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Within the framework of ab initio time-dependent density functional theory (TD-DFT), we propose a static
approximation to the exchange-correlation kernel based on the jellium-with-gap model. This kernel accounts
for electron-hole interactions, and it is able to address both strongly bound excitons and weak excitonic effects.
TD-DFT absorption spectra of several bulk materials (both semiconductor and insulators) are reproduced in very
good agreement with the experiments and with a low computational cost.
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I. INTRODUCTION

The theoretical description of the optical properties of
materials by first-principles calculations is one of the classical
issues in solid-state physics. After photon absorption, the exci-
tonic effects, driven by the electron and hole (e-h) interactions,
are principal actors, rendering the ab initio computational
description demanding. The most successful approach is, so
far, based on many-body perturbation theory: the GW self-
energy accounts for electron-electron (e-e) many-body effects
in the band structure calculations, whereas the Bethe-Salpeter
equation (BSE) is solved to introduce the electron-hole (e-h)
interactions.1 This accurate method has a limited applicability
to large systems due to its high computational cost.

Time-dependent density functional theory (TD-DFT) is
another theory for the exact treatment of excited states.
Similar to ground-state DFT, its main drawback is to properly
approximate the unknown dynamic exchange-correlation (xc)
kernel fxc, which should account for both e-e and e-h
interactions. From the very first attempt, the homogeneous
electron gas (HEG) model system had been employed in
construction of xc kernels,2,3 and one of the most used ap-
proaches was derived from local-density approximation (LDA)
xc potential vxc in the static regime, i.e. the adiabatic LDA
(ALDA).2 ALDA has been successfully applied to molecules
and clusters, but it usually becomes inappropriate in solids,
where the improvements with respect to the random-phase
approximation (RPA; with the trivial fxc = 0) are negligible.
The introduction of short-range nonlocality, as in a generalized
gradient approximation (GGA)4 or in a non-LDA (NLDA)5

approach, does not improve the charge-charge interaction
description with respect to LDA or RPA optical spectra. The
main reason for this failure resides in the missed ultralong-
range behavior, 1/|r − r′| or 1/q2 in reciprocal space, which is
absent in HEG and HEG-based kernels. On the other hand, the
introduced empirical long-range contribution (LRC) kernel,
fxc = (α/q2),6–8 with α found to be related to the screening,
correctly reproduces e-h excitonic effects, but it is limited
to semiconductors and small gap insulators. Very recently,
renewed interest in this issue has been boosted by two new
approaches. In the first one, the bootstrap kernel9 extends
the LRC kernel to a matricial form and proposes a heuristic

form for the LRC weight in terms of the screening which
has to be calculated self-consistently. This method has been
successfully applied to a wide range of bulk materials. In
Refs. 10 and 11, starting from the meta-GGA xc functional,
the authors derive an fxc which presents an α/q2 term, with
α calculated from the meta-GGA parametrizations. Finally,
the nanoquanta kernel,12–16 adapted from the four-point BSE
kernel in the TD-DFT framework, achieves high accuracy,
although with much higher computational cost than the other
aforementioned kernels.

In this paper, we propose a nonempirical static xc kernel
based on the jellium-with-gap model (JGM).17–22 In the past,
this model was used to determine qualitative and quantitative
insights for semiconductors. Hereafter we assess that, in spite
of its simplicity, this model forcing the jellium to have a gap
extends the ALDA kernel, reaching very good agreement with
experimental findings. Moreover, in the spirit of DFT, this
kernel is a density functional fxc[n](Eg). The approach is ab
initio in the same regard as the LRC, bootstrap, and nanoquanta
methods, once first-principles calculations (like GW ) are used
to estimate good Eg . We show that this kernel properly
describes both weak excitonic effects in semiconductors and
bound excitons in ionic insulators, without requiring any
frequency dependence. It provides absorption spectra in good
agreement with experiments. Moreover, this approach is as
computationally expensive as standard ALDA. This paper is
organized as follows. In Secs. II and III we introduce the
theoretical derivation of the model and computational details.
In Sec. IV we present and discuss the JGM results. Finally,
conclusions are drawn in Sec. V.

II. THEORETICAL DERIVATION

In linear-response TD-DFT, the central quantity is the
density-density response function χ (q,ω) (written in recip-
rocal space q and frequency ω), which is calculated by the
Dyson equation:

χ−1(q,ω) = χ−1
0 (q,ω) − fxc(q,ω) − v(q), (1)

where χ0(q,ω) is the independent-particle Kohn-Sham re-
sponse function and v(q) = 4π/q2 is the Coulomb potential.
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The dielectric function ε is related to the density-density
response via the relation ε = 1 − vχ .

For the HEG (or jellium) model, which is the most impor-
tant reference for simple metals, very accurate fxc kernels have
been developed23–25 by fulfilling important exact constraints
(e.g., compressibility and the third-frequency-moment sum
rules) and using diffusion Monte Carlo input.

Here we extend those parametrizations to the case of the
JGM model. In this work, we restrict ourselves to the static
ω = 0 case and work in the adiabatic approximation. In the
JGM model at density n and with energy gap Eg , the RPA
static dielectric constant (i.e., with fxc = 0) is20

εJGM−RPA
0 (q → 0; n,Eg) = 1 + 4πn

E2
g

. (2)

Equation (2) is qualitatively different from the HEG coun-
terpart, being finite for a nonzero band gap. Similar mod-
els are widely used to describe dielectric properties of
semiconductors.26

In analogy to Eqs. (20) and (21) of Ref. 27, a static kernel
for the JGM kernel (f JGM

xc ) is approximated as

f JGM
xc (q → 0; n,Eg) � −4π

q2

1(
εJGM−RPA

0 − 1
) = − E2

g

nq2
. (3)

We then extend the kernel of Ref. 23 to the JGM imposing
condition (3), obtaining

f JGM
xc (q; n,Eg) = 4π

q2
B ′(n,Eg)

[
e
−k′

n,Eg
q2− 1

] − 4π

k2
F

C ′(n,Eg)

1 + 1/q2
,

(4)

with

B ′(n,Eg) = B(n) + Eg

1 + Eg

, C ′(n,Eg) = C(n)

1 + Eg

, (5)

k′
n,Eg

= kn + 1

4πq2

E2
g

nB ′(n,Eg)
, (6)

where kn, B(n), and C(n) are defined in Ref. 23, constructed
from exact HEG constraints [kn and C(n)] and from HEG
diffusion Monte Carlo data24 [B(n)]; kF is the Fermi wave
vector.

The JGM kernel has been constructed in order to satisfy the
following properties: (i) f JGM

xc (q; n,Eg = 0) ≡ f HEG
xc (q; n),

where f HEG
xc (q,n) is the HEG static kernel defined by Eq. (12)

of Ref. 23, which is very accurate for the HEG correlation
energy per particle at every wave vector q and recovers the
accurate (exact) RPA long-range effective interaction. (ii)
f JGM

xc (q; n,Eg → ∞) → −v(q), such that this kernel gives
a vanishing correlation energy (Ec) in the limit of perfect
insulators (Eg → ∞). Moreover, due to the construction of
B ′(n,Eg) and C ′(n,Eg), we observe, by applying the so-called
adiabatic-connection fluctuation-dissipation theorem,23 that
Ec ≈ const/Eg + O(E−2

g ) in the limit of large band gap.
This is one of the most important exact constraints for the
JGM which was derived from perturbation theory.21 (iii)
limq→0 f JGM

xc (q; n,Eg) ≈ −αJGM(n,Eg)/q2, where

αJGM(n,Eg) = 4πB ′(n,Eg)[1 − e−E2
g/4πnB ′(n,Eg )]. (7)

Equation (7) approaches E2
g/n [see Eq. (3)] for small Eg

(semiconductor case). Thus, in the q → 0 optical limit, we
recover an LRC α/q2 behavior. (iv) limq→∞ f JGM

xc (q; n,Eg) =

− 4π

k2
F

C ′(n,Eg). This limit is unknown in the JGM, with the
exception of the cases Eg → 0 and Eg → ∞, for which the
behavior of our kernel becomes exact. We recall that both RPA
and ALDA fail badly in this limit.23

In order to use the JGM kernel equation (4) for real
inhomogeneous bulk systems, we first consider its real-space
form f JGM

xc (|r − r′|; n,Eg). We then use the DFT density
n(r) in place of the constant density n, whereas as a first
approximation (valid for bulk systems investigated in this
work) we approximate Eg to the fundamental band gap of
materials; thus the kernel in the real space depends explicitly
on the position [i.e., f JGM

xc (|r − r′|,r; Eg)]. Then, we obtain
the Fourier transform in the reciprocal space with the shape
f̃ JGM

xc (|q + G|,G − G′; Eg), with q being a vector in the first
Brillouin zone and G, G′ being reciprocal lattice vectors.
The kernel still needs symmetrization in G,G′. In previous
works5,6 the symmetrization was done in real space. In analogy
to the symmetrization adopted for the Coulombian term of
the dielectric matrix,28 we perform the symmetrization in
reciprocal space:

fxc(q,G,G′; Eg) = f̃ JGM
xc (

√
|q + G||q + G′|,G − G′; Eg).

(8)

Equation (8) shows the following properties: (a) It reduces to
Eq. (4) in the homogeneous case. (b) The head, G = G′ = 0,
element of the kernel matrix in the optical limit approaches
fxc(q → 0,0,0; Eg) ≈ −〈α〉q−2, where

〈α〉 ≡
∫

αJGM(n(r),Eg)dr, (9)

which differs from αJGM evaluated with the average density n̄.
Thus, an explicit value for the LRC α parameter is provided as
the mean value of αJGM in the unit cell. 〈α〉 depends on the band
gap, and it is density functional (i.e., it depends on the density
inhomogeneity). (c) In the q → 0 limit, the wings of the
kernel matrix fxc(q,0,G′ 
= 0; Eg) = fxc(q,G 
= 0,0; Eg) ∝
1/|q + G||q + G′| are O(1/q), and the remaining elements
are regular.29,30 (d) The ALDA-HEG terms are present in
the kernel, and they can play a role only at finite q, i.e., in
energy-loss function calculations, where ALDA is already a
good approximation.31 (e) The computational cost is very low,
comparable to standard ALDA.

Finally, we note that, as in all previous approaches,7–9 in
this paper we focus only on the e-h interaction, f e−h

xc , excitonic
effects part of the full fxc, while we simulate the effect of the
e-e, f e−e

xc , self-energy effects part by calculating χ0 with a
scissor operator (so) band-gap-corrected DFT-LDA electronic
structure, Eso = Eg − ELDA

g , where Eg is set to the experimen-
tal band gap.32 The same parameter, Eg , is used in the JGM
kernel. Instead of the experimental band gap, the GW one can
be used as well, so as to refer to first-principles calculations.
The use of scissor operator instead of GW energy corrections
does not affect the final results for materials investigated in this
work, as already shown in the literature.7–9,12 Nevertheless, the
problem to find the f e−e

xc kernel able to provide self-energy
effects and the right Eg (which is also an input of the JGM
kernel) is once again postponed. Hereafter, the RPA results are
meant to be scissor operator shifted.
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III. COMPUTATIONAL DETAILS

The absorption spectrum is calculated as the q → 0 limit
of the imaginary part of the macroscopic dielectric function
ImεM (q,ω), defined as εM (q,ω) = 1/ε−1

G=G′=0(q,ω).
We have implemented the fxc kernel in the linear-response

TD-DFT DP code.33 The DFT ground-state calculations are
performed utilizing ABINIT. All TD-DFT calculations are
performed from LDA-DFT ground-state calculations sampled
up to a (32 32 32) Monkhorst-Pack k-point-shifted grid except
for LiF and MgO, where a (60 60 60) mesh grid was used.
The experimental lattice parameters (in a.u.) used are Si,
10.217; LiF, 7.62; Ge, 10.70; GaAs, 10.68; SiC, 8.24; C, 6.75;
MgO, 7.96. We used the Troullier-Martins norm-conserving
pseudopotentials. In the LRC-type JGM, the number of G
vectors for the spectrum calculations NG is equal to those
already reported in previous calculations.8,34 In the full-kernel
calculations we used up to NG = 181.

IV. RESULTS AND DISCUSSION

The JGM kernel and its extension to inhomogeneous
periodic systems [Eq. (8)] is based on several well-defined
and physical approximations which need to be tested in real
situations. As a first test we applied Eq. (8) to calculate the
optical absorption of several bulk systems.

In Fig. 1 we show our calculated spectra for semiconduc-
tors: Ge, Si, and GaAs. These materials present weakly bound
excitons near the onset of the continuum. Previous works8

have shown that e-h excitonic effects increase the oscillator
strength of the lowest-energy part of spectra.

Ge is the smallest band gap bulk system which we
considered. Excitonic effects are modest, and the RPA cal-
culation (dashed line) is already in good agreement with
the experiment (green dots). Nevertheless, the TD-DFT JGM
kernel (solid line) introduces improvements, enhancing the
oscillator strength of the first peak at 2.2 eV.
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FIG. 1. (Color online) Imaginary part of the macroscopic dielec-
tric function ε2(ω) for bulk Ge, Si, and GaAs. Red dashed line: RPA
results with scissor-operator shifting. Black solid line: TD-DFT with
the JGM kernel. Green dots are the experimental absorption spectra:
Ge from Ref. 35, Si from Ref. 36, and GaAs from Ref. 37. The same
notation has been utilized in the following figures. Ge and Si are
obtained with relative Gaussian and Lorentzian broadening of 0.02.
Absolute Gaussian broadening of 0.1 eV was used for GaAs.
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FIG. 2. (Color online) As in Fig. 1, but for SiC and diamond
bulk. Experimental absorption spectra are SiC from Ref. 38 and
diamond from Ref. 39. Absorption spectra are obtained with absolute
Lorentzian broadening: SiC, 0.3 eV; diamond, 0.2 eV.

On the other hand, in Si e-h interactions have important
effects on the spectral weight of excitations, and they determine
a different absorption shape with respect to RPA. The JGM
kernel increases the oscillator strength of the first feature at
3.4 eV, where the RPA shoulder becomes a well-defined peak,
as in the experiment.

Similar to Si, in GaAs excitonic effects shift the spectral
weight to lower energies. The JGM kernel moves the peak near
5 eV towards the experimental position, and it increases the
intensity of the structure at 3 eV, therefore achieving a very
good agreement with the experiment.

More severe tests are diamond and SiC (Fig. 2), where
the larger band gap Eg increases the JGM kernel strength of
excitonic effects. In SiC, the RPA peak at 8 eV is enhanced and
redshifted in the TD-DFT result, achieving an almost perfect
overlap with the experimental peak. The higher-energy peak
at 9 eV is reproduced at the correct experimental position,
although it is quite overestimated.

In diamond, the position of the main RPA peak is correctly
redshifted by the TD-DFT, overlapping the experimental
position, whereas the left shoulder is slightly too intense.
Overall, TD-DFT calculations show a smooth and realistic
description of optical spectra of both SiC and diamond.

LiF and MgO are wide-gap insulators, with a strongly
bound exciton occurring in the band gap.8,13 They repre-
sent a severe test for any TD-DFT kernel. In Fig. 3, we
show the calculated absorption spectra for LiF and MgO in
comparison with the experiment. Here we report the results
for both the full matrix JGM kernel (solid line) and also
its G = G′ diagonal part only (dot-dashed line) in order to
show the effect of nondiagonal elements. As a result of
the strong excitonic effects on the absorption spectra, the
RPA calculations completely miss both the main peaks (LiF:
12.6 eV and MgO: 7.2 eV) and the resonant-state features at
higher energy.

In LiF, the diagonal TD-DFT JGM kernel is able to
conjure the main excitonic peak, although it is blueshifted
by 0.5 eV with respect to the experiment and the intensity
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FIG. 3. (Color online) As in Fig. 1, but for LiF and MgO.
Experimental absorption spectra are LiF from Ref. 40 and MgO
from Ref. 41. Here the dot-dashed magenta line is JGM TD-DFT
with only diagonal fxc. Absorption spectra are obtained with an
absolute Gaussian broadening of 0.3 eV for both LiF and MgO.
The BSE absorption (blue dash-dotted line) spectra have been added
from Refs. 13 and 42, respectively, for LiF and MgO.

is overestimated. The second experimental peak at 14.5 eV
is well captured as a shoulder, and the remaining part of
the experimental absorption spectrum is well reproduced.
High-energy features at about 20 eV are present, whereas
the spurious BSE (blue dash-dotted line) peak at 21 eV
(Ref. 13) is absent here. When inserting nondiagonal kernel
elements, we have further excitonic strength that redshifts the
main peak up to 12.80 eV, improving the agreement with
the experiment. The frequency dependence of fxc has been
considered crucial for the correct description of the absorption
spectra of wide-band-gap insulators where the strongly bound
excitons are appearing.13,34 However, as shown in Ref. 9 and
in this work, a static nonlocal kernel can also correctly address
the e-h interactions in solid-state systems.

In MgO, the strongly bound exciton is accompanied by
high-energy resonant peaks. The BSE absorption spectrum
extracted from Ref. 42 has also been shown for comparison.
JGM TD-DFT results display the strongly bound excitonic
peak at 7.2 eV, in agreement with both experimental and BSE
findings. As in the LiF case, the height of the exciton is very
intensive. The similarity to LiF continues with the subsequent
peak at 10.3 eV: in JGM TD-DFT calculations, this becomes an
artifact shoulder which recovers the experimental peak shape
only in the final part and where BSE results show a better
agreement. The overall behavior at high energies is in better
agreement with experiments than BSE results: both energy and
intensity peaks are well described. Nondiagonal elements in
the JGM kernel slightly decrease the intensity of the main peak
at 7.2 eV, while the 13.50-eV peak is redshifted to 13.30 eV,
in better agreement with the 13-eV experimental result.

Finally, we stress that the most important contribution to
the absorption spectra is given by the head of the matrix kernel,
which, in the case of a static kernel, such as the one presented
in this work, is just an LRC-type α/q2, and all our results
can be well reproduced by this simple (nonempirical) LRC-
type kernel. In Table I, we show a comparison between JGM
〈α〉 values and previous α estimations: Results are well in
agreement each other. This agreement begins to deviate for
wider-band-gap bulk systems where the inhomogeneity of the

TABLE I. The fundamental band gap Eg ,32 αfit from the best
LRC fits, αBoot from the bootstrap kernel, and 〈α〉 from Eq. (11).

Eg (eV) αfit
a αfit

b αBoot
c 〈α〉

Ge 0.74 0.08 0.036 0.06
Si 1.17 0.20 0.13 0.085 0.11
GaAs 1.42 0.22 0.15 0.1 0.22
SiC 2.36 0.50 0.20 0.327 0.23
C 5.48 0.60 0.28 0.487 0.68
MgO 7.67 1.8 3.33
LiF 14.2 2.15 1.5 6.65 7.76

aReference 8 (LiF was estimated by the formula α = 4.615/εstat −
0.213).
bReference 34.
cReference 9.

density is enhanced, resulting in much higher values of 〈α〉 for
MgO and LiF.

V. CONCLUSIONS

In conclusion, we have found that a simple, nonempirical,
and physical static xc kernel derived from the jellium-with-gap
model provides accurate optical absorption spectra of a wide
range of bulk solids (from metals to strong insulators). The
physics of this kernel relies on the validity of JGM, in
spite of HEG, to represent real solids within TD-DFT. This
kernel can be easily implemented in any solid-state code
and with the same computational cost as TD-DFT ALDA
calculations. In this work we tested bulk systems, but the
JGM kernel can also be applied to more complex systems,
such as heterostructures or metal-organic interfaces, where the
energy gap itself will depend on the position. The JGM kernel
will correctly modulate the LRC contribution according to the
local value of the gap. Further investigation will be devoted
to energy-loss spectra at finite q. As shown in Ref. 10, the
meta-GGA rung of Jacob’s ladder can provide, in principle,
good absorption spectra due to the term α/q2 present in
the meta-GGA xc kernel. However, nonempirical functionals
with exact constrains that ensure good optical properties are
still lacking, whereas highly empirical kernels may provide
good absorption spectra for regular semiconductors but not
for insulators. On the other hand, both bootstrap and JGM
kernels give a remarkable accuracy for the optical spectra of
bulk materials even for wide-band-gap insulators with low
computational costs. In particular, the JGM kernel, which
relays on a well-known physical model system, provides
a simple and analytical formula for the α coefficient [see
Eq. (9)] that may also be useful in further development of more
accurate meta-GGAs. The JGM kernel presented in this paper
was constructed with only a few exact constraints. Moreover,
diffusion Monte Carlo kernel calculations are needed for this
model in order to insert the frequency dependence.
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