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Orbital-selective Mott transitions in a doped two-band Hubbard model with crystal field splitting
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We investigate the effects of crystal field splitting in a doped two-band Hubbard model with different bandwidths
within dynamical mean-field theory (DMFT), using a quantum Monte Carlo impurity solver. In addition to an
orbital-selective Mott phase (OSMP) of the narrow band, which is adiabatically connected with the well-studied
OSMP in the half-filled case without crystal field splitting, we find, for sufficiently strong interaction and a
suitable crystal field, also an OSMP of the wide band. We establish the phase diagram (in the absence of magnetic
or orbital order) at moderate doping as a function of interaction strength and crystal field splitting and show
that also the wide-band OSMP is associated with non-Fermi-liquid behavior in the case of Ising-type Hund
rule couplings. Our numerical results are supplemented by analytical strong-coupling studies of spin order and
spectral functions at integer filling.
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I. INTRODUCTION

As a fundamentally nonperturbative phenomenon beyond
simple electronic band pictures, the Mott-Hubbard metal-
insulator transition has been a subject of great interest in
solid-state physics for decades.1 In recent years, the Mott-
Hubbard transition drew significant additional attention in
the context of ultracold atoms.2,3 In the traditional scenario,
merging the suggestions by Hubbard4 and Brinkmann and
Rice,5 the electrons in a half-filled valence band acquire
more and more effective mass with increasing interactions
until they localize simultaneously and form a paramagnetic
insulating state; this picture has found support in numerous
calculations within dynamical mean-field theory6,7 (DMFT)
for the Hubbard model4,8,9 and its extensions to multiple10

equivalent (e.g., to three t2g) orbitals. However, more recent
experiments on ruthenates11,12 have indicated that interesting
complications can arise in the presence of multiple inequiva-
lent valence orbitals with different effective bandwidths: then,
as first illustrated in a simplistic model without inter-orbital
coupling,13 increasing interactions U > Uc1 first localize
the electrons in the narrow orbital(s), while the wide-band
electrons initially remain itinerant and become insulating only
at U > Uc2 > Uc1. Subsequently, such orbital-selective Mott
transitions (OSMTs) have been discussed for various classes
of materials;14 the idea of partial localization has also been
extended to “momentum-selective Mott transitions” in the
context of high-Tc materials.15,16

While it was immediately clear that a realistic description
would require at least three bands for the ruthenates13 and
that the mechanisms leading to different bandwidths would
generically also affect the band center (i.e., induce a crystal
field), most studies,17–22 so far, have addressed a minimal two-
band Hubbard model:

H‖ = −
∑

〈ij 〉mσ

tmc
†
imσ cjmσ + U

∑
im

nim↑nim↓

+
∑
iσσ ′

(U ′ − δσσ ′Jz )ni1σ ni2σ ′ , (1)

in which the two orbitals m ∈ {1,2} differ only by their hopping
amplitude tm (between nearest-neighbor sites i,j ) and share the

same local intraorbital interaction U and site potential; also the
third term, containing both an interorbital Coulomb repulsion,
parameterized by U ′ (with 0 < U ′ < U ), and an Ising-type
Hund rule coupling with amplitude Jz > 0, is symmetric in the
orbital index. The DMFT studies of this model have almost
exclusively assumed a semielliptic “Bethe” density of states
and the absence of any magnetic order and mostly focused on
half filling (n = 2) and (to a lesser degree) on a hopping ratio
of t1/t2 = 2. The expectation that this “standard model” for
OSMTs captures the essence of the phenomenon, i.e., resolves
two distinct orbital-selective transitions at half filling and low
temperatures, could indeed be verified,23 after some initial
confusion.24 In accordance with previous literature,25,26 we
will refer to this model as the “Jz model.” The general doped
case was investigated in detail in Ref. 27 with the use of
quantum Monte Carlo (QMC) methods and previously also by
exact diagonalization28 and slave boson methods.29

In the following, we will explore the more general Hamil-
tonian

H� = H‖ + 1

2
�

∑
iσ

(ni1σ − ni2σ )

+ 1

2
J⊥

∑
imσ

c
†
imσ (c†im̄σ̄ cimσ̄ + c

†
imσ̄ cim̄σ̄ )cim̄σ . (2)

Here, the third term, proportional to J⊥, describes spin flips
and pair hopping processes arising from the general Hund
rule coupling. The second term, proportional to �, shifts
the relative positions of the atomic energy levels of the
two orbitals and, hence, describes crystal field splitting. The
first results regarding the impact of the latter term in
the three-band extension of H� have been obtained within
a slave boson approximation.30 Other studies have included
crystal field terms as in Eq. (2), but for orbitals with identical
bandwidths.31–33 Our goal in this paper is to explore the physics
of H� (with t1 
= t2 and � 
= 0) using QMC simulations within
DMFT, identify new phases, and discuss spectral properties.
An important special case of H� occurs for J⊥ = Jz ≡ J ,
which we refer to as the “J model.”

The J model with t1 = t2 and � = 0 is rotationally
invariant in the sense of Castellani et al.34 We note, however,
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that the experimental systems allegedly described by H�,
including the perovskite ruthenates, have less than cubic
symmetry, so that there is no reason for assuming a rotationally
symmetric screened Coulomb interaction in Eq. (2), if the
asymmetric hopping and the spin-orbit interaction are taken
into account. The crystal field splitting of d orbitals also
reflects a broken rotational symmetry. For this physical reason,
we will below set J⊥ = 0 in QMC calculations. In analytical
arguments, we will assume 0 � J⊥ � Jz, which allows for
antiferromagnetism at strong coupling. The choice J⊥ = 0 in
numerical simulations has the important additional advantage
of avoiding a sign problem.

Note that, irrespective of the value of J⊥, our Hamiltonian
H� is particle-hole symmetric only for � = 0; for � 
= 0,
it is mapped to H−� under a particle-hole transformation.
Accordingly, we can cover the entire density and � range by
assuming n � 2 and � ∈ IR; results for n < 2 then follow from
particle-hole symmetry.

This paper is built up as follows. First, in Sec. II, we
consider the analytical properties of the Jz and the J models. In
particular, we calculate the strong-coupling Hamiltonian and
the local spectral functions at half filling; we also comment
on the strong-coupling Hamiltonian at quarter filling. Then,
in Sec. III, we discuss the results of our QMC simulations
for the Jz model, in particular for orbital occupations, spectral
functions and for the phase diagram. We also comment on non-
Fermi-liquid properties on the basis of imaginary-frequency
self-energy data. Generally, for the QMC calculations, we
will concentrate on the question of metallicity as an effect
of correlations; hence we restrict ourselves to paramagnetic
phases. We close (in Sec. IV) with a summary and an outlook.
Technical details regarding the strong-coupling expansion of
the spectral functions are deferred to an Appendix.

II. ANALYTICAL RESULTS FOR THE Jz AND J MODELS

In this section we present analytical results for the Jz

and J models with general � 
= 0 for integer fillings at
strong coupling (U → ∞). Results of interest include the
effective strong-coupling Hamiltonians at half and quarter
filling, which provide information about the symmetries
and low-temperature phases of the models, and the spectral
functions. We note that the model Hamiltonian H� is SU(2)
symmetric in the spin sector for J⊥ = Jz; at � = 0 and t1 = t2,
it is also rotationally symmetric [i.e., SO(2) symmetric] in the
band index. In addition, the model with � = 0 is particle-
hole symmetric at half filling. Crystal field splitting breaks
the rotational symmetry for J⊥ = Jz and the particle-hole
symmetry at half filling.

A. Strong-coupling Hamiltonian at half filling

For the half-filled model H� with J⊥ = Jz and � = 0,
an effective strong-coupling Hamiltonian was derived by
Ferrero et al.20 Since most of their arguments are also valid
for the model without particle-hole symmetry (� 
= 0), and
calculations for the model with J⊥ < Jz are very similar,
we only sketch the derivation. The effective strong-coupling
Hamiltonian is obtained from standard Harris-Lange degen-
erate perturbation theory, which is based on a canonical

transformation from the Hubbard electrons cimσ to new
particles c̄imσ , whose hopping leaves the associated total
number of double occupancies invariant (see also Appendix).
For these new particles, we then define annihilation operators
of double occupancies diσ = c̄i2σ c̄i1σ (with σ = ↑,↓) and
di0 = 1√

2
(c̄i2↓c̄i1↑ + c̄i2↑c̄i1↓), and a (S = 1) spin, constructed

from these diσ and di0 operators:

Si =

⎛
⎜⎜⎝

1√
2
(d†

i↑di0 + d
†
i0di↑ + d

†
i↓di0 + d

†
i0di↓)

i√
2
(d†

i0di↑ − d
†
i↑di0 + d

†
i↓di0 − d

†
i0di↓)

d
†
i↑di↑ − d

†
i↓di↓

⎞
⎟⎟⎠ .

The relevance of the diσ and di0 operators is that the three
atomic states d

†
i↑|0〉, d

†
i↓|0〉, and d

†
i0|0〉 are lowest in energy

(and, hence, span a triplet) for J⊥ = Jz ≡ J , while the two
states d

†
i↑|0〉 and d

†
i↓|0〉 are lowest in energy if 0 � J⊥ < Jz.

With these definitions, the effective S = 1 spin Hamiltonian
for J⊥ = Jz = J is given by

H ′
t =

∑
〈ij〉

JHeis(Si · Sj − ni nj ), JHeis ≡ (t1)2 + (t2)2

U + J
,

where the number operator is defined as ni ≡ ∑
σ d

†
iσ diσ +

d
†
i0di0. The effective Hamiltonian for 0 � J⊥ < Jz reads

H ′
t =

∑
〈ij〉

JIs(Si3 Sj3 − ni nj ), JIs = (t1)2 + (t2)2

U + Jz

,

where now ni ≡ ∑
σ d

†
iσ diσ . Note that the value of J⊥ becomes

irrelevant if Jz > J⊥. These results are generally valid in any
spatial dimension.

It is interesting to note that the results stated above for
the effective Hamiltonians at strong coupling are entirely
independent of the crystal field splitting parameter �, although
they are valid for general � < U + Jz if J⊥ � Jz. The
explanation is, technically, that the sum of the excitation
energies for hopping processes, starting from the subspace
spanned by d

†
i↑|0〉, d

†
i↓|0〉 and possibly d

†
i0|0〉, is independent

of �. This, in turn, occurs since the crystal field splitting term
in the Hamiltonian commutes with the hopping.

In the limit of high spatial dimensions, the spin Hamiltoni-
ans, thus derived, are solved by mean-field theory. In particular,
the “antiferromagnetic” critical temperatures for these models
can easily be calculated for a bipartite lattice in the limit of
infinite coordination number Z:

kBTc

Z

Z→∞−→
{

JHeis for J⊥ = Jz ≡ J,

JIs for J⊥ < Jz.

These results are interesting, because they show that Tc is
dominated in both models by the largest hopping amplitude,
which is that of the broad band (t∗2 ≡ t2

√
Z). We conclude that

the broad band primarily determines the energy scale at strong
coupling; from previous work,35 we know that the energy
scales of antiferromagnetism at weak coupling are primarily
determined by the narrow band (t∗1 ≡ t1

√
Z). Note that, since

the effective strong-coupling Hamiltonians are � independent
(within their range of validity), the same holds for the critical
temperatures.
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B. The spectral functions at half filling

The calculation of the spectral functions on the Bethe lattice
(which is of interest here) at strong coupling, T = 0, and half
filling proceeds along the lines of Kalinowski and Gebhard.36

These authors calculated the spectral function for a single-band
Hubbard model in strong-coupling perturbation theory. The
analogous calculations for the two-band model H�, considered
here, are technically considerably more complicated and are,
hence, summarized in the Appendix. The results are, in terms
of the noninteracting density of states ν0

m(ω):

νLHB
mσ (ω) = 1√

2
ν0

m

[√
2

(
ω + U + Jz ∓ �

2

)]
(J⊥ < Jz),

νLHB
mσ (ω) = 1√

3
ν0

m

[√
4

3

(
ω + U + J ∓ �

2

)]
(J⊥ = Jz).

Here, the upper sign refers to the (m = 1) and the lower sign
to the (m = 2) orbital. It is interesting to note that the spectral
function for J⊥ = Jz ≡ J is broader than that for J⊥ < Jz

by a factor of
√

3/2, which reflects the larger number of
possible hopping processes in the former case as compared
to the latter. Clearly, if Jz − J⊥ is positive but small, there
will be a crossover from the spectrum for Jz > J⊥ to that
for Jz = J⊥ at finite temperatures (T > 0) or finite Hubbard
interaction (U < ∞). The relevant temperature and U−1 scales
are (Jz − J⊥)/kB and (Jz − J⊥)/(t∗1,2)2, respectively.

We note that the effect of crystal field splitting at strong
coupling is simply to shift the m = 1 band energetically to the
right and the m = 2 band to the left. We will see below from the
results of the QMC simulations that the effect of crystal field
splitting at finite interaction strength is not quite so obvious.

C. Strong-coupling Hamiltonian at quarter filling

The determination of the strong-coupling Hamiltonian at
quarter or three-quarter fillings is extremely simple, although
the result is nontrivial. For example, in the atomic limit
(t1 = t2 = 0), the minimal energy at quarter filling is obtained
for an ensemble of singly occupied sites (if |Jz| and |J⊥|
are both smaller than U and U ′). The only relevant term
left in the Hamiltonian is, therefore, the crystal field splitting
1
2�

∑
iσ (ni1σ − ni2σ ), implying that the ground state occurs

for an ensemble of single occupancies in band 2 if � > 0
or, alternatively, single occupancies in band 1 if � < 0. The
spins of these single occupancies are not fixed yet. Since all
particles at quarter filling occupy one single-band, we conclude
that, if a small hopping of the particles is now switched on,
the two-band Hamiltonian H� at quarter filling reduces to a
half-filled single-band Hubbard model. At strong coupling, the
half-filled single-band Hubbard model reduces to an antiferro-
magnetic Heisenberg model. Hence we conclude that, at low
temperatures, the quarter-filled two-band model H� describes
an orbitally ferromagnetic Heisenberg spin antiferromagnet.

We note that H� at three-quarter filling is mapped by a
particle-hole transformation to H−� at quarter filling; the low-
temperature physics is, again, that of an orbitally ferromagnetic
Heisenberg spin antiferromagnet.

These strong-coupling arguments assume that the band-
widths W1 and W2 of the two-band model are small compared
to all other parameters, so that, in particular, |�| > W1,2. If this

condition is not fulfilled, the results may change completely.
For instance, in the special case � = 0, the two-band model at
quarter filling changes its behavior both in the spin and in the
orbital degrees of freedom and reduces to a spin-ferromagnetic
Heisenberg orbital antiferromagnet.37 The numerical results
show that the system, in the ground state, may or may not have
orbital long-range order, depending on the model parameters.

III. QMC RESULTS FOR THE Jz MODEL

In this section, we present Hirsch-Fye QMC38,39 results for
the Jz model (1) with Jz = U/4 and U ′ = U/2. These values
are consistent with estimates40 of J = 0.5 eV and (multiplet-
averaged) Udd = 2.0 eV for Ca2−xSrxRuO4;47 J/U = 1/4 is
also in the middle of the interval 0 < J/U < 1/2 following
from the relation U ′ + 2J = U (strictly valid only for cubic
symmetry) under the natural assumption 0 < U ′ < U . We
will assume half-elliptic “Bethe” densities of states41 for both
bands, with a full bandwidth Wn = 2 for the “narrow” band and
Ww = 4 for the “wide” band, respectively; this corresponds
to the best studied case for � = 0. Also in line with earlier
work, we will restrict ourselves to the paramagnetic case, i.e.,
exclude antiferromagnetic and orbital order; the results should
be relevant at intermediate temperatures or for frustrated
systems.48 In the following, we present QMC results obtained
at a temperature T = 1/40 with a discretization parameter
in the Trotter decomposition42 of �τ = 0.4; these data were
checked by additional calculations at different values of �τ .

In the following, we will first discuss orbital-specific
occupation numbers and spectral functions, then construct the
phase diagram and, finally, address possible non-Fermi-liquid
properties on the basis of self-energy data, all as a function of
crystal field splitting.

A. Orbital occupation numbers

As the crystal field splitting � acts like a magnetic field in
the orbital sector, i.e., shifts all energy levels of the wide band
downwards for � > 0 and all energy levels of the narrow band
upwards, one expects that, generically, an increase of � will
increase the filling in the wide band and decrease the filling
in the narrow band. This applies both at constant chemical
potential μ and at constant total filling n = nn + nw, unless
one or both of the bands are incompressible, i.e., in a Mott or
band insulating state.

Only at integer filling, both bands can be incompressible
at the same time: indeed, the model is known to be fully
insulating at n = 2, U � 2.8, and � = 0;23 due to the first-
order character of the associated transition, the insulating state
must be stable also at small � (up to the order of the gap in
the particle-hole symmetric case). At very large crystal field
splitting (|�| � max{Ww,Wn,U,kB T }), one expects that both
orbitals become band insulating, with all electrons in the lower
band (wide or narrow, depending on the sign of �).

Away from half filling (here, we concentrate on n > 2),
at least one of the bands must have a noninteger occupation
and, therefore, remain metallic. This case appears much more
interesting, so we will focus on it in the following. In Fig. 1(a),
we present data for n = 2.1, i.e., for relatively small electron
doping. The case of larger doping will be discussed later
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FIG. 1. (Color online) Orbital occupation numbers nn, nw as a
function of crystal field splitting �: (a) for total filling n = 2.1 and
(b) for n = 2.2. Results for the wide (narrow) band are indicated by
thick lines and symbols (thin lines). Mott plateaus in nn, nw appear
for U > 2 (see magnified insets for nw).

[cf. Fig. 1(b)] while results for hole doping (n < 2) follow
from symmetry. As expected, the occupation nw of the wide
band (symbols and solid lines) increases monotonically with �

at all interactions 2 � U � 3.6. Accordingly, the occupation
nn = n − nw decreases monotonically.

Plateaus in the orbital occupations are observed for large
absolute values of the crystal field splitting at all interactions
beyond thresholds that increase with U , e.g., for � � 4.0 and
for � � −3.8 at U = 3.6 (squares), which correspond to a
totally filled wide and narrow band, respectively. In between
these (orbital selective) band insulating phases, the density
curve nw(�) is smooth with strictly positive slope at U � 2.0
(diamonds), indicating a purely metallic phase.

At U = 2.4 (triangles), an additional plateau appears at
0 � � � 0.8. On this plateau, the occupation of the narrow
band is integer (nn = 1.0) and that of the wide band fractional
(nw = 1.1). Since � acts as an orbital-dependent chemical
potential (in addition to μ), we can interpret the pinning of
the narrow-band occupation at half filling as arising from an
incompressibility of this subsystem; thus, the system appears
as a narrow-band orbital-selective Mott insulator. In contrast,
the “pinning” of nw at the value 1.1 arises from our constraint
n = nn + nw = 2.1; it would not show up in plots at constant
μ. The narrow-band Mott plateau broadens as the interaction
is increased and extends to slightly negative � for U > 2.4.

Thus, this phase can be identified with the one previously
studied27 at � = 0 for n = 2.1, which is continuously con-
nected with the OSMP at � = 0 and half filling (n = 2).23

At stronger coupling U > 2.8, additional plateaus appear at
� � −1.0. In this case, the wide band is half-filled and (by the
above arguments) insulating. Evidently, the crystal field split-
ting must be essential for this wide-band OSMP since it cannot
occur at � = 0 (when all phases with insulating bands are con-
nected to half filling, i.e., particle-hole symmetry). It will, thus,
be instructive to compare the two different types of OSMPs in
some detail, in particular regarding spectral properties.

Before doing that, let us first discuss the impact of the
doping level on the basis of Fig. 1(b) which shows results
for twice the doping strength (filling n = 2.2) compared to
Fig. 1(a). Overall, the results in both panels of Fig. 1 look very
similar, up to slight shifts in critical values of � and, of course,
in the noninteger plateau values. We conclude that the specific
doping level is not crucial so that we can focus on the specific
filling n = 2.1 for the remainder of the paper without loss of
generality.

B. Spectral functions

Now we turn to the spectral properties, starting with
numerical estimates, obtained by maximum entropy analytic
continuation of QMC imaginary-time Green functions. Results
for the wide band are shown in Fig. 2(a) and those for the
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FIG. 2. (Color online) Spectral functions A(ω) for n = 2.1 and
U = 3.0, with data for the wide (narrow) band shown in the upper
(lower) panels. The QMC estimates (with maximum entropy analytic
continuation), shown in the left column, indicate orbital-selective
Mott phases of the narrow and (less clearly) of the wide band;
corresponding Hubbard-I spectra capture mainly the peak positions
(see text).
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narrow band in Fig. 2(b); corresponding analytic results (right-
hand panels of Fig. 2) will be discussed later. As expected, the
spectral weight of the wide band shifts towards smaller ω when
the crystal field is increased from � = −3.0 [topmost curve in
Fig. 2(a)] to � = 3.0 [lowest curve in Fig. 2(a)], with a shape
that changes significantly at intermediate values of � (shown
with a spacing of 0.6). Conversely, the narrow-band spectral
weight shifts upwards.

The narrow-band insulating phase is clearly apparent as a
gap around the Fermi energy for 0.0 � � � 1.2 in Fig. 2(b), in
line with the expectations from the orbital occupancy analysis
of Fig. 1(a). This gap (with a maximum width of about 1.5)
shifts with � roughly like the center of mass. More generally,
the narrow-band spectrum starts out from a narrow shape, with
a peak just below the Fermi energy at � = −3.0, which moves
towards larger ω with increasing � (and decays slowly for
� → 3.0). At � ≈ −1.8, a second peak emerges at ω ≈ −3,
the position of which is initially nearly frozen, then moves
towards the gap edge at � � 0, until it becomes the main
peak. At � = 0.6, the narrow-band spectrum is remarkably
symmetric. Minor structures visible in the numerical results,
such as a splitting of peaks for specific values of �, are
probably not significant.

Due to such numerical noise, the wide-band insulating
phase is much harder to detect in the corresponding spectra,
Fig. 2(a). However, a well-developed dip is seen to cross
the Fermi energy in the range −1.2 � � � −0.6, which is
consistent with the very small gap at � ≈ −1.0 that one would
expect from interpolating the occupancy data of Fig. 1(a).
The dip persists at ω ≈ −0.2 for � � 1.2, which might be
interpreted as a sign of non-Fermi-liquid behavior (cf. Ref. 27).

In Figs. 2(c) and 2(d), we show, for comparison, spectra
obtained from a Hubbard-I-type solution of the same Hamil-
tonian. Obviously, this simple approximation, which does not
include life time effects, cannot capture the highly nontrivial
correlation physics and reproduce the corresponding spectra
on a quantitative level. In particular, the Hubbard-I predictions
contain unphysical or much too broad gaps. However, at
strong crystal field splitting |�| = 3.0, the Hubbard-I line
shapes are roughly correct. In addition, the peak positions and
their nonuniform evolution as a function of � agree with the
QMC data remarkably well at all values of �, which clearly
supports the reliability of our numerical methods. For the
narrow band, the insulating phase (gap around Fermi energy)
is also predicted nearly correctly (with a false positive only
for � = 1.8); in contrast, the wide-band insulating phase is
grossly overestimated.

C. Phase diagram

Using primarily orbital occupation data for a broad range of
parameters � and U , we have constructed the phase diagram
in Fig. 3. Specifically, the critical interactions for the onset of
plateaus, i.e., phases where one of the orbitals is incompress-
ible, were determined on a fine grid of � values. The resulting
boundaries towards these orbital-selective insulating phases
are shown as symbols and solid lines in Fig. 3 for a total filling
n = 2.1 (while dashed lines denote transitions at n = 2.2).
At small U � 2, the system is either fully metallic or band
insulating (in the narrow band for � � −3, in the wide band

U
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FIG. 3. (Color online) Phase diagram as a function of the
interaction U and the crystal field splitting � for n = 2.1 (symbols,
solid lines, and shaded regions) and n = 2.2 (dashed lines). For large
|�|, the energetically lower of both orbitals is in a band insulating
state (BI), while the other orbital contains the remaining electrons.
Orbital-selective Mott phases (OSMPs) occur at sufficiently strong
coupling (U � 2) for moderate |�|.

for � � 3); the precise critical values of � shift significantly
with U . At U � 2, a narrow-band orbital-selective Mott phase
emerges at � � 0. Only at U � 2.8, an additional wide-band
OSMP becomes stable at � � −1. It is clear that the two
OSMPs must be separated (at constant filling n > 2) by a
fully metallic region, where both orbitals are slightly more
than half-filled [cf. Fig. 1(a)]; the extent of this “finger” of
the all-metallic phase at −1.0 � � � −0.2 (at n = 2.1) is
practically independent of U , at least in the interaction range
covered in this study.

Stronger doping (n = 2.2, dashed lines in Fig. 3) suppresses
the narrow-band OSMP at � ≈ 0, i.e., shifts the phase
boundary to larger values of U and broadens the central
all-metallic phase. Otherwise, the effects are surprisingly
small, which justifies, again, our focus on the single doping
level n = 2.1.

D. Non-Fermi-liquid properties

In order to get more insight into the nature of the orbital-
selective phases shown in Fig. 3, beyond the orbital-selective
incompressibility apparent in Fig. 1 and the spectral informa-
tion of Fig. 2, let us now discuss signatures in the self-energy
�(ω), a direct quantitative measure of correlation effects.
Specifically, we consider the self-energy on the imaginary
axis [i.e., for ω = iωn = i(2n + 1)πT ], which is directly
available as a state variable in the DMFT self-consistency
cycle, and avoid an ill-conditioned analytic continuation to the
real axis [which limits the reliability of the spectral functions
A(ω) = −ImG(ω + i0+)/π shown in Fig. 2].

The upper panels of Fig. 4 show Im�(iωn) for the wide
band (top left) and the narrow band (top right) at U = 3.0.
Deep in the fully metallic phase, at � = −2.4 and at � = 3.0
(triangles), both observables have small absolute values and
decay essentially to zero at small ωn, indicating a weakly
correlated Fermi liquid.

In the narrow-band insulating phase, at � = 0.8 (squares),
the narrow-band self-energy diverges at small frequencies; the
corresponding wide-band self-energy is nearly flat and tends
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FIG. 4. (Color online) Imaginary part of self-energy for total
filling n = 2.1, interaction strengths U = 3.0 (top) and U = 3.6
(bottom), and selected values of the crystal field splitting parameter �.

to a finite value at small ω. This clear sign of non-Fermi-liquid
behavior in the metallic component of an orbital-selective
Mott phase appears completely analogous to the well-known
situation at n = 2 and � = 0.23 Quite remarkably, almost
identical values of Im�w(iωn) are obtained also at � = −0.2,
very close to the edge of the narrow-band OSMP, where the
narrow-band self-energy Im�n(iωn) is still strongly enhanced
at intermediate ωn ≈ 1, but decays almost Fermi-liquid-like at
small ωn.

In the wide-band insulating phase, at � = −1.0 (circles),
the role of the two bands is just exchanged, relative to the
case discussed above: now the wide band shows a divergent
self-energy, while the narrow band displays non-Fermi-liquid
behavior. We conclude that this behavior is really generic
of itinerant electrons coupled via an Ising-type Hund rule
interaction to localized electrons and does not depend on
details of the model.

A further indication that the behavior discussed so far is
quite generic is the complete qualitative agreement between
the self-energy data discussed so far for U = 3.0 (top panels in
Fig. 4) and corresponding data at stronger interaction U = 3.6
(bottom panels in Fig. 4): up to a slight enhancement (note
the change of scales between the two rows of panels), the
imaginary parts of the self-energies on the Matsubara axis
are nearly identical at corresponding phase points. The main
difference is a much larger residual value at small frequencies
in the fully metallic phases (triangles); apparently, at this
stronger interaction (and close to the wide-band OSMP), the
temperature T = 1/40 is already above the range of “good”
Fermi-liquid behavior at � = −2.4.

IV. CONCLUSION

In summary, we have investigated the effects of crystal
field splitting � in the doped two-band model (2) with a band
width ratio of tw/tn = 2 and Ising-type exchange interaction.

Using the Hirsch-Fye quantum Monte Carlo technique, we
have calculated orbital filling factors, spectra, and Matsubara
self-energies within DMFT, focusing on Mott physics within
the spatially homogeneous phase. The resulting phase diagram
contains not only an orbital-selective Mott phase of the narrow,
i.e., generically more strongly correlated, band, but also a
wide-band OSMP at suitable values of the crystal field (and
strong enough interaction). This shows that the crystal field,
i.e., a diagonal element in the tight-binding Hamiltonian, can
be as relevant for Mott physics as the hopping, i.e., off-diagonal
elements. Clear signatures of non-Fermi-liquid behavior are
seen in the Matsubara self-energies in both types of OSMPs;
these findings are also consistent with the complex evolution of
the local spectral functions as a function of � that we observed
using QMC and the maximum entropy method.

On the one hand, the QMC results presented in this paper
complete the picture regarding the impact of a bandwidth
difference on the correlation physics of multiorbital systems.
They show that the OSMT scenario established in earlier
studies is not only stable with respect to doping,27 but also
with respect to (additional) crystal field splitting. On the other
hand, our finding of a wide-band OSMP makes contact with
earlier studies of the isolated impact of crystal field splitting on
otherwise equivalent orbitals31–33 and shows that the combined
effect of filling control and crystal field31 can drive an OSMT
even “against” a significant bandwidth difference.

Our numerical results in the doped case show that the range
of crystal field splitting � over which the orbital-selective Mott
phases extend increases significantly with interaction U (and
Hund rule couplings V = U/2 and Jz = U/4). This can also
be expected at half filling, in line with our analytical finding
that the effective Heisenberg Hamiltonian relevant in this case
and at strong coupling does not explicitly depend on �, which
is, consequently, also true for magnetic ordering temperatures.
It would clearly be interesting to explore magnetic order also
numerically away from half filling, possibly with orbital-
dependent frustration.43 However, quantitative accuracy would
then require treatments beyond DMFT,44 at high numerical
cost and probably with severe sign problems. In contrast,
DMFT has been shown to be reliable for Mott physics as
explored in this study; thus, our results are expected to be
accurate for three-dimensional systems and experimentally
relevant, e.g., at the lowest temperatures accessible with
ultracold fermions on optical lattices.
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APPENDIX: STRONG-COUPLING SPECTRAL
FUNCTIONS AT HALF FILLING

In this Appendix, we summarize the calculation of the
spectral functions in the ground state (T = 0) of the two-band
model at strong coupling and half filling. The derivation
proceeds along the lines of Kalinowski and Gebhard,36 in
which the single-band Hubbard model was studied within
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strong coupling perturbation theory. Here, we focus on
the generic case J⊥ < Jz, which is somewhat simpler and,
moreover, is the relevant model for the numerical calculations
in this paper. Calculations for the special case J⊥ = Jz = J

proceed similarly, in principle, but they are technically more
involved in detail.

We start with the definition of the local Green function
Gmσ (t), which contains (and is in fact equivalent to) the local
spectral function:

Gmσ (t) ≡ − i

N
∑

l

〈T [clmσ (t)c†lmσ (0)]〉GS.

Here, we introduced Heisenberg operators clmσ (t) =
eiKt clmσ e−iKt on site l for orbital m and spin σ , where
K = H − μN is the grand canonical Hamiltonian. Moreover,
N is the number of lattice sites, T the time ordering operator
and 〈· · ·〉GS an average over all possible degenerate U = ∞
ground states. The ground-state energy at half filling is denoted
by E0. The simplest way for imposing the restriction to half
filling in the non-particle-hole symmetric two-band model H�

with � 
= 0 is to construct a four-band model by duplicating
the two-band Hamiltonian:

H
(1−4)
� ≡ H

(1,2)
� + H

(3,4)
−� ,

where the (m = 1,2)- and (m = 3,4)-orbitals have crystal field
parameters � and −�, respectively. The resulting four-band
Hamiltonian is particle-hole symmetric under the transforma-
tion cimσ → (−1)ic†i,m±2,σ , so that the chemical potential of
the four-band model is exactly given by μ = 1

2U + U ′ − 1
2Jz.

Results for the original two-band model are then obtained by
simply restricting consideration to the (m = 1,2) orbitals in
the end.

A Fourier transform from the time to a frequency variable
yields two contributions, one from negative and one from
positive frequencies, which are associated with the lower and
upper Hubbard bands, respectively:

Gmσ (ω) = GLHB
mσ (ω) + GUHB

mσ (ω).

The contributions from the Hubbard bands are

GLHB
mσ (ω) = 1

N
∑

l

〈
c
†
lmσ

1

ω + K − E0 − i0+ clmσ

〉
GS

,

GUHB
mσ (ω) = − 1

N
∑

l

〈
clmσ

1

ω + K − E0 − i0+ c
†
lmσ

〉
GS

,

and are connected to the spectral function according to

νmσ (ω) = νLHB
mσ (ω) + νUHB

mσ (ω)

with νLHB
mσ (ω) = 1

π
Im[GLHB

mσ (ω)] for the lower and νUHB
mσ (ω) =

− 1
π

Im[GUHB
mσ (ω)] for the upper Hubbard band. It is sufficient

to calculate the four contributions νLHB
mσ (ω) to the lower

Hubbard band, since the results for the upper band then follow
automatically from particle-hole symmetry, i.e., νUHB

mσ (ω) =
νLHB

m±2,σ (−ω).
In order to calculate νLHB

mσ (ω), we perform a canonical
transformation to new particles: c

†
lmσ = eS(c̄)c̄

†
lmσ e−S(c̄), which

(by definition) leaves the total number of double occupancies

H0(c̄) of these new particles invariant. The result is

GLHB
mσ (ω) = 1

N
∑

l

〈
c̄
†
lmσ

1

ω + K̄ − E0 − i0+ c̄lmσ

〉
GS

,

where GS denotes the ground state in terms of the new
particles, and, moreover,

K̄ = e−S(c̄)KeS(c̄) ≡ H ′
t (c̄) + H0(c̄) − μN̄ (A1)

and N̄ = e−S(c̄)NeS(c̄). Note that the right-hand side of Eq. (A1)
defines the effective hopping H ′

t (c̄) of the new particles. We
now consider a single hole, i.e., the removal of a single particle
with spin σ from band m, in an otherwise half-filled assembly
of states d

†
i↑|0〉 and d

†
i↓|0〉 with diσ = c̄i2σ c̄i1σ , which (as

argued in Sec. II) are lowest in energy if 0 � J⊥ < Jz. In
the following, we also need single occupancies s

†
imσ |0〉 with

simσ = c̄imσ . The effective hopping H ′
t (c̄) for a single hole then

follows from standard Harris-Lange degenerate perturbation
theory as

H ′
t (c̄) = −tm

∑
(ij )

s
†
im̄σ d

†
jσ diσ sjm̄σ

with m = 1,2,3,4 corresponding to m̄ = 2,1,4,3, respectively.
As a result,

K̄ = 1

2
(U + Jz) − tm

∑
(ij )

s
†
im̄σ d

†
jσ diσ sjm̄σ + O

(
t2

U

)
,

where the latter term is negligible in the strong-coupling limit
U/t → ∞. With the definition

z ≡ ω + 1
2 (U + Jz) − 1

2�(δm1 + δm4 − δm2 − δm3) − i0+

one then finds that, to this order in the t/U expansion,

GLHB
mσ (ω) = 1

N
∑

l

〈
d
†
lσ slm̄σ

1

z + H ′
t (c̄)

s
†
lm̄σ dlσ

〉
GS

simply describes the hopping of a single hole through a random
environment of d

†
i↑|0〉 and d

†
i↓|0〉 sites. The dependence of the

right-hand side on z already shows that the lower Hubbard
bands are centered around ω = − 1

2 (U + Jz ± �), with the
sign of ±� depending on the band index m.

In order to calculate GLHB
mσ (ω), we consider the series

expansion

GLHB
mσ (ω) = 1

zN
∑

l

〈
d
†
lσ slm̄σ

∞∑
n=0

[
−H ′

t (c̄)

z

]n

s
†
lm̄σ dlσ

〉
GS

= 1

2z

∞∑
k=0

[S(z)]k = 1

2z[1 − S(z)]
,

where S(z) describes the contributions to the series of hole
motions such that the hole does not return to site l between
start and finish. The factor 1

2 in the second step occurs, because

site l has d
†
lσ |0〉 character only with probability 1

2 . Furthermore,
in each hop only half the sites are accessible, because the hole
must hop to a d

†
lσ |0〉 site. Hence, on a Bethe lattice (with

coordination Z and t∗m ≡ tm
√

Z),

S(z) = 1

2
Z

(
t∗m

z
√

Z

)2 ∞∑
k′=0

[S(z)]k
′ = (t∗m)2

2z2[1 − S(z)]
,
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yielding

GLHB
mσ (ω) = 1

2(t∗m)2
[z +

√
z2 − 2(t∗m)2],

where the sign of the square root is chosen such that
GLHB

mσ (ω) ∼ 1
z

for ω → −∞. For the m = 1 and m = 2

orbitals, this immediately yields the results for the spec-
tral functions quoted in Sec. II for J⊥ < Jz. As men-
tioned above, calculations for the special case J⊥ =
Jz = J are analogous but considerably more involved,
so that we prefer to simply quote the result (see
Sec. II).
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