, which has a typical time scale of the
order of 1 ps, with good accuracy. Random fluctuating light
sources (4.55 × 10−6 W cm−2) are added in the off-axis modes
as seeds for the initial instability growth.

Solving this model with the same material and beam param-
eters as in the full 2D simulations yields similar results, i.e.,
starting with the 2D uniform state, the system spontaneously
generates off-axis coherent fields which subsequently stabilize
as a hexagonal pattern. Along each radial segment, the off-axis
field initially grows in modes over a range of |k| values. When
the pattern is stabilizing, however, one mode in each hexagonal
direction wins, the intensity in the other modes in the segment
decaying to zero.

In the experiment using atomic vapors in Ref. 14, a stable
two-spot pattern was obtained instead of a hexagon. It was
theorized that an imperfect azimuthal symmetry, which is
unavoidable in practice, might have favored the two-spot
pattern. In the theoretical calculations on microcavities in
Ref. 8, it was found that a small anisotropy introduced in one
orientation is sufficient to favor the two-spot over the more
symmetric distribution over all six hexagonal directions, and
the subsequent controlled switching involves another two-spot
pattern. For a recent detailed discussion of anisotropy in a real
system, see Ref. 45.

We have carried out calculations for this slightly anisotropic
situation. The anisotropy is imposed, as in Ref. 8, by lowering
ωc

k by 0.12 meV in directions 1 and 4 at every |k|. The values
of other parameters remain as set above. A set of numerical
results that include reversible switching by a control beam are
shown in Fig. 6. The top three panels show the light intensities
reflected from the microcavity in the six off-axis directions,

FIG. 6. (Color online) (a)–(c) Reflected signals (IR), summed
over radial k modes, vs time in the off-axis directions of the
multi-|k| model. The directions of the signals in each panel are
marked by numerical labels, which are defined in Fig. 1(a). Black
solid lines represent the signals in directions 1–3 and the red
dashed lines those in directions 4–6. Imax = 3.3 × 10−2 W cm−2 =
3.6 × 10−7 Ipump denotes the peak control intensity. (d) The control
beam intensity (IC) vs time.

and the bottom panel shows the control beam, as functions of
time. In each direction, the intensity has been summed over all
the modes on the radial segment in Fig. 5(a). The simulation
starts at time t = 0 with all fields equal to zero except for
some low-level fluctuations. The external pump field is turned
on in the k = 0 mode and reaches its steady state at about
30 ps with |p0|2 = 2.6 × 1010 cm−2. The pump steady-state
intensity is just above the instability threshold, leading to
the build-up of field intensity in the off-axis modes. The
build-up occurs in all six directions initially, but after a while,
the asymmetry (anisotropy) introduced in the cavity mode’s
dispersion relation gives a decisive advantage to directions
1 and 4, where the field intensity continues to grow to a
steady state at around t ≈ 2.7 ns, while the intensities in the
other four directions fall back to fluctuation level. A control
beam of intensity = 3.3 × 10−2 W cm−2 = 3.6 × 10−7Ipump

is introduced in direction 2 (see below for the radial |k|
value of the control) at t = 3 ns, and it switches the off-axis
intensity to directions 2 and 5, reaching a steady-state level
after 1.6 ns. In the switching process, the instability-generated
field intensity is about 6500 times stronger than the control
intensity. The control beam is then turned off at t = 5.5 ns,
whereupon the signal reverts to directions 1 and 4, reaching
steady state at t = 7.0 ns. This reversible switching process
can be repeated indefinitely, as shown. We recall that the
energy-scale parameters, i.e., VHF|p0|2, γx etc, in the polariton
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equations (7), (14), and (15) are of order of meV, giving a
natural dynamical time scale of a picosecond. However, the
(linear) gain and loss rates in the off-axis modes offset each
other by roughly two orders of magnitude (the pump intensity
level is set here slightly above threshold) so that the changes
in polariton density happen on a longer-time scale between
several tens of picosecond to nanosecond. Another point to
note is, when the control is turned on or off, it affects not just the
fields in directions 1,4 and 2,5. Every time the control changes,
the field in the third direction pair 3 and 6 grows and then
decays to zero. Concurrent to this movement, the intensities in
1,4 and 2,5 undergo a slower change, forming a shoulder on
each of the time traces. These results are qualitatively similar to
those in Ref. 8, but quantitatively dramatically different, in that
the intensity ratio of the switched signal to the control beam
in the present calculation is about two orders of magnitude
larger than in Ref. 8. This improvement is attained by raising
the radiative decay rate of the cavity from � = 0.4 meV
in Ref. 8 to � = 1.5 meV here, other parameters being the
same.

Figure 7 shows radial (|k|) distributions of intensity in
directions 1 and 2 as functions of time. At about t = 0.2 ns,
instability-generated fields appear in a range of radial shells in
all six directions. At t ≈ 1.7 ns, the distribution is narrowed to
a single |k| mode, which we label by h0, in each direction.
(Under certain conditions, instability occurs in one of the
two adjacent |k|.) The polariton frequency of this mode,
including the effect of the pump-induced HF and PSF shifts,
is approximately in resonance with the pump frequency.
Afterwards, as shown in Fig. 6, the intensity in direction 1
and h = h0 rises to a steady-state value while that in direction
2 falls to almost zero. The control beam is directed at the
mode with momentum k = kh0,2. Figure 7 shows the reversible
directional switching. As can be seen, there is no spreading
of the intensity distribution over the radial modes during the
switching to direction 2 or the subsequent return switching to
direction 1.

The convergence of the off-axis signals in each direction
to a single radial momentum mode is an important feature

of the multi-|k| model simulation results. This implies that a
further reduced model, in which only one mode is included
in each hexagonal direction, would be adequate in analyzing
the competitions among patterns in a hexagonal state space
and the switching process. We call this simpler model the
“single-hexagon model” and will use it in the following
sections to carry out a parameter-variation study of the
pattern competitions and analyze their underlying physical
mechanisms. In the full 2D simulations, the convergence to
one radial momentum mode is not as evident, which may be
due to the fact that the pump beam is a finite-width distribution
in k space in the 2D simulations instead of a single mode (at
k = 0) as in the present model. Results similar to those in
Fig. 6 have been presented in Ref. 8, but were not analyzed in
detail.

2. The ring model: results

In the ring model, we consider modes described by Eq. (13)
with kr = 1.2935 × 104 cm−1, which is the winning radial
momentum extracted from the multi-|k| model (see Fig. 7).
All parameters are the same as in the full 2D simulations;
in particular, no spatial anisotropy is given to any mode here.
Low-level random seed fluctuations in the field are put into
the off-axis modes. Instability-induced fields initially grow in
all modes around the ring, but eventually, as in the full 2D
simulations, the system stabilizes into a hexagonal pattern, the
orientation of which is arbitrary and may change from run to
run. Therefore the situation that the symmetric ring pattern is
unstable, while each “broken-symmetry” state of a hexagonal
pattern is stable, is retained when one reduces the full 2D state
space to the ring configuration.

Combining the simulation results in this section, using
the full 2D, multi-|k|, and ring models, one can see that an
important class of transverse instability-driven patterns exist
in a hexagonal state space. Moreover, a model including only
the pump (k = 0) mode and six modes on a regular hexagon
(the single-hexagon model) would be sufficient to analyze the
competitions and controlled switching among these patterns.

(a) (b) Control Intensity(c)

pump

1

4

pump
2

5

FIG. 7. (Color online) Radial distributions of reflected signal intensity in momentum space in directions 1 (a) and 2 (b) as functions of
time. The intensity distributions in directions 4 and 5 are similar to those in 1 and 2, respectively. One radial mode always ‘wins it all’ at steady
states. The insets indicate the positions of the winning modes in a transverse plane in the far field. (c) The temporal profile of the control beam.
In this case, the control is directed in azimuthal direction 2 with a momentum magnitude matching that of the winning mode in direction 1.
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FIG. 8. (Color online) Exciton density for three off-axis direc-
tions in the single-hexagon model: |p1|2 is a black solid line, |p2|2
is a red dashed line, |p3|2 is a blue dotted line. Note that the dotted
line, |p3|2, overlaps with the other lines over much of its range. The
control beam, with peak intensity ≈3.6 × 10−7Ipump is first switched
on at t = 2 ns in this run.

This analysis will be carried out in the following sections.
Interactions among modes in different hexagons will be further
studied in Sec. VIII. It will be seen that the insight gained
from the single-hexagon model is also helpful in understanding
these interhexagon competitions.

IV. SINGLE-HEXAGON MODEL

In this and the following three sections, the pattern dynam-
ics in a hexagonal geometry are investigated in detail using the
single-hexagon model. The results for our standard parameter
values are reported in this section, and some parametric
dependencies of the results are studied in Sec. V. Detailed
analysis of the physical processes driving competition and
control is contained in Secs. VI and VII.

The single-hexagon model includes only one sextuplet of
points on the vertices of a hexagon plus the origin in k space,
as illustrated in Fig. 5(c). Within the labeling scheme of the
last two models we set the number of hexagons N = 1 and
drop the index h. The momenta of the off-axis modes are
written as ki = kr êi ,i = 1, . . . ,6, where, as in the ring model,
kr is assigned the value for the winning mode in the multi-|k|
simulations. The field symbols are also simplified to pi , Ei ,

i = 0, . . . ,6, with i = 0 labeling the pump fields. Figures 8
and 9 show the simulation results using the same material and
run-time parameters as in the multi-|k| simulation presented in
the previous section. As in that simulation with the multi-|k|
model, modes 1 and 4 are given a slight advantage, and
a control beam is periodically applied to mode 2. Exciton
densities in three off-axis directions, |pi |2,i = 1,2,3, are
plotted as functions of time in Fig. 8. Their behaviors are
clearly similar to those of the reflected light fields obtained
within the multi-|k| model (see Fig. 6). In the winning off-axis
direction, the steady-state exciton density is of the order of
108 cm−2, or about 0.01 of the pump induced exciton density.
While the rise time of p1 in each cycle is about the same as in
the multi-|k| model results, the time for complete switching,
when the control is turned on, from direction 1 to 2, is
roughly 200 ps longer here. As explained in the next section,
a control intensity threshold for complete switching exists,
and the longer switching time in the single-hexagon model
indicates that this threshold is higher here than in the multi-|k|
model.

Since the polariton scatterings represented in Eqs. (14)
and (15) are coherent processes, the density transfer among
modes depends critically on the relative phases of the fields
involved. We display the phases of off-axis exciton fields
relative to the pump’s phase in Fig. 9. Their behaviors
and their roles in the dynamics of pattern selection will
be more thoroughly discussed in Secs. VI and VII below.
The importance of phases was also investigated in other
instability-driven structures, e.g., in Ref. 46.

The exciton density in the pump direction (|p0|2, which
is not shown) reaches its peak value of about 1010 cm−2

at around t = 30 ps and stays constant except for a slight
variation when the control is on. The phase of the pump exciton
field also stays essentially constant at roughly 0.15π after
t = 30 ps.

The pattern-formation time starting from the initial pump-
only state varies with the models used. In general, this initial
formation time is longer when there are more competing modes
in the model, being shortest in the single-hexagon model and
longest in the full 2D simulations. The switching time when
the control beam is applied, however, is roughly the same in
all models.

(b)(a)

FIG. 9. (Color online) Phases of the exciton fields in the off-axis directions for the reference case within the single-hexagon model.
(a) Phases in modes 1–3 and (b) phases in modes 4–6, relative to the pump-induced exciton phase, δφj = φj − φ0,j = 1 − 6. The modes are
labeled in Fig. 5(c). Note that the symmetry between φj and φj+3 is broken after the introduction of control beam at about t = 2 ns.
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ℓ

FIG. 10. (Color online) Steady-state exciton densities in direc-
tions 1 and 2 vs the amount of anisotropy—downward shift of the
cavity mode energy in direction 1 (δ). δ0 = 0.12 meV is the shift
in the reference case (see text). |p3|2(not shown) is equal to |p2|2.
For 0 < δ < δ� ≈ 0.28δ0, only the hexagonal pattern is stable. For
δ > δu ≈ 0.66δ0, only the two-spot (in modes 1 and 4) pattern is
stable. Both patterns are stable in the range between δ� and δu,
where their adiabatic evolutions show hysteresis behaviors: the solid
(dashed) lines trace the evolution of the densities as δ increases
(decreases) from small (large) values.

V. PATTERN AND TIME SCALE VARIATIONS
WITH PARAMETERS

In the previous two sections, we have discussed a particular
scenario (with asymmetry applied) where a “two-spot” pattern
is selected by the system’s dynamics and then the pattern is
rotated by a control beam. In this section, we investigate the
range of stable patterns supported by the hexagonal state space
and how the selection of patterns as well as the transition time
between patterns depend on the system and control parameters.
We will refer to the set of results presented in the previous
section as the reference case.

A. Varying the anisotropy in the cavity mode energy

In the reference case, we introduced an anisotropy in the
cavity mode energy ωc

k by down-shifting it by 0.12 meV in
modes 1 and 4. We examine here the effects of changing the
size of this anisotropy, which we denote by δ. The reference
value of 0.12 meV is denoted by δ0. Figure 10 shows the
exciton densities in directions 1 and 2 in the steady state(s)
as a function of δ/δ0. The density in direction 3 is equal to
that in direction 2 in each case. For δ = 0, where there is
complete symmetry among the six directions in the equations,
we have found only the symmetric steady-state solution, with
|p1| = |p2| = |p3|, to be stable. (The equidensity hexagonal
pattern is the “symmetric” state in the single-hexagon model. It
is, however, a broken-symmetry state in the ring model where
the symmetric state has density evenly distributed around the
ring.) The hexagon remains the only stable pattern for values
of δ between 0 and a lower critical value δ� ≈ 0.28δ0, with
the steady-state value of |p1| steadily growing while that of
|p2| = |p3| is falling. Between δ� and an upper critical value
δu ≈ 0.66δ0, both the hexagon and the two-spot pattern, in
directions 1 and 4, are stable. Above δu only the two-spot
pattern is stable. In Fig. 10, the solid lines trace the evolution
of the steady-state densities if δ is slowly increased from zero:
they vary smoothly until δ crosses δu, when |p1| jumps up

FIG. 11. (Color online) Exciton density in direction 1 (preferred
direction) vs time for various amounts of downward shift in the cavity
mode energy (δ) calculated in the single-hexagon model. The value of
δ/δ0 for each curve is given in the inset. For δ below, the critical value
for hexagon-to-two-spot transition (see Fig. 10), |p1| attains steady
state within 1 ns. For δ immediately above this critical value, e.g., the
curve for δ/δ0 = 0.67, |p1| passes through a long intermediate step
before rising to its steady-state level.

and |p2| (=|p3|) drops abruptly to zero. Starting from large
δ, when we decrease δ, the system follows the dashed lines
inside the bistable range. The total off-axis density, summed
over all six directions, increases with δ over the displayed
range (not shown). For example, the total exciton density in
the symmetric case (δ = 0) amounts to about 50% of that in
the reference case (δ = δ0).

In Fig. 11, we compare the time evolution of |p1|2 for
various values of δ during the transition from the initial vacuum
state to the stable steady state. For this initial state, the system
goes asymptotically to the hexagon steady state for values of δ

in the bistable range. In each case, the pump intensity becomes
practically constant at around t = 30 ps. The off-axis density
becomes visible on the scale of the final steady-state level
at about 0.6 ns. After this point, for δ < δu, |p1|2 takes a
relatively short time—several tens of picoseconds—to reach
its steady-state value. Beyond the hexagon-two-spot transition,
however, the time trace of |p1|2 acquires an intermediate step,
during which its change slows down, before its final rise to a
constant value. The length of this intermediate step appears to
increase without limit as δ approaches δu from above. Similar
to the reference case, shown in Figs. 6 and 8, for each δ > δu,
|p2(t)|2 and |p3(t)|2 stay nonzero during the time when |p1(t)|2
is passing through its intermediate step. Comparing the curves
at δ = 0.65δ0 and 0.67δ0 suggests that the intermediate step
is a “residual” effect of the hexagonal pattern. Though no
longer a stable steady state, it still slows down the system’s
dynamics when the system passes through its vicinity. In cases
not close to the hexagon-two-spot transition, one lower bound
to the formation time of the stable pattern is the ps time scale of
the electron-hole Hamiltonian. In most cases, the actual time
scale is one to two orders of magnitude longer that this lower
bound depending on the level of fluctuations and the balance
between gain and (both radiative and nonradiative) loss rates.

When the asymmetry δ is set below 0, directions 1 and 4
are given a disadvantage, and the stable pattern is a hexagon
with |p2|2 = |p3|2 > |p1|2. A transition to a four-spot pattern
would not occur since the latter is not a steady-state solution
to Eq. (15) (see Sec. VI below).
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FIG. 12. (Color online) Steady-state exciton densities vs the peak
intensity of a control beam introduced in direction 2. The control
intensity (Imax) is expressed in units of that in the reference case,
denoted here by I 0

max. As Imax increases, the pattern goes from two
spots (in directions 1 and 4) through a hexagon to two rotated spots
(in directions 2 and 5). A bistable region and attendant hysteresis
behavior (not shown in the figure) are present at each abrupt transition.

The switching behavior of the hexagonal pattern for δ < δu

is similar to that in the reference case when the same control
beam is applied. In the symmetric case (δ = 0, for example),
when the control beam is turned on in direction 2, the hexagon
switches to the two-spot pattern with the density in directions
2 and 5 being the same as in the reference case. When the
control beam is then turned off, the system goes back to the
symmetric solution. The times needed for switching between
the two patterns are slightly shorter than those in the reference
case.

B. Varying the control beam intensity

In the reference case, a control beam with peak intensity =
3.3 × 10−2 W cm−2 = 3.6 × 10−7Ipump is applied in direction
2. We examine here the effects of varying this control intensity,
retaining for all other parameters their values as in the reference
case. We denote the control intensity by Imax and its value in
the reference case by I 0

max.
Figure 12 shows the steady-state exciton densities when the

system is under irradiation by the control beam as functions
of Imax. It can be seen that the pattern undergoes two abrupt
changes. When the control is off (Imax = 0), the stable pattern
has two spots in directions 1 and 4. As Imax increases from zero,
|p1|2 (=|p4|2) falls, while |p2|2 (≈|p5|2) and |p3|2 (=|p6|2)
rise gradually. As Imax reaches a critical value Icr(1), which
is between 0 and I 0

max, the hexagon with two bright spots and
four dim spots changes abruptly to a hexagon with comparable
brightness in all spots. Thereafter, |p1|2 continues to fall, while
|p2|2 continues to grow until Imax reaches a second critical
value Icr(2), which is 0.86I 0

max, where |p1|2 and |p3|2 drop to
zero and the pattern changes abruptly to two spots in directions
2 and 5. Hence Icr(2) is the lowest control intensity that can
completely switch the two spots from directions 1 and 4 to
2 and 5. Though not shown in Fig. 12, a bistable region and
hysteresis behavior, similar to those in Fig. 10, are present at
each abrupt transition.

The time traces of the densities in the reference case,
in Figs. 6 and 8, show intermediate steps also during the
switching process. As in the initial pattern formation stage,
the intermediate step here can be interpreted as a “transient

FIG. 13. Time taken to switch between a two-spot pattern in
directions 1 and 4 to one in directions 2 and 5 vs the peak intensity of
a control beam introduced in direction 2. The control intensity (Imax)
is expressed in units of that in the reference case, denoted here by
I 0

max.

trapping” of the system in the vicinity of the hexagonal state
that loses its stability at Imax = Icr(2). The duration of this
intermediate step also becomes longer as we set the control
intensity closer to the critical value Icr(2). For Imax sufficiently
close to Icr(2), the time the system spends in this transient
trapping dominates the time taken by the two-spot pattern to
switch directions. Illustrating this, we plot the switching time
as a function of Imax in Fig. 13. Again, there does not appear
to be an upper bound to this duration. Away from Icr(2) when
the system is no longer affected by the hexagonal state, the
switching time is around 1ns.

If the asymmetry δ is decreased, the critical control intensity
for rotating the two-spot pattern Icr(2) is also lowered. However,
as there is a minimum value for δ, namely δcr for the two-point
solution to be stable, a lower bound to the switching intensity
exists for a fixed set of material parameters and pump intensity.

VI. DYNAMICAL ANALYSIS

In the following two sections, we seek to gain insight
into the physical mechanisms underlying the phenomena of
pattern formation and switching displayed in the previous
sections. For this purpose, we analyze the interplay between
the various wave mixing (or coherent scattering) processes
contributing to the polariton dynamics. To keep the discussion
most transparent, we will work within the single-hexagon
model.

It is convenient to break the complex fields in the rotating
frame down to their magnitudes and phases and consider the
equations of motion for these components:

pj = p̃j e
−iφj , Ej = Ẽj e

−i(φj −ξj ), (16)

for j = 0, . . . ,6. Here, ξj is defined to be the phase difference
between the exciton field pj and the cavity photon field Ej .
Substituting Eq. (16) into Eqs. (14) and (15), we get for the
off-axis fields (j = 1, . . . ,6),

dp̃j

dt
= 1

h̄p̃j

Im(ih̄ṗjp
∗
j ) = Lpj

+ Qpj
+ Cpj

, (17)

dφj

dt
= 1

h̄p̃2
j

Re(ih̄ṗjp
∗
j ) = 1

p̃j

(
Lφj

+ Qφj
+ Cφj

)
, (18)
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where

h̄Lpj
= VHFp̃j+3p̃

2
0 sin

(
�

0,0
j,j+3

) + 2Ã�p̃0Ẽ0p̃j+3 sin
(
�

0,0
j,j+3,ξ0

) − �Ẽj sin (ξj )
(
1 − 2Ãp̃2

0

) + 2Ã�p̃0Ẽ0p̃j sin (ξ0) − γxp̃j ,

(19)

h̄Qpj
= 2p̃j−2

[
VHFp̃0p̃j−1 sin

(
�

0,j−1
j,j−2

) + Ã�Ẽ0p̃j−1 sin
(
�

0,j−1
j,j−2,ξ0

) + Ã�p̃0Ẽj−1 sin
(
�

0,j−1
j,j−2,ξj−1

)]
+ 2p̃j+2

[
VHFp̃0p̃j+1 sin

(
�

0,j+1
j,j+2

) + Ã�Ẽ0p̃j+1 sin
(
�

0,j+1
j,j+2,ξ0

) + Ã�p̃0Ẽj+1 sin
(
�

0,j+1
j,j+2,ξj+1

)]
+ 2p̃0

[
VHFp̃j+1p̃j−1 sin

(
�

j+1,j−1
j,0

) + Ã�Ẽj+1p̃j−1 sin
(
�

j+1,j−1
j,0,ξj+1

) + Ã�p̃j+1Ẽj−1 sin
(
�

j+1,j−1
j,0,ξj−1

)]
, (20)

h̄Cpj
= 2VHFp̃j+3

[
p̃j+1p̃j−2 sin

(
�

j+1,j−2
j,j+3

) + p̃j+2p̃j−1 sin
(
�

j+2,j−1
j,j+3

)] + 2Ã�p̃j+3

∑
i 
=j,j+3

p̃iẼi+3 sin
(
�

i,i+3
j,j+3,ξi+3

)

+ 2Ã�Ẽj sin (ξj )
∑

i

p̃2
i + 2Ã�p̃j

∑
i 
=j

p̃iẼi sin (ξi), (21)

and

h̄Lφj
= (

εx
h,j − h̄ωp + VHFp̃

2
0

)
p̃j + VHFp̃j+3p̃

2
0 cos

(
�

0,0
j,j+3

) + 2Ã�p̃0Ẽ0p̃j+3 cos
(
�

0,0
j,j+3,ξ0

)
−�Ẽj cos (ξj )

(
1 − 2Ãp̃2

0

) + 2Ã�p̃0Ẽ0 cos (ξ0)p̃j , (22)

h̄Qφj
= h̄Qpj

[sin �→ cos], (23)

h̄Cφj
= h̄Cpj

[sin �→ cos] + VHFp̃j

⎛
⎝2

∑
i 
=j

p̃2
i + p̃2

j

⎞
⎠ , (24)

where �
l,m
i,j = φi + φj − φl − φm and �

l,m
i,j,ξk

= φi + φj +
ξk − φl − φm. In these equations, each sum over i ranges from
1 to 6. In Eqs. (23) and (24), a function followed by the symbol
[sin �→ cos] means the same function with all sines replaced
by cosines in its expression. We have grouped the contributing
terms according to their order in the off-axis fields. As the
symbols imply, Lpj

, Qpj
, and Cpj

contain respectively first
(linear), second (quadratic), and third-order (cubic) terms in
pj or Ej , j = 1, . . . ,6. The same applies to Lφj

, Qφj
, and

Cφj
. The state with polariton density only in the pump mode

is treated as the zeroth-order state. The pump fields p0 and E0

experience very small (fractional) changes in time and will be
taken approximately as constant in this analysis.

As mentioned before, all exciton interactions and PSF
terms can be visualized as either a four-wave mixing process
with wave-vector matching or a polariton-polariton scattering
process with momentum conservation. For each scattering
process in Eqs. (14) and (15), the exciton field on the left-hand
side and the conjugated field on the right-hand side are in the
outgoing modes while the other two fields on the right-hand
side are in the incoming modes. Of course these scatterings are
coherent, not of the Boltzmann, mass-action type: the direction
of density transfer depends on the interference between the
scattered wave and the existing field in each outgoing channel.
In Eqs. (17)–(24), the phases of the incoming fields are
subtracted from those of the outgoing fields inside the sine
or cosine functions. Since the density equations contain the
sine functions, the term is a gain term for the mode in question
if the combined phases of the outgoing fields lead (by less than

π ) those of the incoming fields. Otherwise, it is a loss term.
For the phase’s rate of change, with the cosine functions, a
process tends to increase the phase in question if the phase
difference between the outgoing fields and the incoming fields
is less than π/2.

The first two terms contributing to Lpj
in Eq. (19) are

the primary instability-driving (gain) processes, in which two
pump polaritons scatter off each other into two opposite
off-axis directions. An example is displayed pictorially in
Fig. 14(a). The next term is the exciton-photon coupling
in an off-axis mode, partially blocked by the pump exciton
density. In the calculations, the angle ξj is always positive,
corresponding to an expected net energy flow from the exciton
field p̃j to the photon field Ẽj . Hence, to the exciton field,
this term represents the radiative loss from mode kj . The next
term describes the forward scattering between a pump photon
and an off-axis exciton, or equivalently, a self-wave mixing
process in which a pump photon scatters off a density grating,
set up by the pump and the off-axis exciton fields, into the
off-axis direction. In the pump mode, energy flows on balance
from the cavity photon field to the exciton field, resulting in
a negative phase-lag angle ξ0. Hence this scattering actually
results in a density transfer from the off-axis kj mode to the
pump mode. The last term −γxp̃j represents all nonradiative
losses. The balance between gain and loss terms determines
the sign and magnitude of Lpj

.
In a quadratic process, i.e., one that contributes to Qpj

and Qφj
, one off-axis polariton (from mode kj ) and a pump

polariton scatter into the modes kj−1 and kj+1 and vice

205307-14



TRANSVERSE OPTICAL INSTABILITY PATTERNS IN . . . PHYSICAL REVIEW B 87, 205307 (2013)

kx

ky

(a) (c)(b)

(d) (e)

FIG. 14. (Color online) Pictorial representations of polariton
scattering processes contributing to the equation of motion of p1.
The processes are (a) linear, (b)–(d) quadratic, and (e) cubic in the
off-axis fields. In each diagram, the incoming modes and outgoing
modes in the scattering are labeled by red, solid circles and blue,
open circles, respectively. The arrows represent the modes momenta,
dashed (solid) for the incoming (outgoing) modes. For example in (b),
two polaritons from directions 0 (pump) and 6 scatter into directions
1 and 5.

versa. These processes are also illustrated in Fig. 14: the
first three terms in Eq. (20) are represented by Fig. 14(b),
the next three terms by Fig. 14(c), and the last three terms
by Fig. 14(d). We note that the momentum conservation
condition that gives rise to the quadratic terms is satisfied
only for modes arranged geometrically in a hexagon. Among
the cubic terms, the first three contributing to Cpj

and Cφj

represent two counter-directed polaritons on the hexagon
scatter into a different pair of opposite directions. An example
is drawn in Fig. 14(e). The next two terms are, respectively,
the Pauli blocking reduction of the (linear) exciton-photon
coupling by the exciton density in all off-axis modes and a
self-wave-mixing process in which a photon in mode i (i 
= j )
scatters off a density grating, set up by pi and pj , into mode
j . Since 0 < ξi < π/2 for i = 1, . . . ,6, these two terms are
positive in both Eqs. (21) and (24). The last term contributing
to Cφj

in Eq. (24) is a (blue) shift in frequency for pj . In
contrast to the quadratic terms discussed above, these cubic
processes do not require a hexagon mode configuration to be
operative.

We finally note a phase degeneracy in the solution to
Eqs. (17)–(24). Suppose (p̃j (t),φj (t)),j = 1, . . . ,6 is a solu-
tion to these equations. Then one can verify that (p̃j (t),φj (t) +
δφj ) is also a solution provided the six δφj ’s are time
independent and satisfy the following constraints:

δφj + δφj+3 = 2πm, (25)

δφj+1 + δφj−1 − δφj = 2πm, (26)

where m is an integer, and the subscript is again counted
cyclically through 1 to 6. These two constraints restrict
the number of undetermined phases to two. This applies,
in particular, to steady-state solutions. Thus there exist an
infinite number of steady-state solutions to Eqs. (17)–(24),

which can be grouped into a finite number of classes. The
solutions in each class have the same set of magnitudes and
are parameterized by two free phases. We see an example of
this phase freedom in Fig. 9, when we compare the phases of,
say, p1 and p4 during the initial steady state with their phases
when the system returns to the (1,4) two-dot pattern after the
first on/off switching cycle. The individual steady-state phases
are different in the two time periods, while their sum stays the
same. Therefore, strictly speaking, the system “returns” after
the on/off switching cycle to a different steady state that has
the same set of magnitudes as before. Put another way, in a
hypothetical experiment, the measured relative phase between
E1 and E0 may be affected by uncontrollable factors, but the
measured average phase of E1 and E4 relative to E0’s phase
can be meaningfully compared to our theory’s prediction.

VII. INTERPLAY OF WAVE MIXING PROCESSES

We now discuss the contributions and interplay of the
various processes in effecting pattern selection and switching
in the reference case (see Sec. IV). As could be expected,
pattern competition in even the single-hexagon model is the
result of rather complex, activating or inhibiting, feedbacks
among these processes. Not being simply additive, their effects
are not easy to disentangle cleanly. Nevertheless, as we show
below, very useful insights could be gained by characterizing
whether each process is activating or inhibiting to each mode’s
density. It is clear from Eqs. (19)–(21) that to understand
how the exciton densities evolve, one needs information on
the relative phases of the polariton fields involved in the
scatterings. The calculated magnitudes and phases of the
off-axis pj for the reference case were plotted in Figs. 8
and 9. Figure 15 shows the contributions of the three groups of
terms—linear, quadratic, and cubic—to the rates of change of
the exciton densities in directions 1 and 2, and Fig. 16 shows
these contributions to the evolution of the respective exciton
phases.

1. Linear contributions

Initially, the linear terms dominate, and in each off-axis
mode, the exciton phase φj is quickly locked into a value
given by the solution of dφj/dt ≈ Lφj

/p̃j = 0, where Lφj
is

given by Eq. (22). Actually, as explained above, this condition
fixes only the value of the sum φj + φj+3 but not either phase
angle individually. In the calculations, however, all the exciton
phases are initially set at 0, and since Lφj

/p̃j ≈ Lφj+3/p̃j+3,
we also have φj ≈ φj+3 in the linear regime. The radial |k|
value of the off-axis modes having been chosen optimal, we
have [cf. Eq. (19)]

�
0,0
j,j+3 = φj + φj+3 − 2φ0 ≈ π/2. (27)

In Fig. 9, this phase lead is about 0.6π for each of the
three off-axis mode pairs. Once their phases are locked, the
off-axis exciton densities grow exponentially from fluctuation
levels. We are considering pump intensities close to the
phase-conjugate instability threshold. This condition implies
a substantial cancellation between the gain and loss terms in
Lpj

. In the reference case calculations, the exponential off-axis
growth rate in the first 0.6 ns is about 0.01 ps−1, which is much
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(b)(a)

FIG. 15. (Color online) Contributions of the linear, quadratic, and cubic terms to the rate of change of exciton densities in directions 1 (a)
and 2 (b) in the reference case.

slower than the typical inverse time scales given by the exciton
Hamiltonian (e.g., γx/h̄ = 0.67 ps−1). During this exponential
growth phase, the p̃j ’s are actually too small to be visible on
the scale in Fig. 8. It is interesting to note that, although the
asymmetry-favored p1 (and p4) eventually wins out at the
steady state, p2 actually grows slightly faster than p1 during
the initial 0.6 ns. Thus the asymmetry confers its advantage
through the quadratic and/or cubic processes. Put another way,
the selection of (p1, p4) as the winning directions by the
asymmetry works through the interactions among excitons in
all six off-axis directions.

2. Quadratic contributions

The linear growth regime lasts approximately 0.5 ns.
As the p̃j ’s grow, the quadratic and cubic contributions to
dpj/dt come into play. The onset of the quadratic terms has
two effects. First, their direct contribution to the magnitude
equation, Qpj

in Eqs. (17) and (20), is positive, as shown in
Fig. 15. This can be understood as follows. As explained in
Sec. VI, whether a scattering term is a gain or loss process
depends on the phase sum of the outgoing exciton-polariton
fields relative to that of the incoming fields. In each term
contributing to Qpj

, one of the four exciton fields is in the
pump mode while the other three are off-axis. As we have

seen above in Eq. (27), the linear instability sets up the off-axis
fields with phases leading the pump’s by a large margin. In the
first six terms of Eq. (20), represented by Figs. 14(b) and 14(c),
p0 is among the incoming fields, and thus the relative phase
angles are typically positive (between 0 and π ). These six
terms are therefore gain terms. The photon/exciton phase shift
in each mode, ξj , is very small and its effect can be ignored
in this argument. In contrast, the last three terms in Eq. (20),
represented by Fig. 14(d), yield losses because p0 is outgoing
in them. Since the three triplets of terms are roughly equal in
magnitude, and the gains outnumber the losses, the net result
for Qpj

is typically positive.
The second effect of the quadratic terms acts through their

contributions to dφj/dt in Eq. (18). Again from the linear
phase lead, Eq. (27), one can deduce that the relative phases in
the terms contributing to Qφj

in Eq. (23) typically lie, during
the onset of the quadratic terms, between −π/2 and π/2, Qφj

is therefore positive, as shown in Fig. 16. The resulting increase
in φj exerts a negative feedback effect on the linear scattering
process in Lpj

: since the relative phase in the linear gain terms
sin(�0,0

j,j+3) is a little over π/2 during the initial growth period,
pushing φj (and φj+3) up reduces the gain, and since the loss
terms, e.g., γxp̃j , are not affected, Lpj

suffers a net decrease
and becomes negative, as can be seen in Fig. 15. In fact, the

(b)(a)

FIG. 16. (Color online) Contributions of the linear, quadratic, and cubic terms to the rate of change of exciton phases in directions 1 (a)
and 2 (b) in the reference case.
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upsurge of p̃1/4 to their winning (two-spot) steady state is
associated with a slower rise in φ1/4 than in the other modes’
phases. Initially locked at zero, Lφj

is also decreased by the
growing �

0,0
j,j+3 negative values, as shown in Fig. 16, thus

offsetting the effects of Qφj
to some degree.

3. Cubic contributions

The contributions of the third-order scattering processes to
the exciton density, i.e., the first three terms in Eq. (21), depend
on the relative phases between the off-axis fields. When p̃1 is
winning, since φ1 < φ2 = φ3, inspecting Eq. (21) shows that
these terms are negative for Cp1 and positive for Cp2 and
Cp3 , or they tend to equalize the densities in the six modes.
The remaining two terms in Cpj

are Pauli blocking terms that
reduce the flow of density from pj to Ej and so are gain terms
to mode j . In the two-spot steady state with modes 1 and 4,
the only surviving contribution to Cp1 is 2Ã�Ẽ1p̃

2
1 sin (ξ1).

Similar to Qφj
, all terms in Cφj

in Eq. (24) are positive, thus
again helping to lower the linear amplitude term Lp1 . The first
set of terms in Eq. (24) again represent coherent scatterings
and Pauli blocking. The last term is a blue shift of the exciton
energy in mode j due to interactions with off-axis excitons.

4. Role of quadratic processes in stabilizing hexagon

It is instructive to consider an artificial reduction of the
single-hexagon model in which the quadratic processes are
disabled. In this case, the most basic function of the cubic
processes is to saturate the polariton density in the off-axis
modes, which the cubic processes achieve mostly through
raising the phases of pj ’s, as explained above. Setting the
quadratic terms [last three lines in the single-hexagon of
Eq. (15), or equivalently, Qpj

and Qφj
in Eqs. (17) and (18)]

to zero, we have repeated the simulations with the same
parameters as in the runs shown in Sec. V. Figure 17 shows
the exciton densities in modes 1 to 3 for an isotropic setting,
i.e. no advantage is given to modes 1 and 4 (δ = 0). Unlike
the “physical” case, with the quadratic terms operative, where

FIG. 17. (Color online) Exciton densities in directions 1 to 3
for the reference case but with the quadratic terms disabled and no
asymmetry in the cavity dispersion relation. The first on/off cycle of
the control beam starts at t = 7 ns.

the symmetric hexagon pattern is stable, the stable steady state
in Fig. 17 is a two-spot pattern—the sixfold symmetry of the
single-hexagon model is spontaneously broken. Which pair
of modes win at the expense of the others is not determined
by the model’s physics and changes from run to run. When
a sufficiently strong control beam is applied to mode 2, the
pattern switches over to modes 2 and 5, but stays in this pair
when the control is turned off. This is consistent with the fact
that, in the isotropic setting, the two-spot pattern at modes 2
and 5 is the stable state closest to the steady state maintained
by the control beam.

It is useful here to draw some insight from previous analyses
of other multiple-mode competition models47–49 that are based
on linear growth and cubic saturation. Consider Lamb’s
two-mode laser model,47 where each mode exerts a cubic
saturation effect on both itself and the other mode. For this
model, a symmetric steady state, with equal intensity in the two
modes, is stable if self-saturation is more efficient than cross-
saturation, while two asymmetric states, each with intensity in
only one mode, are stable if cross-saturation is more efficient.
By analogy, we also subdivide the contributions to Cφj

and
Cpj

into those due to densities in modes in j and j + 3 and
those due to densities in other modes, and refer to the two
classes as self-saturating and cross-saturating contributions,
respectively. The analogy is not exact because the effects of
the two classes on dp̃j /dt are not simply additive, as their
counterparts in Lamb’s model47 are, but these arguments are
still applicable qualitatively, and our numerical results indicate
that the cross-saturation cubic processes in our model polariton
system are more efficient than the self-saturation processes. We
have already seen that turning the quadratic processes back
on in the isotropic setting destabilizes the two-spot pattern,
while restoring stability to the symmetric hexagonal pattern.
This indicates that the enhancement brought by Qpj

to dp̃j /dt

outweighs the suppression caused by the positive Qφj
in raising

the phase of pj . Thus the net effect of the quadratic processes
can be classified as “cross-activating.” The introduction of
anisotropy (δ > 0) modifies the balance of the above activating
and saturating effects and, when strong enough, destabilizes
the hexagonal pattern.

In the above, we have analyzed the physical processes driv-
ing transverse pattern selection and control in a quantum well
microcavity and attempted to pursue a semi-phenomenological
analogy between the pattern dynamics in this system and other
mode-(or pattern-)competition systems. We will explore this
analogy further in a future publication.

VIII. COMPETITIONS AMONG HEXAGONS

With the single-hexagon model, we have analyzed the
switching between patterns that are the subsets of the same
(regular) hexagon. In this section, we investigate switching
between patterns that reside in different hexagons, as displayed
in simulations using the multi-|k| and ring models. One
can see by inspecting Eq. (15) that the quadratic processes
[last three lines of Eqs. (15)] take place only among modes
situated on the same hexagon. Modes on different hexagons
compete with each other only through the cubic processes.
From the intuition that we formed in the previous section that
cubic cross-saturation in our system is more efficient than
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(b) Control Intensity(a)

at around 
88 degree 

FIG. 18. (Color online) (a) Time evolution of the angular distri-
bution of the reflected signal intensity in momentum space, calculated
in the ring model. Although the setup is perfectly isotropic, the ring
pattern is unstable while the hexagons are stable. The orientation of
the hexagonal pattern obtained in each run is arbitrary. A control
beam is introduced at t = 7 ns, directed at a mode outside of the
initial hexagon, switching the pattern to a two-spot one. When the
control beam is switched off at t = 9.5 ns, the signals form a hexagon
in the orientation defined by the control beam. (b) Temporal profile
of the control beam intensity.

self-saturation, we expect patterns that break the symmetry
among hexagons to be favored. We have already seen that
this is consistent with the simulation results in the 2D r-space
model and the ring model in Sec. III. In both simulations, the
setup is isotropic, but a hexagon pattern with arbitrary orienta-
tion is stable while the ring pattern is not. Within the hexagon,
the cross-activating quadratic processes stabilize the symmet-
ric hexagonal pattern at the expense of the two-spot solutions.
In Fig. 18, we show some extended results of the ring model
simulation. The figure shows the time evolution of the angular
distribution of intensity. Starting with only the pump mode, the
system forms a hexagon at about t ≈ 6.5 ns, and the exciton
density in the winning hexagon is 5.6 × 107 cm−2, which is
the same as the steady-state density in the symmetric multi-|k|
model (not shown). A control beam with the same intensity

as the one in the reference case is applied to another mode on
the ring. Just as in the reference case, the control stabilizes a
two-spot pattern with one spot in the mode it shines on. When
the control beam is subsequently turned off, the off-axis pattern
reverts to a hexagon that is oriented to contain the previous
two-spot pattern as a subset. This is again consistent with the
fact that each individual hexagon pattern is stable, and when
the two-spot pattern is rendered unstable by the control beam’s
removal, the system settles into the nearest stable pattern.

A comparable situation is present in the multi-|k| simula-
tions. We performed a simulation similar to the one shown in
Figs. 6 and 7 except that the control beam is applied to a mode
on a different hexagon (i.e., having a different radial momen-
tum |k|) from the initial two-spot pattern. Recall the notations
in Sec. III: with the anisotropy-induced preference, the initial
two-spot pattern is in modes kh0,1 and kh0,4, and the control
beam is applied to mode kh0,2. Here, the control is directed at
mode kh′

0,2 with h′
0 being a close neighbor of h0. Figure 19

shows the time evolution of the exciton density in modes over
a range of h, or |k|, values in directions 1 and 2. One can see
that when the control is on, the pattern follows it to the mode
pair kh′

0,2 and kh′
0,5. When the control is turned off, the pattern

switches back to directions 1 and 4 but stays in the radial
momentum mode set by the control, i.e., to the modes kh′

0,i
,i =

1,4 instead of the original kh0,i ,i = 1,4. In subsequent cycles
of switching, the pattern stays in the hexagon defined by h′

0.
These behaviors again indicate that, in the absence of the
control, there exist a group of stable steady states, in each
one of which the signal is concentrated in a mode with k =
kh,i ,i = 1,4 and h is within a certain range about h0. Which
state the system evolves into depends on the system’s history,
e.g., which mode the signal is in when the control is turned off.
In contrast to the situation in the ring model, however, there
is no symmetry under which these modes are equivalent, for
example, they have different single-polariton energies.

IX. SUMMARY AND OUTLOOK

In this paper, we have studied the nonlinear polariton
dynamics of a laser-pumped quantum well microcavity as a

pump

1

4

pump
2

5

(a) (b) (c)

FIG. 19. (Color online) Time evolution of the radial distributions of reflected signal intensity in momentum space in directions 1 (a) and 2
(b), calculated in the multi-|k| model. One radial mode always “wins it all” at steady state. The inset in each panel indicates the positions of the
winning modes in a transverse plane in the far field. (c) Temporal profile of the control beam. In this case, the control is directed in azimuthal
direction 2 with a momentum magnitude smaller than that of the winning mode in direction 1.
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spontaneous pattern-forming system. Using a microscopic the-
ory of exciton-exciton interactions and GaAs parameters, we
have examined the formation, selection, and control of the var-
ious transverse polariton density modulation patterns. We have
analyzed in detail the polariton scattering processes that govern
the competitions among patterns, obtaining useful insights into
the crucial role played by the (relative) phases of the polariton
amplitudes in driving the gains and losses of the densities in
various k modes. We have also performed a more compre-
hensive investigation of a previously proposed low-intensity,
all-optical switching scheme8 that exploits these patterns.

One outcome of our analysis is a qualitative characterization
of the effects of the various scattering processes in terms of
notions used in discussing pattern formation and competition
in other, usually classical, physical systems. These notions
are based only on the polariton densities, despite the fact
that the competitions among polariton amplitudes acts to an
important extent through their phases. This has helped us form
an intuitive picture of the pattern dynamics in our polariton
system. We have pursued this analogy with other pattern-
forming systems further and have constructed a three-state
mode-competition model, which can be related to our models
here and whose dynamics mimic almost all the qualitative
behaviors displayed so far by the solutions of the single-
hexagon model. Because of its simplicity, this mode-
competition model is amenable to semi-analytic treatment,
and we have obtained a complete classification of the steady-
state solutions in the relevant region of parameter space.
This “global” perspective introduces a useful organizational
framework to discuss the qualitative dynamics of our system.
This work will be reported in a future publication.

An actual quantum well microcavity sample may contain
static structural disorder in both the mirrors and the quantum
wells, caused by, e.g., interface roughness, crystal structure
mismatch, and dislocations (e.g., Ref. 45). In this paper,
we have not considered how these disorders affect the
pattern dynamics. We briefly comment on some of their
expected effects here. Static disorders in quantum wells have
been studied, for example, in Ref. 50. When embedded
in microcavities, these disorders break the translational and
rotational symmetries in the transverse plane, leading to (mul-
tiple) scattering of polaritons. Their effects on the properties
of polariton condensates51 and as probes of the superfluidity
of polaritons52 have been discussed. One optical signature of
disorder in microcavities is resonant Rayleigh scattering (RRS)
of polaritons, which has been found53 to produce rings (on a
picosecond time scale) in the planar k space from a uniform
pump-induced polariton field at pump intensities below the
threshold for directional instabilities. Compared to specular
reflection, the RRS signal was found to be four to five orders
of magnitude weaker. With regard to the pattern formation
that we have discussed in this paper, it may be conjectured
that, under disorder conditions similar to those of Ref. 53,
RRS serves as one mechanism (among others) to produce seed
fluctuations in the polariton field that initiate instability growth
at finite k. For weak disorders, RRS is not expected to alter
drastically the dynamics of pattern formation and competition
that we have analyzed in this paper. This condition appears to
be obtained in the recent demonstration of patterns in Ref. 17.
Nevertheless, it will be interesting to further study the effects

of disorder in the future. This could include the possibility of
strongly anisotropic disorders (for example, those attributed
to disorder in the Bragg mirrors45,53), which could be related
to the anisotropy parameter in our model, the effects of which
were studied in Sec. V.
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APPENDIX: COUPLING BETWEEN THE CAVITY MODES
AND MACROSCOPIC FIELDS

In this Appendix, we give more details on our model for the
coupling between the macroscopic light field and the cavity
modes. The relations (5) and (6) between input and output
fields will be derived, and the choice of Eq. (7) will be given
support by showing it leads to the interpretation of the cavity
field magnitude squared |Ek|2 as a photon density. In our
model, the cavity modes are taken to be the spatial Fourier
modes of an oscillator field separate from the macroscopic
light field and confined to an infinitely thin plane. The QW
is assumed to be embedded inside this planar cavity, and the
oscillator field and the exciton field are coupled to form the po-
lariton field. The (linear) coupling between the cavity oscillator
field and the outside radiation field is modeled like the coupling
between the latter and a material oscillator field. Since all
macroscopic light modes involved are near-normal (deviations
of their wave vectors from the normal direction are typically
less than 10◦), for simplicity, the complications due to the finite
polar angles of the off-axis modes are ignored. More realistic
modeling of the microcavity and its coupling to macroscopic
light field would lead to quantitative corrections to our results
but are not expected to change any conclusions in this paper.

The propagation of the macroscopic light field is governed
by the Maxwell equations (with no external “free” charges
or currents). The medium outside the cavity is taken as a
dielectric with a real refractive index ns = √

εs and magnetic
permeability μs = 1. The oscillator field acts as a local
contribution to the polarization density, yielding the following
constitutive equations:

D(r,t) = ε0n
2
sE(r,t) − h̄tcEcav(x,y,t)δ(z), (A1)

H(r,t) = 1

μ0
B(r,t). (A2)

Here, the functions E , D, B, and H, denote the positive-
frequency parts of the respective fields so that, e.g., the
(real-valued) electric field is given by 2ReE . Ecav(x,y,t) is
the amplitude of the resonance mode inside the cavity whose
equation of motion is given below (and in Ref. 8), and tc is a
parameter characterizing the coupling between the light field
and the oscillator mode. Substituting Eqs. (A1) and (A2) into
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the Maxwell equations and eliminating B in the usual way, we
obtain a wave equation for the radiation electric field E :

1

μ0
∇ (∇ · E) + n2

s ε0
∂2

∂t2
E − 1

μ0
∇2E = h̄tcδ(z)

∂2

∂t2
Ecav. (A3)

For near-normal fields, ∇ · E ≈ 0 since ∇ · E is exactly zero
at any point outside the cavity, and, across the cavity, it is
proportional to the difference in Ez, which is small. We take the
approximation ∇ · E = 0 in the above equation, and replacing
ε0μ0 by 1/c2, we obtain

n2
s

c2

∂2

∂t2
E − ∇2E = h̄tc

ε0c2
δ(z)

∂2

∂t2
Ecav. (A4)

We expand the fields in their spatial Fourier modes in the
cavity’s plane, i.e., in the (x,y) directions:

E(r,t) = 1

L2

∑
k

ei(kxx+kyy)Ek(z,t), (A5)

Ecav(x,y,t) = 1

L2

∑
k

ei(kxx+kyy)Ecav,k(t), (A6)

where k = (kx,ky) and L2 is the planar area of the cavity. Sub-
stituting into Eq. (A4), we have for each Fourier component:

n2
s

c2

∂2

∂t2
Ek +

(
k2 − ∂2

∂z2

)
Ek = h̄tc

ε0c2
δ(z)

∂2

∂t2
Ecav,k, (A7)

where k2 = k2
x + k2

y . The (positive frequency part of the)
general solution of this equation at any point outside of the
cavity, z 
= 0, is given by

Ek(z,t) =
∫ ∞

0

dω

2π
[ei(kz(k,ω)z−ωt)Ẽk,+(ω)

− ei(−kz(k,ω)z−ωt)Ẽk,−(ω)], (A8)

where kz(k,ω) = +
√

ω2n2
s

c2 − k2 and Ẽk,+(ω), Ẽk,−(ω) are
undetermined coefficients. The negative sign in front of the
second term is just a convention.

The unique solution under specified initial/boundary con-
ditions are obtained by relating the solutions on the two sides
of the cavity. We designate the first integral in Eq. (A8)
as the right-going field Ek,+(z,t) and the second integral
as the left-going field Ek,−(z,t). We also put in labels to indicate
the domain of the fields: ER

k,+(z,t), ER
k,−(z,t), ẼR

k,+(ω), ẼR
k,−(ω)

are the fields and coefficients on the right side of the cavity,
i.e., for z > 0, and EL

k,+(z,t), EL
k,−(z,t), ẼL

k,+(ω), ẼL
k,−(ω) are

the fields and coefficients on the left side of the cavity, i.e., for
z < 0. We also decompose the oscillator field as

Ecav,k(t) =
∫ ∞

0

dω

2π
e−iωt Ẽcav,k(ω). (A9)

The solution fields on the two sides of the cavity are related
by noting that Eq. (A7) implies continuity of Ek(z,t) at z = 0:

ER
k,+(0,t) − ER

k,−(0,t) = EL
k,+(0,t) − EL

k,−(0,t), (A10)

and a finite jump of ∂
∂z
Ek(z,t) across z = 0:

∂

∂z

[
ER

k,+(z,t)−ER
k,−(z,t)

]
z=0+

− ∂

∂z

[
EL

k,+(z,t) − EL
k,−(z,t)

]
z=0−

= − h̄tc

ε0c2

∂2

∂t2
Ecav,k(t). (A11)

Using the expansions Eqs. (A8) and (A9), we get the following
for each frequency component:

ẼR
k,+(ω)+ẼR

k,−(ω)−ẼL
k,+(ω) − ẼL

k,−(ω) = −i
h̄tcω

2

ε0c2kz

Ẽcav,k(ω).

(A12)

We again invoke the approximation k2 ≈ 0 ⇒ kz ≈ ωns/c

on the right-hand side of Eq. (A12), which becomes
h̄tc

ε0cns
[−iωẼcav,k(ω)]. Taking the inverse Fourier transform

back to the time domain, we get

ER
k,+(0,t) + ER

k,−(0,t) − EL
k,+(0,t) − EL

k,−(0,t)

= h̄tc

ε0cns

∂

∂t
Ecav,k(t). (A13)

Equations (A10) and (A13) provide two conditions which
allow to express the fields on one side of the cavity in terms of
those on the other side. The result is(

ER
k,+(0,t)

ER
k,−(0,t)

)
=

(
EL

k,+(0,t)

EL
k,−(0,t)

)
+ h̄tc

2ε0cns

∂

∂t
Ecav,k(t)

(
1
1

)
.

(A14)

In our setting, all the fields have the same circular polariza-
tion, say +. The (+)-polarization vectors for all the slightly
obliquely directed beams are of course not exactly parallel
to each other, but consistent with the small-k approximations
we have made, so far, we ignore these slight misalignments
and use a common unit vector ê+ = (x̂ + iŷ)/

√
2. Then,

using the notations in Ref. 8, we write EL
k,+(0,t) = L2Ek,inc(t)

ê+, EL
k,−(0,t) = L2Ek,refl(t)ê+, ER

k,+(0,t) = L2Ek,trans(t)ê+,
ER

k,−(0,t) = 0, and Ecav,k(t) = L2Ek(t)ê+. [We reiterate that
Ek(t) denotes the cavity oscillator field and is not to be
confused with Ek(t), which denotes an macroscopic field
mode.] From Eq. (A14), we obtain

Ek,trans(t) = Ek,inc(t) − Ek,refl(t), (A15)

Ek,refl(t) = − h̄tc

2ε0cns

∂

∂t
Ek(t). (A16)

It is also clear that Ek,trans(t) is the radiation field at the
position of the cavity and thus is equal to the driving radiation
field in the equation for Ek(t) [see Eq. (7)]: Eeff

k,inc = Ek,trans(t).
In the remainder of this appendix, we show that the

postulated equation of motion for the cavity field Ek(t), Eq. (7),
leads, in conjunction with the equations for the macroscopic
field and the QW exciton field, naturally to the interpretation
of |Ek(t)|2 as the number of photons in mode k per unit area.
Our argument is based on considering the energy balance in
our theory. From the Maxwell equations and the constitutive
equations Eqs. (A1) and (A2), we obtain in the usual way the
continuity equation for the macroscopic field’s energy flux:

∂

∂t
uem + ∇ · S = +2h̄tcδ(z)Re

(
E∗ · ∂

∂t
Ecav

)
, (A17)

where

uem = n2
s ε0E∗ · E + 1

μ0
B∗ · B, (A18)

S = 2Re

(
E∗ × 1

μ0
B

)
. (A19)
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uem is the averaged light field energy density, including the
energy of interaction with the background dielectric, and
S, the Poynting vector, is the averaged energy flux density.
Integrating over an infinitesimal interval across the cavity at
z = 0 gives

ẑ ·
[

2Re

(
E∗ × 1

μ0
B

)
z=0+

− 2Re

(
E∗ × 1

μ0
B

)
z=0−

]

= h̄tc2Re

[
E∗(z = 0) · ∂

∂t
Ecav

]
. (A20)

Since the left-hand side of Eq. (A20) is the net field energy flux
density coming out of the cavity, the right-hand side should
be interpreted as the negative of the rate of energy change
per unit area inside the cavity. If we integrate the right-hand
side over the cavity’s plane and specialize to our setting,
we get

h̄tc

∫
dxdy2Re

[
E∗(z = 0) · ∂

∂t
Ecav

]

= h̄tc

L2

∑
k

2Re

[
E∗

k (0,t) · ∂

∂t
Ecav,k

]

= h̄tcL2
∑

k

2Re

(
E∗

k,trans
∂

∂t
Ek

)
. (A21)

We now use the equation of motion of Ek(t), Eq. (7), to
eliminate E∗

k,trans, and we get for the right-hand side of
Eq. (A21):

−L2
∑

k

[
h̄ωc

k
∂

∂t
|Ek|2 − 2Re

(
�kp

∗
k

∂

∂t
Ek

)]
, (A22)

�k being real. From the first term, one can see that |Ek|2
is to be interpreted as the number of photons per unit area
in the cavity mode k. The second term represents an energy
exchange with the exciton field. We can cast it into a more
physically meaningful form by using pk’s equation of motion.
For simplicity, we illustrate this point with the linearized form
of Eq. (10). We first write the term in question as

−2Re

(
�kp

∗
k

∂

∂t
Ek

)
= − ∂

∂t
2Re(�kp

∗
kEk)

+ 2Re

(
�kEk

∂

∂t
p∗

k

)
. (A23)

For the second term, we eliminate Ek using Eq. (10) without
the nonlinear terms and finally obtain for Eq. (A22),

−L2
∑

k

{
∂

∂t

[
( E∗

k p∗
k )

(
h̄ωc

k −�k
−�k εx

k

)(
Ek
pk

)]

+2γxIm

(
pk

∂

∂t
p∗

k

)}
. (A24)

The first term is the rate of change of energy of the linear
polariton field inside the cavity, and the second term is the rate
of energy loss by dissipation.

We can also reduce the left hand side of Eq. (A20) to our
case where all fields are in the same circular polarization (spin)
state. We state the result here:

c

ns
L2

∑
k

2n2
s ε0[|Ek,trans(t)|2 + |Ek,refl(t)|2 − |Ek,inc(t)|2].

(A25)

It is of course also simple to verify the equality between
Eqs. (A25) and (A22) by directly applying Eqs. (5)–(8).
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