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Excitonic analysis of many-body effects on the 1s-2 p intraband transition in semiconductor systems

Andrew M. Parks and Marc M. Dignam*

Department of Physics, Engineering Physics and Astronomy Queen’s University, Kingston, Ontario, Canada, K7L 3N6

Dawei Wang
Electronic Materials Research Laboratory - Key Laboratory of the Ministry of Education, and International Center for Dielectric Research,

Xi’an Jiaotong University, Xi’an 710049, China
(Received 18 February 2013; revised manuscript received 2 May 2013; published 15 May 2013)

We present a detailed study of many-body effects associated with the intraband 1s-2p transition in two- and
three-dimensional photoexcited semiconductors. We employ a previously developed excitonic model to treat
effects of exchange and phase space filling (PSF). In this work, we extend the model to include intraband
transitions and static free-carrier screening. The exciton transition energies are renormalized by many-body
interactions, and the excitonic dynamical equations provide simple expressions for the individual contributions
of screening, PSF and exchange. The excitonic model correctly predicts the blue shift and bleaching of the 1s

exciton resonance due to exchange and PSF. Free-carrier screening is found to enhance these effects by lowering
the binding energy of the 1s exciton. In contrast, the effects of free-carrier screening on the 1s-2p transition
energy are subtler. For a coherent exciton system, in the absence of free-carrier screening, exchange and PSF
lead to a blue shift of the transition energy. However, screening decreases the 1s binding energy faster than the
2p binding energy, which in turn decreases the transition energy. Thus screening effects oppose exchange and
PSF, and the overall magnitude and sign of the 1s-2p transition energy shift depends on the free-carrier density.
Specifically, for low to moderate excitation densities, exchange and PSF can be dominated by screening, leading
to a net redshift of the transition energy. The results for two- and three-dimensional systems are qualitatively
similar, although the magnitude of the shift is much smaller in three dimensions.
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I. INTRODUCTION

Various ultrafast optical nonlinear spectroscopy techniques
have been applied over the past few decades to probe the many-
body dynamics of a wide variety of semiconductor structures.
These techniques include nonlinear absorption,1,2 optical
pump-probe spectroscopy,3–5 degenerate four wave mixing1,6,7

and two-dimensional Fourier transform spectroscopy.8 These
techniques generally probe changes in the energy states of
the carriers by using optical pulses to create or observe
the recombination of bound and/or unbound excitons. There
are, however, relatively few techniques that directly probe
transitions between different excitonic states (intraexcitonic
transitions). It is these transitions that are the focus of this
work.

With the development of intense terahertz (THz) pulses,
researchers have begun to investigate many-body effects in
semiconductors using linear and nonlinear terahertz spec-
troscopy. In undoped systems, a promising technique is to
pump with an optical pulse across the band gap and probe
with a terahertz pulse.9–11 The optical pulse creates bound or
unbound excitons, and the terahertz pulse probes the transitions
between the excitonic states.

If an exciting optical pulse is sufficiently spectrally narrow
and is tuned to a specific bound excitonic resonance (e.g., the
1s exciton), then at low to moderate intensities, the majority of
photoinjected carriers will be excitons in that excitonic state.
However, since an exciton is a composite particle, it effectively
occupies a region of the electron-hole state space that cannot
accommodate additional excitons without violating the Pauli
exclusion principle. Thus, as the intensity of the optical pulse
increases, additional photoexcited carriers must occupy other

states. This phenomenon is referred to as phase space filling
(PSF). When the exciting laser is tuned to the ground-state
exciton resonance, PSF leads to a blue shift and bleaching of
the exciton absorption peak.3–5,12,13 At higher intensities such
that the carrier density approaches the Mott density, PSF will
resonantly scatter the ground-state excitons into excited bound
and unbound excitonic states.12,13

There are, of course, other many-body effects that can
affect excitonic transitions. The exchange interaction between
electrons and holes provides an effective attraction between
excitons, which tends to decrease the exciton energy. Since the
total carrier density depends on the intensity of the exciting
optical pulse, the density-dependent shift of the transition
energy is a nonlinear many-body optical effect. For the 1s

excitonic absorption resonance, it is known that PSF dominates
over exchange, leading to a blue shift of the transition
energy.3–5,12,14 Moreover, it is expected that free-carrier and
excitonic screening has a small impact on the energy of this
transition for moderate carrier densities.5 The dependence
of the intraband 1s-2p transition energy on exciton density,
however, has only recently attracted significant attention.9–11

In particular, the influence of free-carrier screening has not
been thoroughly characterized experimentally or theoretically.

Interband transitions to optically active excitonic states (s
states) are driven by optical fields at near infrared (NIR) fre-
quencies. Quantum-mechanical selection rules prohibit inter-
band transitions involving states with nonzero orbital angular
momentum (e.g., p states). However, these optically forbidden
exciton states can be populated by intraband transitions (i.e.,
transitions between exciton subband states), by applying a
terahertz (THz) pulse. Thus optical-pump, terahertz-probe
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spectroscopy9–11 can be used to study nonlinearities associated
with the intraband 1s-2p excitonic transition. Since the
terahertz absorption is proportional to the density of 1s exci-
tons, optical-pump terahertz-probe spectroscopy can provide a
direct measurement of the density of 1s excitons, as well as the
behavior of the 1s and 2p exciton energies. Although there are
a few experimental studies of these intraband transitions,9,10,15

the technical challenges of producing timed, resonant terahertz
pulses has limited the number and scope of such experiments.

To achieve exciton condensation (and exciton-polariton
condensation), the static properties of photoexcited semicon-
ductor systems have attracted much investigation16–21 and
mean-field theory is often used as the theoretical tool.22–24

Investigating the dynamics of photoexcited semiconductor
systems is more challenging and a number of theoretical
approaches have been developed. The most general approach
is to employ quantum kinetic equations using nonequilibrium
Green’s functions.25,26 However, such calculations can be
cumbersome, and they do not always provide an intuitive
description of the interactions. On the other hand, density
matrix approaches can provide simple dynamical equations to
determine the carrier distributions and polarization. However,
this leads to an infinite hierarchy of dynamical equations,
which must be truncated by introducing some approximations.

One approach to truncate the density matrix hierarchy
is to perform perturbation theory in the optical field.25

This is a well-controlled approximation, but it is limited to
low densities and cannot be used to examine effects such
as density-dependent shifts of excitonic absorption peaks.
Alternatively, one can factorize expectation values of multiple
electron and hole creation and annihilation operators using the
random phase approximation, which leads to the well-known
semiconductor Bloch equations (SBEs).25,27 The SBEs have
long been used to model interband dynamics in photoexcited
semiconductors1,25 and have the advantage that they are non-
perturbative in the optical field. However, the SBEs generally
fail to describe intraband coherences13,28,29 adequately. More
general truncation schemes, such as cluster expansions30 or
the dynamic truncation scheme31 can account for coherences
up to arbitrary order, but the resulting dynamical equations can
quickly become numerically intractable.

We note that the SBEs and their generalizations represent
interactions using a basis of fermionic (i.e., electron and
hole) operators. Since intraexcitonic correlations (electron-
hole correlations within an exciton) are fundamental to the
nonlinear response of semiconductors near the band gap,1,32

it is more natural to treat the optical and terahertz response
of photoexcited semiconductor structures by employing an
excitonic basis rather than an electron-hole basis. This is the
approach that we take in this paper.

There have been a number of authors who have em-
ployed an excitonic approach to treat exciton dynamics in
semiconductors.33–36 We have discussed the relation of those
approaches to our approach in previous work.13,41 The main
difficulty deals with the fact that there is no unique way in
which to map electron-hole pair states onto exciton states.
Some authors deal with this problem by only considering 1s

excitons, but with all possible center of mass momenta.33,34

However, as we are interested in transitions to higher internal
excitonic states, this is not appropriate to our problem. Perhaps

the method that most closely resembles our approach is that
of Combescot and co-workers.35,36 Over a relatively large
number of papers, they have developed a method of treating the
composite nature of excitons. In agreement with our findings,
they point out that it is not possible to derive an excitonic
Hamiltonian that treats the effects of direct and exchange
interactions as well as the effects of phase-space filling. To our
knowledge, however, they have not applied their formalism to
the problem of the terahertz response of excitons, which is the
main focus of this paper.

Over the course of a number of papers,13,37–41 we have
developed a set of dynamic equations in an excitonic basis that
include the effects of PSF and exchange,13,28 and in asymmet-
ric systems also include the dipole-dipole interaction between
excitons.38,39 We start from the usual electron-hole semicon-
ductor Hamiltonian25 and employ the Usui transformation28,37

to project the Hamiltonian onto a basis of quasibosonic pair
operators. Using the Heisenberg equation of motion, we obtain
a hierarchy of dynamical equations for expectation values
of pair operators. We transform these equations to a true
(correlated) excitonic basis using a unitary transformation.
This basis offers a number of important advantages when
bound excitons are dominant (as in the study of resonant
excitonic excitation). Unlike the SBEs, the excitonic model
treats intraband coherences in an unfactorized form,28 which
is crucial for the 1s-2p transition. In addition, for low to
moderate excitation densities, a numerical simulation of the
excitonic dynamical equations is typically more efficient than
the SBEs.13,28 Lastly, the excitonic model provides a clear
and intuitive description of interaction involving excitons.
We obtain simple, analytic expressions quantifying nonlinear
effects without having to perform computationally intensive
self-energy calculations.42

In this paper, we apply the excitonic model to calculate the
density-dependent shift in the 1s exciton creation energy and
1s-2p exciton transition energy in 2D and 3D GaAs systems
for optical pulses that resonantly create 1s excitons. In both 2D
and 3D, we obtain a blue shift of the energy that comes mostly
from PSF but has an additional contribution from free-carrier
screening. In contrast, in the absence of free-carrier screening,
in optical-pump, terahertz-probe experiments where the tera-
hertz pulse delay is less than the interband dephasing time, we
obtain a blue shift in the 1s-2p transition energy, but in both
2D and 3D, if the free-carrier pair density is greater than 5%
of the 1s exciton density, the transition becomes red shifted.

The paper is organized as follows. In Sec. II, we present
the excitonic dynamic equations and discuss the factorization
scheme we employ to truncate the hierarchy of equations. In
Sec. II A, we show how these equations can be used to obtain
the density-dependent exciton transition energies and the 1s-
2p intraexcitonic transition energy. In Sec. III, we describe the
model we employ to treat the effects of free-carrier screening
on the transition energies. In Sec. IV, we present the results of
our calculations and we give our conclusions in Sec. V.

II. EXCITONIC DYNAMICAL EQUATIONS

Much of the formalism presented in this section has been
discussed in detail in our previous work.13,28,37,41 Here, we only
outline the key results and concentrate on the new aspects to
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the formalism: the effects of screening, exchange, and PSF on
the response to terahertz fields.

We start from the familiar semiconductor Hamiltonian13,25

Hs.c. = H0 + Ve−e + Vh−h + Ve−h + HI , (1)

where H0 represents the one-body energies of electrons
and holes, Ve−e, Vh−h, and Ve−h are electron-electron, hole-
hole, and electron-hole Coulomb interactions, and HI is the
interaction Hamiltonian between the carriers and the optical
and terahertz electric fields. We project this Hamiltonian onto a
basis of pair operators using the Usui transformation.13,28,37,43

This transformation is not unitary, and must be augmented
with a suitable electron-hole pairing operator. For optically
excited direct-gap semiconductors, it is natural to employ a
pairing scheme matching electrons and holes with opposite
momenta, such that the total pair crystal momentum is zero.
This transformation introduces the electron-hole-pair creation
(annihilation) operator, B

†
k (Bk), which creates (destroys)

an electron with crystal momentum h̄k and a hole with
crystal momentum, −h̄k. The commutation relation for these
operators is13,37

[Bk,B
†
k′] = δk,k′(1 − 2B

†
kBk), (2)

which is identical to the canonical bosonic commutation
relation, [Bk,B

†
k′ ] = 0, when k �= k′ but is given by a fermionic

anticommutation relation, {Bk,B
†
k} = 1, when k �= k′. We thus

refer to the electron-hole pairs as quasibosons (qbosons). We
note that the fermionic nature of the qbosons is also reflected
in the identity

BkBk = 0. (3)

Applying the Usui transformation to the electron-hole
Hamiltonian of Eq. (1), we obtain the qboson Hamiltonian

H̃s.c. = HQ + VX + H̃I , (4)

where HQ is the energy of a noninteracting qboson pair, VX is
the Coulomb interaction between qbosons, and H̃I accounts
for interactions between qbosons electric fields (optical and
terahertz). Evaluating the Heisenberg equation of motion, the
qboson operators are found to satisfy the dynamical equation13

ih̄
d

dt
B†

p = −E0
pB

†
p +

∑
k

V p−kB
†
k

+ 2
∑

k

V p−k(B†
pB

†
kBk − B

†
kB

†
pB p)

+ Eopt(t) · dcv(1 − 2B†
pB p)

+
∑

k

ETHz(t) · GkpB
†
k(1 − 2B†

pB p), (5)

where E0
p is the kinetic energy of a qboson with relative

momentum h̄k, V p−k is the (screened) Coulomb interaction in
the momentum representation, dcv is the interband transition
amplitude, Gk p are the intraband transition matrix elements,
and Eopt(ETHz) is the optical (terahertz) electric field.

To proceed, one could use Eq. (5) and the corresponding
equation for B

†
pBq to obtain expressions for the evolution

of the expectation values of the interband and intraband

polarizations. Using the random phase approximation (RPA),
we have shown that these equations, in fact, reduce to the
semiconductor Bloch equations.41 However, as discussed in
the previous section, the SBEs are not generally appropriate
for the treatment of the intraband polarization arising from
excitons. If one does not apply the RPA, the resulting set of
equations becomes very difficult to employ as the basis set of
free carriers is generally very large for 2D or 3D systems and
truncating the hierarchy of equations is difficult, particularly in
treating both interband and intraband dynamics as one cannot
assume rotational symmetry.31,44

Using the fact that the response of the system is dominated
by a few excitonic states, we can simplify the equations by
transforming from the qboson basis to the true excitonic basis
through the unitary transformation

B†
μ =

∑
k

ϕ
μ

k B
†
k; B

†
k =

∑
μ

ϕ
μ∗
k B†

μ, (6)

where ϕ
μ

k is the momentum-space envelope function13 for an
exciton in state μ, which is related to the configuration space
envelope function by

ϕμ(r) =
∑

k

ϕ
μ

k eik·r . (7)

Using Eqs. (2) and (6), it is easily shown that the commutation
relations for the excitonic operators are

[Bμ,Bν] = 0, [Bμ,B†
ν ] = δμ,ν − 2

∑
γ1,γ2

χμ,ν
γ1,γ2

B†
γ1

Bγ2 ,

(8)

where

χμ,ν
γ1,γ2

≡
∑

k

ϕ
μ∗
k ϕν

kϕ
γ1∗
k ϕ

γ2

k . (9)

In the limit of vanishing excitonic density, these are simply
bosonic commutation relations. Note that, in general, the
excitonic states can be bound or unbound states, but the
approach is most efficient when the response is dominated
by bound excitons.

As we have discussed in earlier work,41 applying the above
unitary transformation directly to the qboson Hamiltonian
and then deriving the Heisenberg equations of motion does
not yield the correct result because this procedure effectively
neglects the relation, BkBk = 0. This is in agreement with the
findings of Combescot et al..36 Instead, we apply the excitonic
transformation to the dynamic equation (5) and obtain

ih̄
d

dt
B†

μ + EμB†
μ

= 2
∑
{γj }

Rμ
γ1,γ2,γ3

B†
γ1

B†
γ2

Bγ3 ,

+ Eopt(t) · dcv

⎛
⎝ Cμ − 2

∑
{γj }

Cμ,γ1,γ2B
†
γ1

Bγ2

⎞
⎠

+ ETHz(t) ·
∑

γ

Gμ,γ B†
γ

+ ETHz(t) ·
∑
{γj }

Gγ4,γ5T
μ
γ1,γ2,γ3,γ4γ5

B†
γ1

B†
γ2

Bγ3 , (10)
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where
∑

{γj } ≡ ∑
γ1,γ2...

. The R coefficients account for ex-
change and PSF interactions and are given by

Rμ
γ1,γ2,γ3

≡ Xμ
γ1,γ2,γ3

+ P μ
γ1,γ2,γ3

, (11)

where the component

Xμ
γ1,γ2,γ3

≡
∑
k, p

V p−kϕ
μ
pϕγ1∗

p ϕ
γ2∗
k ϕ

γ3

k (12)

arises from the exchange interaction, and

P μ
γ1,γ2,γ3

≡ −
∑
k, p

V p−kϕ
μ
pϕ

γ1∗
k ϕγ2∗

p ϕγ3
p (13)

is due to phase space filling. The coefficient

Cμ ≡
∑

k

ϕ
μ

k = ϕμ(r = 0), (14)

gives the contribution of the excitonic envelope function to the
interband (optical) dipole matrix element, and

Cμ,γ1,γ2 =
∑

k

ϕ
μ

k ϕ
γ1∗
k ϕ

γ2

k (15)

describes the optical spectral hole burning effect. The terahertz
dipole matrix element between excitonic states is given by

Gμγ = −e

∫
d rϕμ∗(r)rϕγ (r), (16)

while the terahertz spectral hole burning coefficient is given
by

T μ
γ1,γ2,γ3,γ4γ5

=
∑
k, p

ϕμ
pϕ

γ1∗
k ϕγ2∗

p ϕγ3
p ϕ

γ4

k ϕγ5∗
p . (17)

In this excitonic basis, the interband polarization is given
by

P inter = dcv

V

∑
μ

Cμ〈B†
μ〉 + c.c., (18)

while the intraband polarization is given by

P intra = 1

V

∑
μ,ν

Gμν〈B†
μBν〉, (19)

where V is the volume of the system. Thus, to compute
the optical and terahertz response of the system, we need
to determine the dynamics of the interband and intraband
coherence functions, 〈B†

μ〉and 〈B†
μBν〉. Taking the expectation

value of Eq. (10) gives the excitonic dynamical equations
(EXEs) for the interband coherence function 〈B†

μ〉. This equa-
tion will include terms containing three operator coherence
functions, 〈B†

γ1
B†

γ2
Bγ3〉, which require their own dynamic

equations. This leads to an infinite hierarchy of dynamical
equations, which must be truncated. To truncate this, we
will need to factorize the coherence functions with three or
more operators. We have shown in previous work41 that with
the appropriate factorization and working in the coherent
limit, these equations give essentially identical results to
the semiconductor Bloch equations. In this work, we will
not present a general factorization scheme for the dynamic
equations for the interband and intraband coherence functions.
Rather, we will present factorization schemes specific to the
problem of determining the density-dependent shifts in the

optical absorption peak for the 1s exciton and in the terahertz
absorption peak corresponding to the transition from a 1s to a
2p exciton.

A. Determining the optical and terahertz absorption peak shifts

As we have demonstrated in previous publications, the
EXEs can be used to calculate the evolution of the
interband13,38,39,41 and intraband40,45,46 polarizations for a
given optical and terahertz excitation. For a general ultrashort
pulse excitation, such calculations can be rather involved,
even for a single quantum well.13 However, if the optical
pulse is resonant only on the ground-state 1s exciton, and
is sufficiently narrow such that the population of excited-state
excitons (bound and unbound) is much smaller than the 1s

exciton population, some simple approximations can be made
to obtain the excitonic spectral shifts without having to solve
the full dynamic equations.

To determine the shift in the energies of the excitonic states,
we begin by taking the expectation value of the intraband dy-
namic equation (10) for times after the optical pulse has passed,
but before any terahertz pulse has arrived. We then obtain

ih̄
d

dt
〈B†

μ〉 = −(Eμ + ih̄/Tμ)〈B†
μ〉

+ 2
∑
{γj }

Rμ
γ1,γ2,γ3

〈B†
γ1

B†
γ2

Bγ3〉, (20)

where we have added in a phenomenological interband
dephasing time, Tμ. Because the optical pulse is resonant
on the 1s exciton, the resulting exciton population will be
dominated by this state. Thus, as an approximation, in the
sum on the second line of Eq. (20), we only include terms
where γ3 = 1s and either γ1 or γ2 is 1s. Furthermore, because
we are interested only in the resonant contribution, we will
only consider terms where γ1 = 1s and γ2 = μ, or γ1 = μ

and γ2 = 1s. With these approximations, and noting that there
is only one term when μ = 1s, we obtain

ih̄
d

dt
〈B†

μ〉 = −(Eμ + ih̄/Tμ)〈B†
μ〉

+ (2 − δμ,1s)
(
R

μ

1s,μ,1s + R
μ

μ,1s,1s

)〈B†
μB

†
1sB1s〉.

(21)

In Appendix A, we show that for optical pulses that are
considerably shorter than the interband dephasing time, the
system is a coherent state of 1s excitons immediately after
the optical pulse has passed. Using this, we show that for
subsequent excitation by a weak terahertz field, the coherence
function can be factorized as

〈B†
μB

†
1sB1s〉 = 〈B†

μ〉〈B†
1sB1s〉. (22)

Using this factorization in Eq. (21), we obtain

ih̄
d

dt
〈B†

μ〉 = −(εμ + ih̄/Tμ)〈B†
μ〉, (23)

where the renormalized exciton energy is given by

εμ ≡ Eμ − (2 − δμ,1s)
(
R

μ

1s,μ,1s + R
μ

μ,1s,1s

)
N1s , (24)

and

N1s ≡ 〈B†
1sB1s〉 (25)
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is the number of 1s excitons.
From Eq. (24), we see that at this level of approximation,

the energy of any excitonic state shifts linearly with the
1s exciton density (assuming the R coefficients are con-
stant). Since the density is related to the peak intensity of
the exciting optical pulse, the energy shift should depend
linearly on the optical intensity. Experimentally, this will
manifest itself as a shift of the 1s exciton absorption peak,
with the magnitude of the shift depending on the intensity.
This equation can be applied to any excitonic state, as
long as the 1s excitons are the dominant population. In
a previous work,13 we obtained analytic expressions and
numerical values regarding the density induced blue shift and
compared to other authors’ work.3,5,42 Our current approach,
however, generalizes this to allow us to treat higher excitonic
states.

To obtain the density-dependent shift of the 1s-2p terahertz
excitonic transition, one has to perform a similar analysis on
the intraband equations of motion. We present this intraband
analysis in Appendix B, and show that in the limit of a
macroscopic system, we obtain a shift that is given simply
by

E2p−1s = (ε2p − E2p) − (ε1s − E1s) , (26)

which reduces to

�E2p−1s = 2
(
R1s

1s,1s,1s − R
2p

1s,2p,1s − R
2p

2p,1s,1s

)
N1s . (27)

The energy shift in the 1s-2p terahertz excitonic transition
has been calculated in the absence of screening in a previous
work.47 They obtained a similar result to ours, except in their
analysis they assumed that the excitons were incoherent and
obtained results for the limiting case R

2p

1s,2p,1s = 0. In this
work, we are interested in resonant optical excitation with
subsequent weak terahertz excitation, and how this process
is affected by free-carrier screening in particular. In this
situation, the excitonic state is initially a coherent state (see
Appendix A) and R

2p

1s,2p,1s is nonzero. Thus our work is
complementary to the previous work.47

The picture we have described thus far is not quite complete
because, even for resonant excitation, there will always be
some unbound electron-hole pairs generated via a number of
different mechanisms. They could be directly excited by the
spectral tail of the optical pulse or they could be indirectly
excited via coherent intraexcitonic scattering that occurs at
even moderate densities due to PSF and exchange. This
second mechanism is represented by the nonresonant terms
in the second line of Eq. (20) that we ignored in our energy
renormalization analysis. We have included these terms in
earlier work and have shown that, even at moderate densities,
they can lead to significant excited-state populations.13 For
example, in a GaAs quantum well, we found that for resonant
excitation of the 1s excitonic state, approximately 10% of the
carriers were unbound electron-hole pairs when the density of
1s excitons was n2D = 2 × 1010 cm−2. Recent experimental
studies9,48 of GaAs/AlGaAs QWs have also demonstrated that
even for resonant excitation of the 1s excitons, significant
free-carrier populations are generated for moderate to high
1s exciton densities. These photogenerated free carriers will
provide screening, which will affect the exciton energies in

two ways: (1) screening will decrease the binding energy of
the excitons, leading to a redshift in the excitonic energies,
and (2) screening will modify the exciton envelope functions,
which will change the values for the R coefficients. We treat
the effects of screening in the next section.

III. MODEL FOR FREE CARRIER SCREENING

It is well known that the influence of screening due to
free carriers is much larger than screening due to the ground-
state excitons.49 In this section, we present our model for the
excitonic states in a strictly two-dimensional (2D) system and
in three-dimensional (3D) bulk. In both cases, we use the
dielectric constant and carrier masses appropriate to GaAs.
We choose to model a strictly 2D system rather than a specific
quantum well, as this will give us a measure of the density
effects in the extreme limit of 2D confinement, while the bulk
results give us the other extreme. The 2D system also has the
advantage that many of the results are analytic.

To model the free-carrier screening, we employ the ran-
dom phase approximation (RPA) for the screened dielectric
function.26 This leads to the statically screened Coulomb
matrix elements25

V 2D
k− p(κ) = e2/2εL2

|k − p| + κ
, (28)

for a 2D system, and

V 3D
k− p(κ) = e2/εL3

|k − p|2 + κ2
(29)

for a 3D system, where L is the linear dimension of the
system, which is related to the volume by V = Ld , where
d is the dimension of the system. The background dielectric
constant of the system is ε, which is taken to be ε = 12.5 in
calculations.49 In the Debye model,25,49 the screening wave
number is given in 2D by

κ = e2

2ε

∂n

∂μ
(30)

and in 3D, by

κ =
√

e2

ε

∂n

∂μ
, (31)

where n is the density of the free carriers (i.e., free electrons and
holes) and μ is the associated chemical potential. We assume a
Fermi-Dirac distribution for the free carriers and use Eqs. (30)
and (31) to relate the screening wave number to the free-carrier
density. To be concrete, in all calculations, we take the carrier
temperature to be T = 20 K. Given that the free carriers are
optically generated, we take the densities of free electrons and
holes (neh) to be equal. For a two-dimensional system, this
leads to the closed-form expression49

a0κ = 2me

m∗

[
1 − exp

(
−βπh̄2neh

me

)]

+ 2mh

m∗

[
1 − exp

(
−βπh̄2neh

mh

)]
, (32)

where me (mh) is the electron (hole) effective mass, and m∗
is the exciton reduced mass. In contrast, the screening wave
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number for a three-dimensional system must be calculated
numerically for a given neh.

To evaluate the R coefficients of Eq. (11), we need to
determine the exciton wave functions in the presence of
screening. We do this using a variational approach, where we
assume the wave functions have the same functional form as
in the unscreened case, but with an effective Bohr radius that
is modified by the screened interaction. Specifically, for the
wave function of an exciton in the state μ we replace the Bohr
radius with the quantity (αμ)−1, which is treated as a variational
parameter (with units of inverse length). As shown by Lee
et al.,49 the resulting variational energy is most easily evaluated
in configuration space using the effective Hamiltonian

Heff = p2

2m∗ − Vs(κ,r), (33)

where Vs(κ,r) is the screened Coulomb potential. Taking the
inverse Fourier-Bessel transform of Eq. (28), and using an
integral result due to Watson50 gives the 2D potential

V 2D
s (κ,r) = e2

4πε

{
1

r
− π

2
κ [H0(κr) − N0(κr)]

}
, (34)

where H and N are Struve and Neumann functions, respec-
tively. This expression was quoted by Stern and Howard,51 and
is commonly used to treat two-dimensional systems.49,52,53 For
a three-dimensional system, the inverse Fourier transform of
Eq. (29) gives the simple result

V 3D
s (κ,r) = e2

4πε

e−κr

r
, (35)

which is the familiar Yukawa potential.26

Figure 1(a) shows the 1s and 2p screened-exciton binding
energies and variational parameters as a function of free-carrier
density for a two-dimensional system. The binding energy,
Eb

μ is the exciton energy relative to the band-edge energy
at zero electron-hole density. The discontinuity in the plot
for α2p shows that the 2p state becomes unbound at a finite
free-carrier density (corresponding to a0κ � 0.29). It is well
known that the 1s binding energy remains nonzero for a 2D
system, regardless of the screening density.49 For a 3D system,
Fig. 1(b) shows that both the 1s and 2p states become unbound
for a finite level of screening. Figure 1 also shows that, for a
given free-carrier density, the decrease in the magnitude of the
exciton binding energy is greater for the 1s state (provided
the 2p state remains bound). This means that the effects of
free-carrier screening on the exciton binding energies will tend
to decrease (redshift) the 1s-2p transition energy. In the next
section, we examine the dependence of the transition energies
on carrier density when the effects of exchange and PSF are
also included.

Before closing this section, we note that we use the
term “binding energy” to refer to the difference between
the zero-density band gap and the energy of the screened
exciton. Of course, both free carriers and excitons can lead
to a renormalization of the band gap and so due to the
shift in the band edge, the observed binding energy will not
be Eb

μ. However, the excitonic energies that we will finally
calculate will correspond to the transition energies measured in
experiment, which is the quantity that we are after. To simplify
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FIG. 1. (Color online) Calculated variational parameter αμ

(dashed) and screened-exciton binding energy Eb
μ (solid) for the

exciton states μ = 1s,2p in (a) 2D and (b) 3D systems.

the discussion, in all that follows, we will call the quantity Eb
μ

the screened-exciton binding energy.

IV. RESULTS

We will now calculate the effect of the 1s exciton density on
the 1s exciton interband and 1s-2p intraband transitions due to
the combination of free-carrier screening, PSF, and exchange.
Using Eq. (24) to model resonant excitation of the 1s exciton,
the renormalized exciton energies may be written as

εμ = Eμ − e2a0

ε
(2 − δμ,1s)

(
R̄

μ

μ,1s,1s + R̄
μ

1s,μ,1s

)
n1s , (36)

where Eμ(< 0) is the exciton energy relative to the zero-
density band gap, n1s is the density of 1s excitons, and we
have introduced the dimensionless R coefficient,

R̄μ
γ1,γ2,γ3

= εLD

e2(a0)D−1
Rμ

γ1,γ2,γ3
, (37)

for a D-dimensional system. Recall that Rμ
γ1,γ2,γ3

is given
by Eqs. (11)–(13), with Vk− p being the screened Coulomb
interaction given by Eq. (28) in 2D and Eq. (29) in 3D. Note
that both the screened energy Eμ and the R coefficients depend
on the level of screening. Thus, if the free-carrier density
is constant (i.e., ∂neh/∂n1s = 0), we see from Eq. (36) that
the exciton energy will vary linearly n1s . Of course, neh and
n1s are not necessarily independent, but it is instructive to
consider first the influence of screening independently from
PSF and exchange. We will then consider the case where the
free-carrier density is proportional to the density of 1s excitons
(i.e., neh/n1s = const), which is more relevant for experiments
where the excitonic transition energies are measured as a
function of laser intensity.
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A. 1s interband transition

In this section, we examine the 1s interband transition
energy in 2D and 3D systems. There have been a number
of previous authors who have examined shifts of the excitonic
energy level as a function of carrier density.13,36,41,42,54 These
have ranged from quasi-1D41,54 and 2D13,42 systems to 3D
systems.36 Some have examined the effects of just 1s excitons
on the shift of the 1s excitons themselves,13,42 while others
have examined the effects of free carriers on the 1s excitonic
transitions.54 In this section, to set the stage for our calculation
of the shifts in the 1s to 2p intraband transitions, we examine
the effects of a moderate 1s exciton density in combination
with a small density of free carriers on the shifts in the 1s

excitons in both 2D and 3D systems.
We present results for 1s exciton densities that are less

than n1s = 1010 cm−2 in 2D and n1s = 1015 cm−3 in 3D. We
are restricting ourselves to these densities for several reasons.
First, when we are using proportional screening, we want to
stay in the range of free-carrier densities for which the 2p

exciton remains bound. From Fig. 1, we see that in 2D (3D),
this means that we must have neh < 2 × 109 cm−2 (neh <

1014 cm−3). Second, because this is an excitonic model, we
want to stay well below the density where there is strong
spatial overlap between the 1s excitons, for then a significant
portion of the excitons will become ionized and an excitonic
approach becomes inappropriate. As discussed earlier, in a
GaAs quantum well, we find that for resonant excitation of
1s excitons, approximately 10% of the generated carriers are
unbound when the density is n2D = 2 × 1010 cm−2. A simple
estimate of an appropriate maximum exciton density is the
density at which the average separation between excitons is
ten times their radius (where the radius is taken to be the
radius of maximum probability density). For GaAs in 2D,
this gives a density of nc � 3 × 109 cm−2, while in 3D it
gives nc � 2 × 1014 cm−3. As these are rather conservative
estimates, we go to somewhat higher densities than these in
both 2D and 3D.

When there are no free carriers, we find that in 2D,
X̄1s

1s,1s,1s � 0.3795, while P̄ 1s
1s,1s,1s � −0.5000, which gives a

net R coefficient of R̄1s
1s,1s,1s � −0.1205. Thus the effect of

exchange is to lower the energy, while the effect of PSF is to
increase the energy. Because the PSF effect is slightly larger,
we obtain a net blue shift that is consistent with experimental
results for quantum wells.3,5 Our result is also in agreement
with the SBE-based result presented in Ref. 42.

Figure 2(a) shows the renormalized 1s exciton energy in
the 2D system relative to the zero-density band gap as a
function of the (photoexcited) 1s density for various fixed
free-carrier densities. From Eq. (36), we know that the slope
of the linear blue shift is determined by the R coefficient,
which embodies effects of PSF and exchange. For moderate
1s densities (109–1010 cm−2) the total shift is about 0.6 meV.
The offsets of the curves in Fig. 2(a) are determined by
Eμ in Eq. (36), the value of which is affected solely by
free-carrier screening. In principle, the R coefficients depend
on the level of screening (see Appendix C 2). However, the
slopes of the four curves in Fig. 2 are almost identical, which
means the dependence is very weak over the range of densities
considered. As is shown in Appendix C 2, the difference in
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FIG. 2. (Color online) Renormalized 1s exciton energy for a
2D system relative to the zero-density band edge. The exciton energy
is plotted as a function of the n1s when the free-carrier density is
(a) constant, (b) proportional to n1s .

the slopes for no free carriers and neh = 109 cm−2 is only
1.4%. Thus the main contribution of free-carrier screening to
the renormalized 1s interband transition energy is through the
decrease in the screened-exciton binding energy, Eb

1s , which
reinforces the blue shift due to PSF and exchange.

We now consider the more experimentally relevant situation
where the free-carrier density increases with the 1s exciton
density. To be concrete, we assume that the free-carrier density
is simply proportional to the 1s exciton density, which is valid
for direct excitation and is a reasonable model for moderate
excitation densities. Figure 2(b) shows ε1s as a function of
n1s for several values of neh/n1s . We see here that free-carrier
screening greatly enhances the blue shift, and that this shift is
still essentially linear. In the case that 10% of the carriers are
free carriers, 84% of the shift is due to free-carrier screening.

For 3D systems, we obtain qualitatively similar results
to what we obtained in 2D, although the overall magnitude
of the blue shift is considerably smaller. When there are no
free carriers, we find that X̄1s

1s,1s,1s � 2.083, while P̄ 1s
1s,1s,1s �

−2.625, leading to a net R coefficient of R̄1s
1s,1s,1s � −0.542.

This result agrees to first order in the density to the result
presented in Eq. (7.80) of Ref. 36.

Again, the effect of exchange is to lower the energy, while
the effect of PSF is to increase the energy and we obtain a
small net blue shift. Indeed, Fig. 3(a) shows that the blue
shift due to PSF and exchange combined is only ∼0.2 meV
for moderate 1s densities (1014–1015 cm−3). This is consistent
with experimental and theoretical results in bulk GaAs for
resonant excitation at low temperature, which found very small
shifts of less than 0.1 meV.55 A number of other experimental
studies have focused on the 1s blue shift as a function of the
well width in GaAs/AlGaAs quantum wells; they generally
demonstrate a vanishingly small shift beyond some finite
width.5,12 A more recent study has demonstrated a small shift
of the 1s energy in bulk ZnSe,14 which they theoretically

205306-7



ANDREW M. PARKS, MARC M. DIGNAM, AND DAWEI WANG PHYSICAL REVIEW B 87, 205306 (2013)
ε 1

s (
m

eV
)

-5.5

-5

-4.5

-4

-3.5

-3

n1s (1014 cm-3)
0 2 4 6 8 10

neh/n1s=0
neh/n1s=0.01
neh/n1s=0.05
neh/n1s=0.10

(b)

ε 1
s (

m
eV

)

-5.5

-5

-4.5

-4

-3.5

-3 neh=0
neh=1013 cm-3

neh=5×1013 cm-3

neh=1014 cm-3

(a)

FIG. 3. (Color online) Renormalized 1s exciton energy for a 3D
system relative to the zero-density band edge. The exciton energy
is plotted as a function of n1s when the free-carrier density is (a)
constant and (b) proportional to n1s .

attributed to screening. Note that it has previously been shown
theoretically56 that free-carrier screening does result in a blue
shift in the exciton energy in both 2D and 3D, which is again
consistent with our results.

B. 1s-2 p intraexcitonic transition

The expression for the renormalized 1s-2p intraexcitonic
transition energy is given by

ε2p − ε1s = E2p − E1s

− 2e2a0

ε

(
R̄

2p

2p,1s,1s + R̄
2p

1s,2p,1s − R̄1s
1s,1s,1s

)
n1s .

(38)

The calculated values for the R coefficients in the absence
of screening are presented in Table I of Appendix C 2. The
R coefficients are quite insensitive to variations in neh (see
Appendix C 2), which means the Eμ are the only terms on the
right-hand side of Eq. (38) affected significantly by screening.
Thus, for a constant free-carrier density (∂neh/∂n1s = 0),
Eq. (38) describes a linear shift with the slope determined

TABLE I. Values for the components of the R coefficients.

Calculated value

Dimensionless coefficient 2D 3D

X̄1s
1s,1s,1s 0.3795 2.083

P̄ 1s
1s,1s,1s −0.5000 −2.625

X̄
2p

2p,2p,1s 0.5264 3.338

P̄
2p

2p,1s,1s −0.1495 −1.665

X̄
2p

1s,2p,1s 0.1468 1.601

P̄
2p

1s,2p,1s −0.8356 −4.760
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FIG. 4. (Color online) Renormalized 1s-2p transition energy for
a 2D system. The transition energy is plotted as a function of the
n1s when the free-carrier density is (a) constant and (b) proportional
to n1s .

by the R coefficients. Figure 4(a) shows the 1s-2p transition
energy for a two-dimensional system at different values of
neh. The positive slope indicates that PSF and exchange
impart a small blue shift. However, the transition energy
decreases as the level of screening increases, as evidenced
by the negative offsets of the plots in Fig. 4. This is due
to the decreased difference in the screened exciton energies
(E2p − E1s) observed previously in Sec. III. Thus the overall
shift of the renormalized 1s-2p transition energy is determined
by the competing effects of screening and PSF and exchange.

In Fig. 4(b), we show the renormalized transition energy
for the case of proportional screening. If (neh/n1s) � 5%,
screening dominates exchange and PSF, leading to a linear
red shift of the transition energy. Similar behavior is observed
for a three-dimensional system, as shown in Fig. 5. Although
the precise relationship between the density of free carriers
and excitons is difficult to determine exactly, it is clear that
the effects of free-carrier screening can be significant for
intraband transitions. Focussing on the 2D system, Fig. 4
shows a redshift of approximately −6.5 × 10−11 meV cm2

when neh/n1s = 10%. One experimental study of the 1s-2p

transition in GaAs/AlGaAs quantum wells9 found evidence
supporting a proportional model for the free-carrier density
when the system free-carrier density is much less than the 1s

exciton density. The authors reported a redshift of the transition
energy that is given approximately by −1.75 × 10−11 meV
cm2. However, a similar study10 found a much smaller redshift
in GaAs/AlGaAs quantum wells, and a vanishing shift in
GaInAs/GaAs quantum wells. Despite the apparent discord,
one consistent inference of these studies was the suspected role
of free-carrier screening. These conflicting results certainly
motivate further study—ideally focusing on the moderate
excitation regime and coherent excitons,57 with a careful
analysis of free-carrier screening. It should be noted that the
existing experimental studies9,10 have focused on the high
density regime (i.e., approaching total ionization), where the
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FIG. 5. (Color online) Renormalized 1s-2p transition energy for
a 3D system. The exciton energy is plotted as a function of n1s when
the free-carrier density is (a) constant and (b) proportional to n1s .

validity of our simple screening model is questionable. In the
static screening model, the 2p state becomes unbound when
the free-carrier density exceeds 2 × 109 cm−2 (1014 cm−3) in
a 2D (3D) system. Moreover, the behavior of the renormalized
2p state depends on the precise relationship between neh

and n1s . Thus interpreting the results of the present model
in the high density regime would require a more thorough
examination of the band edge in the presence of free-carrier
screening.

V. CONCLUSION

In this paper, we have employed our excitonic dynamic
equations to investigate the effects of exchange, PSF, and
free-carrier screening on excitonic transitions. We find, in
agreement with previous work, that the 1s exciton energy is
slightly blue shifted due to the combined effects of PSF and
exchange, and that free-carrier screening slightly increases
this shift. In contrast, for a coherent exciton system (the
state immediately after excitation) at moderate density, we
find that free-carrier screening competes with exchange and
PSF in determining the shift of the 1s-2p transition energy.
Specifically, if the free-carrier density is proportional to the
exciton density, the overall sign of the energy shift depends
crucially on the level of screening, and we predict a redshift
when neh/n1s � 5% in both 2D and 3D. Due to the lack of
consensus in experiments,9,10 a direct comparison between
experimental findings and our results for this shift in the
1s-2p transition energy is difficult. We also note that the
present model assumes a moderate initial excitation of the 1s

resonance (i.e., when excitons dominate the system), whereas
previous experiments have focused on the high-density regime.
This was partially due to the experimental challenge of
analyzing transient terahertz signals48 from a moderately
excited system, and because a primary goal of that work
was to characterize the behavior of free carriers in response

to an exciting optical pulse. We therefore hope to see more
experimental efforts to address this problem in the future.

The factorization scheme that we have applied is chosen
particularly for experiments when a resonant optical pulse is
followed almost immediately by a short terahertz pulse. If
the optical pulse is not resonant or the delay between the
optical and terahertz pulses is larger than the dephasing times,
such a factorization scheme may not be applicable and the
model employed by Wang et al.47 might be more appropriate.
If this is the case, it should be possible to see experimentally
quantitatively different behavior in the intraband peak shifts as
the delay between the optical and terahertz pulses is increased
beyond the interband dephasing time.

A limitation of our work is the simple static model of free-
carrier screening that we employ. A dynamic screening model
would require a full dynamical simulation of the EXEs [see
Eqs. (10) and (B1)] and allow us to examine other many-body
effects. In previous work13 we employed the EXEs to examine
the 1s transition energy in realistic (finite thickness) quantum
wells, including coherent scattering to higher lying bound and
unbound excitonic states [see Eq. (20)]. Furthermore, the EXEs
can be used to describe nonlinear effects due to strong terahertz
interactions [i.e., via the last term on the right-hand side of
Eq. (10)]. Naturally, the utility of EXEs is not limited to
the study of excitonic transitions. For any system involving
terahertz interactions, the EXEs can provide a significant
computational advantage over conventional dynamical models
which need to exploit rotational symmetry explicitly, since
the complication of terahertz-induced symmetry breaking is
relegated to the exciton states. Thus the EXEs are a promising
model for coherent nonlinear terahertz phenomena, such as the
dynamical Franz-Keldysh effect.58,59
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APPENDIX A: FACTORIZATION SCHEME

In this Appendix, we present the justification for the
factorization schemes employed to obtain the renormalized
transition energies. To find the energy shifts, we need to deter-
mine the appropriate factorization scheme for the situations we
are considering. To do this, we work in the coherent limit and
employ the excitonic state that is created via an optical pulse
followed by a terahertz pulse. For simplicity, we assume that
the optical pulse is sinusoidal over the time duration (τop) of
the pulse and is resonant with the 1s exciton creation energy.
Similarly, we assume the terahertz pulse is sinusoidal over the
time duration (τT ) of the pulse and is resonant with the 1s-2p

exciton transition energy. We are interested in the situation
where there are mostly 1s excitons and relatively few 2p

excitons. To treat the system in this limit, we will take the
extreme limit that there is only one or fewer 2p excitons.
Thus we treat the optical pulse nonperturbatively, but treat the
terahertz pulse perturbatively.
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To determine the approximate state of the system, we
will ignore the non-Bosonic nature of the exciton creation
and annihilation operators and will ignore the exchange and
PSF terms in the Hamiltonian. This is appropriate as the
corrections that arise from the exact commutation relations (8)
will be one order higher in the exciton density and we are
simply using this approximation in order to determine an
approximate factorization for the perturbation term. We work
in the interaction picture, where the unperturbed Hamiltonian
is given by

Ho =
∑

γ

h̄ωγ B†
γ Bγ , (A1)

and the optical part of the perturbation is

HI
opt = −Eopt(t) ·

∑
γ

(Cγ dcvB
†
γ e−iωγ t + c.c.). (A2)

Now, we take the optical field to be

Eopt(t) = Eopte
iω1s t + c.c., (A3)

and use the rotating wave approximation (RWA) to retain only
the resonant (1s) terms, giving

HI
opt � −Eopt·dcvC1sB

†
1s − E∗

opt·d∗
cvC

∗
1sB1s . (A4)

Note that in this approximation, the perturbation in the
interaction picture is independent of time. Assuming the
system is initially in the vacuum state (|0〉 at t = 0), then
in the interaction picture (and ignoring the terahertz pulse for
now), the state for times t � τop is∣∣�I

o

〉 = exp
{ − iH I

optτp/h̄
} |0〉

= exp{αB
†
1s − α∗B1s} |0〉 , (A5)

where

α ≡ iEopt·dcvC1sτp/h̄. (A6)

Now, the above state is precisely the definition of a coherent
state, |α〉1s , which satisfies

B1s |α〉1s = α |α〉1s . (A7)

The number of 1s excitons is simply〈
�I

o

∣∣B†
1sB1s

∣∣�I
o

〉 = 〈α| B†
1sB1s |α〉

= |α|2
≡ N1s . (A8)

Now that we have the state of the system before the terahertz
pulse has been applied, let us assume that the terahertz pulse is
applied at a time t > τop. The terahertz part of the perturbation
in the interaction picture (including only the 1s-2p transitions)
is given by

HI
THz = −[ETHz (t) · G2p,1sB

†
2pB1se

−iωT t + c.c.], (A9)

where

ωT ≡ ω2p − ω1s . (A10)

Again, taking the resonant case where

ETHz (t) = ETHze
iωT t + c.c., (A11)

and employing the RWA, we obtain

HI
THz � −(ETHz · G2p,1sB

†
2pB1s + c.c.). (A12)

If we assume that the terahertz pulse is applied for a time
duration τT , then for times after the terahertz pulse is applied,
the state is given by

|�I 〉 = exp
( − iH I

THzτT /h̄
)∣∣�I

o

〉
= exp(iETHz · G2p,1sB

†
2pB1sτT /h̄) |α〉1s

+ exp(iE∗
THz · G∗

2p,1sB
†
1sB2pτT /h̄) |α〉1s . (A13)

Because there are two operators in each term, this cannot be
handled in the simple way that we could handle the optical
perturbation (that is, it is not a coherent state). However, we
will assume that the terahertz field is weak so that we can
simply expand the exponential to first order in the field. Doing
this, we obtain

|�I 〉 � (1 + �T B
†
2p) |α〉1s

= (|0〉2p + �T |1〉2p) |α〉1s , (A14)

where

�T ≡ iETHz · G2p,1sατT /h̄. (A15)

This shows that to lowest order in the terahertz field, the total
state is simply a tensor product of a 1s exciton state and a 2p

exciton state (i.e., there is no entanglement of the 1s and 2p

excitons).
Using the tensor product state of Eq. (A14) to evaluate

expectation values, we see that to first order in �t ,

〈B†
2pB

†
1sB1s〉 = |α|2 〈B†

2p〉
= |α|2 �∗

T

= 〈B†
2p〉〈B†

1s〉〈B1s〉. (A16)

Thus, ignoring decoherence and PSF and exchange effects,
the expectation value of interest is entirely factorizable if
the terahertz field is weak. Accordingly, we should simply
factorize in the way that best accounts for the dephasing effects
that are present in the actual system. We therefore choose
our factorization such that we single out populations over
coherences between different excitonic states. This procedure
is similar to the RPA that is used in deriving the SBEs,25 but is
done on the level of excitonic operators rather than electron and
hole operators. Importantly, it treats the intraband coherence
of the excitons separately from the interband coherence.

APPENDIX B: RESULT FOR THE 1s-2 p TRANSITION
ENERGY FROM INTRABAND EXE

In this Appendix, we calculate this shift in the 1s-2p exciton
transition energy using the dynamic EXE for the intraband
coherence function, 〈B†

μBν〉. We will show that this shift
is identical to what one would obtain using the interband
coherence functions for the two excitonic states involved in the
transition. Although this may seem redundant, we show that
the equivalence only occurs in the macroscopic limit (V 
 aD

o

for a D-dimensional system).
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Neglecting the terahertz and optical interaction terms (for
simplicity), the EXE for the intraband coherence function is13

ih̄
d

dt
〈B†

μBν〉 + (Eμ − Eν − ih̄/Tμ,ν)〈B†
μBν〉

= 2
∑
{γj }

Sμν
γ1γ2γ3γ4

〈B†
γ1

B†
γ2

Bγ3Bγ4〉, (B1)

where Tμ,ν is the intraband dephasing time when μ �= ν, and is
the exciton population decay time when μ = ν. The coefficient

Sμν
γ1γ2γ3γ4

= Wμν
γ1γ2γ3γ4

+ Uμν
γ1γ2γ3γ4

(B2)

is analogous to the R coefficient appearing in the interband
EXE (20). The components of the S coefficient,

Wμν
γ1γ2γ3γ4

=
∑
k, p,q

(V p−k − Vq−k)ϕμ
pϕν∗

q ϕγ1∗
p ϕ

γ2∗
k ϕ

γ3

k ϕγ4
q

× (1 − δ p,k)(1 − δq,k), (B3)

Uμν
γ1γ2γ3γ4

= −
∑
k, p,q

(
ϕμ

pϕν∗
q V p−k − ϕ

μ

k ϕν∗
p Vq− p

)
×ϕ

γ1∗
k ϕγ2∗

p ϕγ3
p ϕγ4

q (1 − δ p,k)(1 − δ p,q), (B4)

are due to exchange and PSF, respectively. We will now
determine the relationship between the S coefficients and the
R coefficients. Focusing on the exchange component, we have

Wμ,ν
γ1,γ2,γ3,γ4

= δν,γ4

∑
k, p

(1 − δ pk)V p−kϕ
μ
pϕγ1∗

p ϕ
γ2∗
k ϕ

γ3

k

−
∑
p,q

(1 − δ pq)V p−qϕ
μ
pϕν∗

q ϕγ1∗
p ϕ

γ2∗
k ϕ

γ3

k ϕγ4
q

−δμ,γ1

∑
k,q

(1 − δqk)Vq−kϕ
ν∗
q ϕ

γ2∗
k ϕ

γ3

k ϕγ4
q

+
∑
p,q

(1 − δq p)Vq− pϕ
μ
pϕν∗

q ϕγ1∗
p ϕ

γ2∗
k ϕ

γ3

k ϕγ4
q ,

(B5)

where we have used ∑
k

ϕ
γ ∗
k ϕ

γ ′
k = δγ,γ ′ , (B6)

which follows from the orthonormality of the excitonic states.
Comparing Eq. (B5) to Eq. (12), we see that

Wμν
γ1γ2γ3γ4

= δν,γ4X
μ
γ1γ2γ3

− δμ,γ1X
ν∗
γ4γ3γ2

−
∑
p,q

(1 − δ pq)V p−qϕ
μ
pϕν∗

q ϕγ1∗
p ϕγ2∗

q ϕγ3
q ϕγ4

q

+
∑
p,q

(1 − δq p)Vq− pϕ
μ
pϕν∗

q ϕγ1∗
p ϕγ2∗

p ϕγ3
p ϕγ4

q .

(B7)

Now, it can be shown that the last two terms in this equation
scale as (L/ao)−2D , so we may write

Wμν
γ1γ2γ3γ4

= δν,γ4X
μ
γ1γ2γ3

− δμ,γ1X
ν∗
γ4γ3γ2

+ O[(L/ao)−2D],

(B8)

where the last term is negligible if the system is sufficiently
large. Similarly, one finds

Uμν
γ1γ2γ3γ4

= δν,γ4P
μ
γ1γ2γ3

− δμ,γ1P
ν∗
γ4γ3γ2

+ O[(L/ao)−2D],

(B9)

so we approximate

Sμν
γ1γ2γ3γ4

� δν,γ4R
μ
γ1γ2γ3

− δμ,γ1R
ν∗
γ4γ3γ2

. (B10)

Thus, in the limit of a macroscopic system, Eq. (B1) may be
written as

ih̄
d

dt
〈B†

μBν〉 + (Eμ − Eν)〈B†
μBν〉

= 2
∑
{γj }

(
Rμ

γ1γ2γ3
〈B†

γ1
B†

γ2
Bγ3Bν〉 − Rν∗

γ3γ2γ1
〈B†

μB†
γ1

Bγ2Bγ3〉
)
.

(B11)

Now, we are interested in the 1s-2p excitonic transition, where
μ = 2p and ν = 1s. Also, as we did in the interband case, we
consider only the resonant response and only the terms where
three of the operators are 1s operators. We then obtain

ih̄
d

dt
〈B†

2pB1s〉 + (E2p − E1s)〈B†
2pB1s〉

= 2
(
R

2p

2p1s1s + R
2p

1s,2p,1s − R1s∗
1s,1s,1s

)〈B†
2pB

†
1sB1sB1s〉.

(B12)

Following the discussion of Appendix A, we see that

〈B†
2pB

†
1sB1sB1s〉 = α |α|2 〈B†

2p〉
= α |α|2 �∗

T

= 〈B†
2p〉〈B†

1s〉〈B1s〉〈B1s〉. (B13)

Again, if we single out the populations and apply the
factorization

〈B†
2pB

†
1sB1sB1s〉 → 〈B†

2pB1s〉〈B†
1sB1s〉 (B14)

to Eq. (B12), we see that the energy shift for 1s-2p transition
energy is given by

�E2p−1s = 2
(
R1s∗

1s,1s,1s − R
2p

2p1s1s − R
2p

1s,2p,1s

)
N1s . (B15)

Since the R coefficients are real (see Appendix C), this energy
shift may also be written as

�E2p−1s = (ε2p − E2p) − (ε1s − E1s), (B16)

where the individual renormalized exciton energies (ε1s ,ε2p)
are given by the interband result, Eq. (24).

APPENDIX C: EVALUATION OF THE R COEFFICIENTS

In this Appendix, we outline the approaches used to calcu-
late the R coefficients for screened and unscreened systems.
The R coefficients involve multidimensional integrals that can
be evaluated analytically in the absence of screening. However,
when κ �= 0, the integrals must be evaluated numerically. To
verify our screened results, we compare these numerical results
to the analytic results in the limit that κ → 0.
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1. Analytic evaluation of unscreened coefficients

a. Coefficients for a 2D system

For the two-dimensional Coulomb matrix elements, we use
the cylindrical expansion60

1

|k − p| =
∞∑

m=−∞

∫ ∞

0
dueim(φp−φk)Jm(up)Jm(uk). (C1)

The angular integrals for the X and P coefficients terminate
this summation by fixing the value of m. Thus the coefficients
are given by infinite integrals involving Bessel functions. For
example, the dimensionless exchange coefficient is given by

X
1s

1s,1s,1s = 4
∫∫ ∞

0
dydu

J0(yu)u

(1 + u2)3

∫ ∞

0
dv

J0(yv)v

(1 + v2)3
, (C2)

where u ≡ a0k; v ≡ a0p. The integrals for the X1s
1s,1s,1s

and P 1s
1s,1s,1s coefficients follow immediately from tabulated

results,61 and we obtain

R1s
1s1s1s =

(
315π2

213
− 1

2

)
� −0.1205. (C3)

It is straightforward to evaluate the integrals for the X
2p

2p,1s,1s ,

P
2p

2p,1s,1s , and P
2p

1s,2p,1s coefficients using tabulated integrals

and relations for Bessel functions.61,62 However, the X
2p

1s,2p,1s

coefficient involves the integral∫ ∞

0
du

u2J1(yu)

(1 + u2/9)
3
2 (1 + u2)

5
2

, (C4)

for which there is no simple result. In principle, the contour
method employed by Watson50 to evaluate Hankel’s integral,∫ ∞

0
dx

Jλ(ax)xμ

(x2 + b2)ν
, (C5)

could be generalized to the case of Eq. (C4). However,
the resulting expression becomes so complicated that it

is preferable to evaluate X
2p

1s,2p,1s as an infinite series of
hypergeometric functions, similar to the approach we use
below to calculate the 3D coefficients (see Sec. C 1b).

The numerical values for all of the exchange and PSF
coefficients are given in Table I. As is discussed in part 2
of this Appendix, for a screened Coulomb interaction, these
coefficients must be calculated numerically. We have used our
numerical results to calculate these coefficients in the limit
κ → 0, and we find in all cases that the difference between the
numerical and analytic results is less than 0.1%.

b. Coefficients for a 3D system

For a three-dimensional system, we employ the spherical
expansion,60

1

|k − p|2 = (4π )2
∑
l,m

l′,m′

1

(2l + 1)(2l′ + 1)

[min(k,p)]l+l′

[max(k,p)]l+l′+2

×Ym
l (�k)Ym∗

l (�p)Ym′∗
l′ (�k)Ym′

l′ (�p), (C6)

where P coefficients eliminate the primed summations, and
the sum over m is simply a constant that depends on l. This

reduces the coefficients to a summation of double integrals
with respect to k and p. Since the expansion of Eq. (C6)
depends on the relative magnitudes of k and p, it is necessary
to break up the integration regions to make the integrands
explicit. For example, the X1s

1s,1s,1s coefficient may be written
as

X
1s

1s,1s,1s = 210

π2

∞∑
l=0

Al + Bl

(2l + 1)
, (C7)

where

Al =
∫ ∞

0
du

u−2l

(1 + u2)4

∫ u

0
dv

v2l+2

(1 + v2)4
, (C8)

Bl =
∫ ∞

0
du

u2l+2

(1 + u2)4

∫ ∞

u

dv
v−2l

(1 + v2)4
, (C9)

and u ≡ a0k, v ≡ a0p. Similar expressions can be obtained
for the other coefficients, and we refer to the integrals in the
summation as expansion integrals. It is worthwhile to note that
the expansion integrals can be evaluated analytically. Defining
t ≡ (v/u)2, the Al integral becomes

Al = 1

2

∫ ∞

0
du

u3

(1 + u2)4

∫ 1

0
dt

t l+
1
2

(1 + tu2)4
. (C10)

The integrand is non-negative, and the double integral clearly
converges ∀l � 0. Thus we may change the order of integration
and use the tabulated result61∫ ∞

0
dxxκ−1(1 + αxq)−μ(1 + βxq )−ν

=
α

− κ
q �

(
κ
q

)
�

(
μ + ν − κ

q

)
q�(μ + ν)

2F1

(
ν,

κ

q
; μ + ν; 1 − β

α

)
,

(C11)

where pFq is a generalized hypergeometric series. This yields

Al = 1

168

∫ 1

0
dtt l+

1
2 2F1 (4,2; 8; 1 − t)

= 3F2(2,4,1; 8, 5
2 + l; 1)

84(3 + 2l)
. (C12)

A similar calculation shows that Bl = Al , hence

X̄1s
1s,1s,1s = 29

21π2

∞∑
l=0

3F2
(
2,4,1; 8, 5

2 + l; 1
)

(2l + 1) (2l + 3)
. (C13)

The hypergeometric series can be reduced to a rational
expression for each l using computer algebra software; for
example,

A0 = 5π2

2048
− 1

60
� 0.007429. (C14)

For large l, the hypergeometric series approaches the limit

lim
l→∞ 3F2

(
2,4,1; 8,

5

2
+ l; 1

)
= 1. (C15)
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Thus, if we include L 
 1 terms in the summation for X̄1s
1s1s1s ,

the absolute error is approximately

εL = 28
3F2

(
2,4,1; 8, 5

2 + L; 1
)

21(2L + 1)π2
. (C16)

For L = 100, the X̄1s
1s,1s,1s coefficient is found to be

X̄1s
1s,1s,1s � 2.077 + ε100 = 2.083. (C17)

This calculation is rather tedious, however, and it is more
efficient to evaluate the expansion integrals numerically. To
do this, we first transform the expansion integrals to double
integrals with constant limits, as in Eq. (C10). These integrals
can be rapidly evaluated to high precision using standard
numerical techniques. The results for the X and P coefficients
relevant to the 1s-2p transition are summarized in Table I.
Again, these values are in agreement with the results obtained
by purely numerical evaluation of the coefficients in the limit
of zero screening to better than 0.1%.

2. Influence of screening on the R coefficients

The statically screened Coulomb matrix elements [see
Eqs. (28) and (29)] do not admit convenient expansions
in terms of orthogonal functions. Rather, the integrals for
the X and P coefficients must be evaluated numerically
when κ �= 0. Apart from a removable cusp at k = p, the
integrands are smooth to infinite order. Thus the coefficients
may be evaluated using multidimensional quadrature, and we
employ Smolyak’s construction of sparse grids63 to reduce
the computation time. The calculation is further enhanced
using an adaptive strategy.64 Figure 6 shows the effect
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) -

 R
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 / 

R
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FIG. 6. (Color online) Influence of screening on the R coeffi-
cients, relative to unscreened values, in (a) 2D and (b) 3D systems.

of screening on the R coefficients relevant to the 1s-2p tran-
sition energy. As mentioned in the main text, the dependence
of these coefficients on the free-carrier density is quite weak.
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