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Local compressibility measurement of the νtot = 1 quantum Hall state in a bilayer electron system
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The filling νtot = 1 quantum Hall state under charge imbalance is investigated through both transport and
thermodynamic measurements on a high-mobility low-density GaAs bilayer sample with negligible single particle
tunneling. The νtot = 1 state demonstrates its robustness against imbalance by evolving continuously from the
single layer regime (νupper = 1, νlower = 0) to the bilayer regime with fillings νupper = 1/3 and νlower = 2/3
for the separate layers. The energy gap of the νtot = 1 state obtained from compressibility measurements using
single electron transistors depends on position, i.e., the local disorder potential. Nevertheless, compressibility
and thermal activation measurements yield comparable values for the energy gap under imbalance.
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I. INTRODUCTION

In two closely spaced two-dimensional electron systems
(2DES), a condensate of electron-hole pairs1 forms when both
layers are at half filling and the interlayer Coulomb interactions
(e2/d, d is the layer separation) become comparable to the
intralayer Coulomb interactions (e2/lB , lB is the magnetic
length). This excitonic condensate manifests itself in transport
as an incompressible quantum Hall (QH) state2,3 at total
filling factor νtot = νupper + νlower = 1 with Hall resistance
quantization and vanishing longitudinal resistance. A plethora
of interaction phenomena has been unveiled at νtot = 1. For
example, the interlayer tunneling bears a striking resemblance
to the I -V characteristic of a Josephson junction.4–6 A
Goldstone mode coming from the spontaneous breaking of the
U(1) symmetry has been confirmed.7 In transport, the existence
of excitonic superfluidity at νtot = 1 has been uncovered in a
counterflow configuration.8–10

Intensive efforts have been devoted to investigate the energy
gap of the νtot = 1 QH state. The dependence of the energy
gap on charge imbalance10–14 as well as on the pseudo-15 and
real-spin16,17 polarizations has been explored. Theoretically, it
is expected that the νtot = 1 QH state is robust against a charge
imbalance. This robustness has been established in a bilayer
hole system by Clarke et al.18 Similar investigations have
been carried out on bilayer electron systems with large single-
particle tunneling.12,13 Excitonic superfluidity, however, was
only demonstrated on electron-electron bilayer samples with
negligible single-particle tunneling.8–10 Those samples have
only been studied in a limited range of imbalance.10,14

Therefore, a complete study of the νtot = 1 QH state under
charge imbalance in samples hosting most of the exotic
phenomena associated with an excitonic condensate is still
lacking. Additionally, past studies of the energy gap at νtot = 1
were based solely on thermally activated transport instead
of measuring directly the discontinuities in the chemical
potential.

In this work, we address the energy gap of the νtot = 1
state by measuring the local inverse compressibility χ−1 =
n2∂μ/∂n using a single-electron transistor (SET).19 In our
bilayer sample with a structure that has produced Josephson-
like tunneling20 and excitonic superfluidity,21 the νtot = 1 QH

state evolves continuously over the whole range of charge
imbalance. At the base temperature of a dilution refrigerator
(20 mK), we extract the discontinuity in the chemical potential
�μ for the νtot = 1 quantum Hall state. We compare the
evolution of �μ with the energy gap Eg determined from
thermal activation. Finally, despite the difficulties posed by
the deeply buried low-density bilayer system, we were able to
observe the localization of charged quasiparticles at νtot = 1.

II. SAMPLE

Our bilayer samples are fabricated on a double quantum
well GaAs/AlxGa1−xAs heterostructure grown by molecular
beam epitaxy. A schematic of the sample is displayed in
Fig. 1. The heterostructure is composed of a 200-nm Si-doped
GaAs layer, which serves as the backgate, followed by a
200-nm-thick low temperature grown GaAs layer and a buffer
layer with a total thickness of 1660 nm. Two 19-nm GaAs
quantum wells separated by a 9.6-nm AlAs/GaAs superlattice
barrier were placed on top of this barrier. The quantum wells
were covered by a 450-nm Al0.23Ga0.77As spacer layer and then
a 40-nm Si doped Al0.23Ga0.77As layer.22 Finally, a 200-nm
AlGaAs layer plus a 20-nm capping layer terminated the
growth. For double quantum well structures, the symmetric-
antisymmetric subband splitting �SAS characterizes the single-
particle interlayer tunneling. For our sample, �SAS was
estimated to be 150 μK.20

Hall bars with a width of 400 μm were patterned using
optical lithography and wet chemical etching. SETs were
then evaporated on the Hall bar mesa. The SET consists of
a 80 × 500 nm2 aluminum island with tunnel contacts to
two aluminum electrodes.23 Two Hall bar samples with these
stationary SETs were measured in a 20-mK 3He-4He dilution
refrigerator. Similar results from both the transport and the SET
measurements were observed on all samples, so we will focus
on one sample with three SETs for the remainder of this paper.
The upper quantum well has an intrinsic electron density (nu)
as low as 1.7 × 1010 cm−2, whereas the lower quantum well
has no electrons when no backgate voltage is applied (VBG =
0 V): nl = 0. The mobility is above 1.1 × 106 cm2/V s within
the density range: n = nu + nl = 1.7–6.9 × 1010 cm−2.
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FIG. 1. (Color) A schematic of the sample, the aluminum SET
and the circuitry for the compressibility measurement. The SET con-
sists of an 80 × 500-nm2 aluminum bar connected by two electrodes.

III. TRANSPORT

We start by showing the transport results. Standard low-
frequency ac lock-in techniques were employed with a 1-nA ac
current oscillating at 8 Hz. By increasing the backgate voltage

(VBG), we were able to tune the system from a single layer
to a bilayer. A color rendition of the longitudinal resistance
in the density (n) versus magnetic field (B) plane is plotted
in Fig. 2. White numbers mark total filling factors, yellow
numbers indicate the filling factor of the upper layer. We focus
on the νtot = 1 QH state first and explain other features at the
end of this section.

The νtot = 1 QH state is unique, since it is the only
incompressible state evolving continuously along a straight
line from the single layer to the bilayer QH state without
any interruption, i.e., it survives independent of the degree
of charge imbalance. Other QH states do not possess this
property. The regions where the Hall resistance plateau is at
h/2e2, for example, are separated by high resistance regions.
In the region where B ∈ [1,2] T and VBG ∈ [0.4,0.7] V, the
ν = 1 QH state is drastically enhanced. Both the longitudinal
resistance minimum as well as the Hall plateau extend over
a much wider range of the magnetic field. Temperature
dependent transport studies suggest that both the single layer
νupper = 1 QH state and the bilayer νtot = 1 QH state induced
by interlayer correlations are simultaneously present. The gray
shaded region in Fig. 2(a) marks, for instance, ν = 1 quantum
Hall behavior at a temperature of 850 mK. At this elevated
temperature, the νtot = 1 QH state can be distinguished from

FIG. 2. (Color) (a) Color rendition of the longitudinal resistance Rxx as a function of magnetic field B and backgate voltage VBG. On the
bottom axis also the total density n has been plotted. Total filling factors νtot are denoted in white numbers. They are determined from the height
of the QH plateaus in the Rxy traces. The QH state at νtot = 3/5 + 2/3 corresponds to νupper = 3/5 and νlower = 2/3. Dotted (dashed) lines
mark the B-field positions where the upper (lower) layer is expected to condense in a quantum Hall state. Lines are plotted for νupper,lower = 1/3,
2/3, 1, 4/3, 2, and 3. They were theoretically calculated with two fitting parameters. Solid lines highlight the region where ν = 1. Gray color
marks the same ν = 1 region but at 850 mK with the arrow indicates the bending of the νupper = 1 QH state. (b) Schematic drawings of the
conduction band profile at different backgate voltages. The Fermi level is drawn below the subband to emphasize that the chemical potential is
negative for a low-density 2DES. In order to fill the lower quantum well, one has to align the lowest subband of the lower quantum well with
the Fermi level. This alignment requires a backgate voltage of V0. (c) Hall (Rxy) and longitudinal (Rxx) resistances as a function of magnetic
field for VBG =0.6 V at different temperatures. Two minima can be observed in the Rxx traces in the region where ν = 1. These minima are
attributed to the single layer ν = 1 and the correlated νtot = 1 QH states, respectively. (d) Comparison between the Hall and longitudinal
resistance traces taken at VBG = 0.30 V, where only the upper layer is populated, and at VBG = 1.04 V, where the two layers are balanced.
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the νupper = 1 state. The coexistence of both ν = 1 QH
states can also be seen in the longitudinal resistance traces
recorded at elevated temperatures in Fig. 2(c). The single
wide plateau at low temperatures indicates a large number of
localized states in this region. At still higher backgate voltages
(around VBG = 1.04 V), when both layers are nearly equally
populated, all integer and fractional quantum Hall states have
even numerators with one exception: the νtot = 1 QH state
[shown in Fig. 2(d)]. The energy gap Eg at νtot = 1 obtained
from thermal activation is large for such a correlated state.
The robustness of the νtot = 1 QH state is also confirmed in
the SET measurements. We compare the energy gaps with the
discontinuity in the chemical potential in Sec. IV C. Here we
point out that in the balanced case Eg is above 1 K. In the
imbalanced case with small d/lB ratio Eg exceeds 6 K (higher
gap values are difficult to determine in a dilution refrigerator).
These values are higher than the previously reported values at
similar d/lB values.9–11,14,17,24 This large energy gap is a result
of the improved sample quality. By further adding electrons to
the bilayer system, the ratio d/lB increases and the intralayer
interactions start to dominate. As the energy gap closes, the
system behaves more and more as two separate layers and the
νtot = 1 QH state eventually collapses.

Concomitant with the disappearance of the νtot = 1 QH
state, regions with low resistances emerge in the close
vicinity of νtot = 1 [upper right corner of Fig. 2(a)], but it
is difficult to assign specific fractional filling factors. The low
resistance region centered around (B = 2.5 T, VBG = 1.35 V)
is accompanied by a plateau in the Hall trace but with a height
slightly higher than the plateau at νtot = 1 (the difference
is about 500 �). For the regions at either higher magnetic
fields or higher gate voltages, the Hall traces do not show any
pronounced plateaus.

In order to make the paper self-contained and to introduce
the concept of compressibility, we take a closer look at other
features observed in Fig. 2(a). Up to VBG = V0

∼= 0.5 V
(marked on the top axis), the system behaves as a single
layer and the QH states shift linearly to higher B fields with
increasing backgate voltage. A schematic of the conduction
band profile for the case VBG < V0 is displayed in the left panel
of Fig. 2(b). To occupy the second quantum well, the band
bending needs to be overcome in order to achieve alignment
among the lowest subbands of the two quantum wells. This
alignment occurs at approximately VBG = V0 [middle panel,
Fig. 2(b)]. Since we are operating at low carrier densities,
the 2DES possesses a negative compressibility.25 Hence not
only electrostatic band bending, but also the reduction of
the chemical potential while adding electrons to the upper
quantum well needs to be compensated in view of the negative
compressibility before the subbands of the adjacent quantum
wells align. When the lower quantum well becomes populated,
the QH states associated with the upper layer drop to lower
magnetic field values in the region VBG = 0.5–0.6 V. This
too is a signature of negative compressibility. The density in
the upper layer decreases and is transferred to the lower layer
because it is energetically more favorable to occupy the lower
layer with a larger density.11,26–28 This can also be viewed as a
result of overscreening of the lower 2DES, so that the number
of electric field lines reaching the upper layer decreases. This
electron interaction effect can be modeled by treating two

ideally thin 2DES within the Hartree-Fock approximation (see
the calculation in Appendix A). The dashed and dotted lines in
Fig. 2(a) are from our calculations. They represent the B-field
positions of the QH states for the individual layers. As the
two layers enter incompressible ground states with different
filling factors, a composite QH state appears with the plateau
at Rxy = h/(νupper + νlower )e2, where νupper and νlower are
quantum Hall filling factors of the upper and lower layers.
Our results are consistent with previous observations on a
hole-hole bilayer.11,18 For ν � 1, the theoretically calculated
positions of the integer and fractional quantum Hall states fit
well with the experimental data. The main discrepancy is the
bending point of the trace for νupper = 2/3. Also, the trace
for νlower = 2/3 deviates from the region where Rxx shows
a minimum (B ∈ [2,3] T, VBG ∈ [1.0,1.4] V). It indicates
that in the quantum limit where the electrons are squeezed
into the lowest Landau level our simple model is no longer
satisfactory.29 We will return to this point in Sec. IV B.

IV. SET MEASUREMENT

A. Measuring principle

To probe the local thermodynamic behavior of the 2DES a
single-electron transistor is used.19 We will first describe the
technique for a single layer (or a bilayer that behaves as a
single layer). An electric field δEBG generated by varying the
backgate voltage pushes charges into or out of the 2D system.
Because of the finite density of states, this δEBG modifies the
chemical potential by an amount δμ. A part of the electric field
δE1 penetrates through the layer and is detected by the SET.
δE1 causes a detectable change in the current flowing through
the SET (δISET ) when it is operated at a suitable working point.
Therefore, δISET reflects the change of the chemical potential
in the 2DES through the following chain of quantities:

δμ ⇒ δE1 ⇒ δISET . (1)

This change in the chemical potential is related to the backgate
modulation δVBG according to the equation

δμ =
(

∂μ

∂n

) (
∂n

∂VBG

)
δVBG. (2)

Here, ∂μ/∂n is just the inverse compressibility divided by n2.
The conversion factor from δμ to δISET can be determined by
calibrating the SET response. To this end, the electrochemical
potential of the 2DES (δV2D) is changed directly and the
induced change in the SET current (δISET ) is measured.
δISET /δV2D is referred to as the sensitivity of the SET.
Hence, in the experiment, two ac signals are simultaneously
applied (shown in Fig. 1): (1) The backgate oscillates with an
amplitude δVBG at a frequency fBG. (2) The electrochemical
potential of the 2D system oscillates with an amplitude δV2D

at a frequency f2D. The induced SET current contains both
frequency components and yields the quantities δISET /δV2D

and δISET /δVBG. We define

η = δISET

δVBG

(
δISET

δV2D

)−1

. (3)

A detailed derivation given in Appendix B yields the following
relationship between the measured quantity in experiment η
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and the inverse compressibility χ−1 or ∂μ

∂n
:

η = ε

e2lBG

∂μ

∂n
= ε

e2lBG

χ−1

n2
. (4)

Here, lBG is the distance from the backgate to the quantum
well, and ε is the dielectric constant. lBG can be experimentally
obtained by extracting the density from the Hall resistance or
Shubnikov–de Haas oscillations as a function of the backgate
voltage. By measuring η it is possible to determine the inverse
compressibility of a single 2DES. The same approach was also
employed recently in experiments on bilayer graphene.30 Hen-
riksen and Eisenstein31 also determined the compressibility of
bilayer graphene using a capacitive arrangement based on the
same principle.

Equation (4) is valid as long as the bilayer acts as a strongly
coupled system. For our GaAs bilayer system, however, the
data we present indicates that this condition is satisfied only
when the νtot = 1 QH state forms. It demonstrates the strong
coherence of the bilayer at this total filling factor. The exchange
of electrons between the layers becomes very unlikely out
of the coherent regime and the single-particle tunneling is
limited by the extremely small �SAS . Therefore, inverse
compressibility components for the individual layers are well
defined when the system is not in the νtot = 1 state. In this
case, the backgate controls the density in the lower quantum
well (nl) directly, whereas the density variation in the upper
quantum well (δnu) is induced via the interlayer electric field
(δEint ). δEint reflects the change of the chemical potential
in the lower quantum well (δμl). Writing down the relations
between these quantities yields

δISET ⇐ δμu =
(

∂μu

∂nu

)
δnu, (5)

δnu ⇐ δEint , (6)

δEint ⇐ δμl =
(

∂μl

∂nl

)(
∂nl

∂VBG

)
δVBG. (7)

One can readily see that by monitoring δISET we measure the
product of the two compressibility components in a bilayer
(details shown in Appendix B):

η = δISET

δVBG

(
δISET

δV2D

)−1

= dudl

lBG(d + du + dl) + ddl

. (8)

Here, d is the center-to-center distance between the two
quantum wells and di = ε

e2
∂μi

∂ni
, i = u or l denoting the upper

or the lower layer. lBG is now the distance from the backgate
to the lower 2DES.

Measurements were carried out with an ac voltage to
the backgate of 10 mV (∼4 electrons μm−2 are added and
removed again during one cycle), at 1.7 Hz or 1 mV at 11 Hz.
The amplitude and the frequency were kept low to minimize
resistive effects.19 Measurements with the larger amplitude
δVBG = 10 mV enable us to determine the discontinuity of
the chemical potential (�μ) at νtot = 1. In order to investigate
discrete charging events near νtot = 1 a smaller amplitude is
required to prevent too many simultaneous charging events. We
note that the large distance between the SET and the deeply
buried 2DESs significantly reduces the spatial resolution. As

a result single discrete charging events are more difficult to
detect than in shallower 2DESs. The ac voltage applied to the
two 2DESs for calibration purposes was 0.1 mV at 26 Hz.

B. Inverse compressibility

Figure 3(a) plots the measured quantity η at zero magnetic
field and compares it to our calculations. A sign reversal of η

occurs at a backgate voltage of about 0.45 V and is correctly
explained by Eq. (8). For a single 2DES with low density, the
compressibility is negative and hence η is negative. When a
bilayer forms, both layers exhibit negative compressibility and
the product yields a positive result, which accounts for the sign
reversal. The calculation (dotted line) fits reasonably well with
the data. When the bilayer has formed, some deviation between
theory and experiment becomes apparent. The theoretical
curve quickly drops close to zero, while the experimental data
fluctuate around a nonzero constant value. We attribute this
difference to band-bending effects25 which are not considered
in our simple model.

Figure 3(a) also displays η measured at B = 2.3 T. Apart
from the extrema caused by the condensation of one or both

FIG. 3. (Color) (a) η vs the averaged density n. The blue traces
were obtained using the same SET at B = 0 T (top panel) and B = 2.3
T (bottom panel), respectively. The red and gray traces were obtained
from the other two SETs at B = 2.3 T. The solid black lines are from
the theoretical calculations. The dashed black curve illustrates the
smoothed background for the data represented by the red curve. This
background was later subtracted from the original data to determine
�μ at νtot = 1. (b) η plotted as a function of the magnetic field and
the density. The dotted black lines separate QH states identified from
transport.
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layers into an incompressible QH state, we point out one
generic feature for the curve in the presence of a B field:
The position where the jump from η < 0 to η > 0 occurs
shifts to higher density compared to the zero-field case. This
is also seen in the transport data [compare the bending points
for νupper = 2/3 and νupper = 1 in Fig. 2(a)]. It stems from
the enhancement of the negative inverse compressibility in the
quantum limit.32 Increasing the density in the upper quantum
well results in a stronger decrease of the chemical potential
compared to the B = 0 T case. Therefore, one has to apply
a higher backgate voltage in order to pull down further the
lowest subband in the lower quantum well and make it align
with EF .

This observed behavior in a magnetic field can be qual-
itatively explained in our simple model. For calculating the
inverse compressibility, we use the density dependence of the
total energy of electrons described by Fano and Ortolani.32

The outcome is shown as the solid black line in Fig. 3(a).
The rapid jump of η to positive values has indeed shifted
to higher densities. A more complete theoretical description
should include the band-bending effect in a self-consistent
manner.

We now examine the regions where QH states emerge. We
focus on Fig. 3(b). In the single layer regime, η is mostly
negative (dark blue) but develops a peak whenever the two-
dimensional electron gas condenses into a QH liquid. The
system has become incompressible. Features corresponding to
the νupper = 3/5 and 2/3 quantum Hall states can be observed.
In the bilayer regime, η turns positive as it contains the product
of the negative inverse compressibility of each layer. When one
layer condenses into an incompressible quantum Hall fluid,
the compressibility of that layer reverses sign, turns positive,
giving rise to an overall negative numerator in Eq. (8). Hence,
η develops a dip rather than a peak. This expected behavior
is nicely illustrated in Fig. 3(b) for νlower = 2/3. The dotted
curves in the graph indicate the boundaries where quantum
Hall behavior is observed in transport. In the region where the
lower layer is in the νlower = 2/3 QH state while the upper
layer is still compressible, η has a minimum. In contrast, when
both layers condense into a fractional QH state, η develops
a maximum. For example, at the bottom of Fig. 3(b) a small
peak is visible at B = 1.75 T and VBG = 1.1 V when νupper =
νlower = 2/3.

As we sweep the density, η displays a peak when the system
approaches νtot = 1. In this range, the bilayer acts as a single
incompressible layer. The system can be described by Eq. (4),
where μ and n refer to the total chemical potential and the
total density, respectively. The peak at νtot = 1 in Fig. 3(a) is
flanked by two minima. These minima are reminiscent of the
diverging compressibility previously reported in a single layer
due to the interaction among quasiparticles which form as we
move from exact integer or fractional filling factor.25,33 Since
we measure compressibility locally, a scan of the density or
magnetic field around νtot = 1 may give rise to multiple peaks.
Local density variations can cause the formation of the νtot = 1
at somewhat different densities or fields in the region sensed by
the SET. If two regions of different density are close enough to
the SET, two peaks may be detected. This effect is manifested
in the blue trace in Fig. 3(a) at B = 2.3 T. The position of
the compressibility maximum recorded with different SETs

varies somewhat, reflecting the density fluctuations and the
local nature of our measurement.

C. Energy gaps at νtot = 1

Charge excitations at νtot = 1 involve quasiparticles re-
ferred to as merons.34–36 They are vortices whose charge
depends on the imbalance: |e∗/e| = νu,l . Four different types
can be distinguished according to their vorticity and the
interlayer polarization. Wiersma et al. have experimentally
shown that the behavior of the activation energy Eg at νtot = 1
under imbalance depends crucially on the layer through
which the current is imposed.10 When measuring by driving
current through a single layer only (drag experiment), the
activation energy Eg exhibits an asymmetric dependence
on the degree of imbalance. If current is passed through
both layers simultaneously, the activation energy displays
a parabolic dependence with the minimum located at the
balanced point.14 These apparently contrasting behaviors were
later explained theoretically by Roostaei et al.35 If only a
single layer carries current, only two out of the four types of
merons are subject to an external force. They cause dissipation
in the drive layer only and the activation energy depends
assymetrically on the imbalance. Since measurements of the
chemical potential proceed without passing current through
the sample, it is of interest to investigate the energy gaps
extracted from the discontinuity in the chemical potential
(�μ) at νtot = 1. We extract �μ with the following procedure.
First, a smoothed background is subtracted from the raw data
[see Fig. 3(a)]. Subsequently, η is integrated over the density
n. Here, n is not the local density but the density obtained
from transport measurements. Scaled by a geometrical factor,
the height between the local minimum and maximum of the
integrated curve around νtot = 1 yields �μ.37 Since η was
measured by fixing B and sweeping VBG, �μ was determined
at fixed B fields. We converted the B axis to a density axis by
using νtot = 1, i.e., n = eB/h.

In Fig. 4, we compare �μ with the energy gap Eg derived
from thermal activation experiments when the current is sent
through both layers: Rxx, min = R0e

−Eg/2kT . Here we define
the imbalance as 2�n/n0 = 2(n − n0)/n0, where n0 = 5.5 ×
1010 cm−2 is the total density when the two layers are balanced.
The thermal activation gap measured in this configuration is
expected to increase parabolically with imbalance at fixed
total density, i.e., d/lB fixed.10,14 This parabolic dependence
is not observed here, because the total density is not fixed.
Here, we go along the B = nh/e line so that not only the
imbalance but also the ratio d/lB is changed. The νtot = 1
QH state is strengthened as d/lB decreases. In the range
where 2�n/n0 < 0, increasing the density drives the system
to balance and also shifts the QH state to higher B fields. The
latter causes an increase of d/lB . Both account for a decrease
of Eg . In the region where 2�n/n0 > 0, the weakening of
the interlayer interactions due to a larger d/lB appears to play
a larger role than the stabilizing effect brought about by the
charge imbalance. As a result, Eg continues to decrease.

The discontinuity in the chemical potential at νtot = 1 ob-
tained from different SETs follows overall the same decreasing
trend as the thermal activation gap. In the SET measurement,
the excitations are induced only through δVBG. Naively δVBG
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FIG. 4. (Color) �μ and Eg at νtot = 1. Data points denoted by
SET1, SET2, and SET3 are derived from the compressibility data of
three different SETs on the same sample. The black squares represent
Eg determined from thermal activation. Lines are guides to the eye.

adds charges to the lower layer only and one might expect
to see solely excitations from the lower layer. The expected
result in this case would be that �μ increases with increasing
n. However, Fig. 4 shows that �μ overlaps with Eg quite well
even at large imbalance. Since Eg is determined when both
layers are participating in the transport, this overlap indicates
that for the chemical potential jump at νtot = 1 merons in both
layers are involved. The strong coherence makes the layers
indistinguishable and we are dealing with paired merons just
as in the activation experiment with current imposed through
both layers.35,36

We now turn to the nonmonotonic behavior of �μ. Data
from SET1 shows a significant peak around 5.2 × 1010 cm−2.
We attribute this strong peak to the fact that two incompressible
regions are contributing to the SET signal. This is evident
also from the incompressible behavior in the νupper = 2/3
region in Fig. 3(b) (blue and gray traces from two different
SETs). Despite this complication, one can see that the energy
gap varies significantly with position. The spatial variation in
�μ is likely related to a variation in the disorder potential.
A larger energy gap from the SET data indicates a locally
cleaner area. In principle, it is possible to determine the charge
of the quasiparticles e∗ by using the equation �μ = |e/e∗|Eg .
Dorozhkin et al. determined the quasiparticle charge at 1/3
by comparing �μ from capacitance measurement with Eg .33

Since in our case �μ is strongly affected by local disorder,
this equation is of limited use. Nevertheless, the fact that most
of the data points overlap seems to suggest that e/e∗ = 1. This
analysis again points to our previous assertion that merons
come as pairs in our system.

D. Discrete charging at νtot = 1

A more accurate approach to determine the charge
of quasiparticles is to use the SET for studying charge

FIG. 5. (Color) The local inverse compressibility at νtot = 1
plotted as a function of the average density and the magnetic field. A
smoothed background has been subtracted to highlight the discrete
charging lines (black).

localization.23,38,39 In general, charge carriers will redistribute
and generate a spatially varying density profile in an attempt
to screen the bare disorder potential. As long as the local
density of states is not exhausted, they are able to accomplish
this task. As a Landau level approaches complete filling in
some regions, the required density to flatten the bare disorder
potential locally exceeds the level degeneracy. Hence, the bare
disorder potential cannot be screened away everywhere and an
incompressible lake with compressible islands emerges. The
discrete nature of charge becomes relevant. Elementary charge
excitations can be added to the remaining compressible dots
only one at a time when the overall density is raised sufficiently.
Each charging event corresponds to filling a localized state
and when the SET is close by, this charging event gives rise
to a jump in the local chemical potential and is detected as
a spike in the local compressibility. As the average density
is increased further, more and more charges are added to the
dots each time producing a spike in the compressibility. The
same landscape of compressible areas appears at a higher B.
Assuming a fixed charge, the same charging physics recurs at
the same density deviation from complete filling. The filling
of a specific localized state therefore produces in the density
vs magnetic field plane a line with a slope equal to the filling
factor of the underlying quantum Hall state. For the νtot = 1
state a more complex behavior is expected. If individual
merons are detected, the spacing between the charging spikes
should change with the degree of imbalance and charging lines
would no longer be parallel to filling factor 1. If, however,
quasiparticles are added to a compressible dot in pairs, parallel
lines are expected instead like for conventional quantum Hall
states, since paired merons carry a fixed total charge equal to
the electron charge.

In our bilayer sample, investigating the charge localization
is challenging as the 2DES is deeply buried below the surface.
The SET couples to a large area such that many charging
events occur simultaneously and some averaging is inevitable.
Still, by reducing the excitation voltage δVBG, several charging
lines at νtot = 1 were observed (see Fig. 5). Even though the
experiment in Fig. 5 exhibits parallel lines and would therefore
suggest charge localization physics based on paired merons,
caution is due to draw this conclusion. Simulations show that
the width of the charging lines is so large that it is not possible
to distinguish the case with fixed charge e for charging with
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paired merons or variable charge if individual merons are
added to the system. For such charge localization experiments,
an improved spatial resolution is quintessential. This requires
shallower bilayer systems while keeping the density low in
order to still satisfy d/lB < 2 for the νtot = 1 QH state.
Lowering the aluminum content used for the spacer between
the 2DES and the doping layer is one possible solution.

V. CONCLUSION

In conclusion, we observed a continuous evolution of
the νtot = 1 QH state out of the single layer ν = 1 QH
state in a low-density bilayer with a mobility exceeding
1.1 × 106 cm2/V s. We employed an SET to investigate the
chemical potential discontinuity �μ at νtot = 1. As the SET
probes a local area, the evolution of �μ as a function of charge
imbalance and d/lB is greatly influenced by the disorder
potential. The charging of localized states was observed at
different values of the charge imbalance at νtot = 1. From a
comparison between the density dependence of the jump in
the chemical potential and the activation energy in transport,
we conclude that the charged quasiparticles or merons probed
in such experiments at νtot = 1 are paired.
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APPENDIX A: CALCULATING n(VBG)

In a case where the lower layer is completely depleted, the
negative compressibility has little influence on the density in
the upper layer. The density scales almost linearly with VBG.
When both layers are occupied, the equations for modeling the
bilayer are as follows:25

eVdop − μu − eV2D = eE1lFG, (A1)

μu − μl = eEintd, (A2)

eVBG − μl − eV2D = eE2lBG, (A3)

E1 − Eint = e

ε
nu, (A4)

Eint + E2 = e

ε
nl. (A5)

The meaning of the electric fields E1, E2, and Eint , the
distances lFG, lBG, and d, and the chemical potentials μu

and μl is illustrated in the inset of Fig. 6. V2D is the voltage
applied to the two 2DESs. Vdop is a fitting parameter used
to characterize the intrinsic electron density when all applied
voltages equal zero. For the curves plotted in Fig. 2(a) and
Fig. 6, we used Vdop = 0.178 V.

Since the two layers are grounded, we set V2D = 0. Using
Eqs. (A1), (A2), and (A4), it is possible to remove E1 and Eint

and we obtain

enu = ε

lFG

Vdop + ε

d

μl

e
− ε(lFG + d)

lFGd

μu

e
. (A6)

FIG. 6. Densities as a function of the backgate voltage calculated
for B = 0 T. The inset shows the conduction band profile of the
bilayer system. We took the growth parameters lFG = 450 nm and
d = 28.6 nm. lBG is experimentally determined to be 1780 nm from
the linear fitting of the total density as a function of VBG (we used a
relative dielectric constant of 12.25 for Al0.23Ga0.77As).

Equation (A6) reflects that the charge density in the upper layer
is determined by the capacitive coupling to the doping layer
(first term on the right-hand side), the capacitive coupling to
the lower layer (second term), and the quantum capacitance
(third term).

For B = 0, we employ the results from the Hartree-Fock
approximation to describe the chemical potential as a function
of the electron density:

μi(ni) = h̄2π

m
ni − 2

√
2

π

e2

4πε

√
ni, i = u,l. (A7)

Instead of determining nu,l as a function of VBG, we fix
the value of nl and calculate the required VBG. With the help
of Eq. (A7) for i = l we obtain μl . Putting the value of μl

into Eq. (A6), nu and μu can then be determined by solving
Eq. (A6) together with Eq. (A7) for i = u. Based on these
results, the required value of VBG is calculated.

If only the upper layer is occupied, it is necessary to modify
Eqs. (A1)–(A5) for the single layer case in order to calculate nu

as a function of VBG. Plotting nu and nl as a function of VBG +
0.335 V (see Fig. 6), the theoretical curves fit well with the
experimental data. The offset voltage 0.335 V is necessary to
account for the band-bending effect. (We linearly extrapolated
the calculated data to the region [0,0.335] V.)

For B = 2.3 T, we used the “backbone” function32 to
describe μu(nu) and μl(nl) in Eq. (A6). nu(VBG) and nl(VBG)
were then determined along with the two fitting parameters
Voff = 0.335 V and Vdop = 0.178 V using the same procedure
as described above.

APPENDIX B: SET ON A BILAYER

Here we show the derivation of Eq. (8). To start with, we
calculate the variations of Eqs. (A1)–(A5) by setting δVBG �= 0
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and δV2D = 0. This assignment corresponds to the case of
applying an ac voltage to the backgate only. We obtain the
following relation:

δE1

δVBG

= −dudl

D3
, (B1)

where di = ε
e2

∂μi

∂ni
, i = u or l and D3 = lFGlBG(d + du +

dl) + d(lFGdl + lBGdu) + dudl(lFG + lBG + d).
Applying an ac voltage to the two 2DESs only, we set

δVBG = 0 and δV2D �= 0 and get

δE1

δV2D
= − lBG(d + du + dl) + ddl

D3
. (B2)

The change of the current δISET is proportional to δE1 such
that

δISET

δVBG

(
δISET

δV2D

)−1

= δE1

δVBG

(
δE1

δV2D

)−1

. (B3)

Combining the three equations above, one obtains Eq. (8).
By taking the limit nl → 0, we can check for consistency.

As ∂μl/∂nl → −∞ when nl approaches zero, Eq. (8) now
reads

∂ISET

∂VBG

(
∂ISET

∂V2D

)−1

= du

lBG + d
. (B4)

This equation describes the single layer case.
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