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GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite
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We present first-principles calculations of the quasiparticle band structures of four isostructural semiconducting
metal chalcogenides A2B3 (with A = Sb, Bi and B = S, Se) of the stibnite family within the G0W0 approach.
We perform extensive convergence tests and identify a sensitivity of the quasiparticle corrections to the structural
parameters and to the semicore d electrons. Our calculations indicate that all four chalcogenides exhibit direct
band gaps, if we exclude some indirect transitions marginally below the direct gap. Relativistic spin-orbit effects
are evaluated for the Kohn-Sham band structures, and included as scissor corrections in the quasiparticle band
gaps. Our calculated band gaps are 1.5 eV (Sb2S3), 1.3 eV (Sb2Se3), 1.4 eV (Bi2S3), and 0.9 eV (Bi2Se3). By
comparing our calculated gaps with the ideal Shockley-Queisser value we find that all four chalcogenides are
promising as light sensitizers for nanostructured photovoltaics.
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I. INTRODUCTION

The development of sustainable energy solutions based on
scalable processes and nontoxic materials constitutes a key
priority in the current scientific research agenda, and in this
area nanostructured energy-harvesting solar and thermoelec-
tric devices are playing a lead role. Recently there has been
a surge of interest in devices using semiconducting metal
chalcogenides of the stibnite family. For example recent stud-
ies have demonstrated the potential of these semiconductors
both in photovoltaics applications,1–4 and in thermoelectric
generators.5

In the area of nanostructured photovoltaics semiconducting
metal chalcogenides have successfully been used to replace
the inorganic dye in dye-sensitized solar cells,6 leading to
the development of solid-state semiconductor-sensitized solar
cells.1,7 In these devices thin layers or nanoparticles of the
semiconducting chalcogenides act as light absorbers, and
upon photoexcitation they transfer an electron to the acceptor
(typically TiO2) and a hole to the hole-transporter (for example
a conducting polymer). The record efficiency within this class
of devices is 5.1% and was obtained using stibnite (Sb2S3) as
semiconductor sensitizer.1

A recent atomistic computational study of photovoltaic
interfaces for semicondictor-sensitized solar cells pointed
out that, in addition to stibnite, the other members of
the stibnite mineral family, namely antimonselite (Sb2Se3),
bismuthinite (Bi2S3), and guanajuatite (Bi2Se3), exhibit optical
properties similar to stibnite and should be considered as
potential candidates for novel semiconductor sensitizers.8

Using density-functional calculations and empirical scissor
corrections of the band gaps, in Ref. 8 it was found that stibnite
and antimonselite should form type-II heterojunctions with
TiO2, while bismuthinite should form a type-I heterojunction
and hence would not be able to transfer electrons to TiO2.
These theoretical predictions have recently been confirmed
by the experimental investigations of Refs. 4 and 9, thereby
providing a motivation for further studies and for the more
sophisticated analysis presented in this work.

The four minerals of the stibnite family crystallize in an
orthorhombic structure consisting of parallel one-dimensional
(A4B6)n ribbons, with A = Sb, Bi and B = S, Se. A

ball-and-stick model of this structure is shown in Fig. 1.
Besides its natural occurrence in mineral form, stibnite
can be synthesized using a variety of low-cost fabrication
techniques.10–18 Using these techniques it is possible
to obtain a good degree of crystallinity,19,20 to control
dimensionality,5,16,21 and to tune the optical properties.16,22–24

Semiconductors of the stibnite family have also been
synthesized in various nanostructured forms. For example
Refs. 5,14,15 and Refs. 5,24 reported nanowires and
nanotubes, respectively, of stibnite, antimonselite, and
bismuthinite. Nanowires of stibnite were found to exhibit
enhanced ferroelectric and piezoelectric properties as com-
pared to their bulk counterpart.25 Nanowires and nanotubes
of antimonselite were found to exhibit conductivities much
higher than their bulk counterpart,5 and are being considered
for thermoelectric applications. In the case of bismuthinite,
Ref. 14 reported nanowires with diameters as small as 1.6 nm,
corresponding to a transverse size of only two ribbons.
The rhombohedral phase of Bi2Se3 has been investigated
extensively since this compound is a prototypical topological
insulator.26 However to the best of our knowledge little is
known about orthorhombic Bi2Se3, i.e., guanajuatite, which
is stable only at high temperature and pressure.27,28

The band gaps of stibnite, antimonselite, and bismuthi-
nite have been measured extensively via optical absorption
experiments. The band gap of stibnite ranges between 1.42–
1.78 eV.29,30 For antimonselite Ref. 31 reported a direct gap of
1.55 eV, while Ref. 32 gave an indirect gap between 1–1.2 eV.
The measured band gap of bismuthinite is 1.38–1.58 eV.33–35

The spread in the measured gaps can be attributed to the dif-
ferent preparation conditions used, yielding different degrees
of polycrystallinity and even amorphous samples in some
cases, and also different stoichiometries. In addition all these
compounds exhibit closely lying direct and indirect transitions
(cf. Fig. 3 below), thereby complicating the assignment of the
nature of the optical gap.

All four minerals of the stibnite family have been in-
vestigated in detail using density-functional theory (DFT)
calculations. The electronic properties of these compounds
have been studied in Refs. 8 and 36–42, and the elastic and
optical properties have been calculated in Ref. 39.
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FIG. 1. (Color online) Ball-and-stick model of A2B3 semicon-
ducting metal chalcogenides of the stibnite family, with A standing
for Sb or Bi (brown), and B for S or Se (yellow). The two inequivalent
(A4B6)n ribbons in the unit cell are highlighted in red, and the
perspective view is along the direction of the ribbons.

A comparison of the theoretical studies published so far
shows some inconsistencies in the calculated band gaps; for
example, the values reported for stibnite are in the range
1.18–1.55 eV.8,36,39,43 As expected all the calculated DFT
gaps underestimate the measured band gaps. To the best
of our knowledge only one work43 reported a calculation
of the quasiparticle band gap of stibnite and antimonselite
within the GW approximation.44 The electronic structure of
the rhombohedral Bi2Se3 has also been explored within the
GW approach.45

Within this context there exists a need for detailed and
reproducible calculations of the electronic structure of stibnite
and related compounds based on state-of-the-art quasiparticle
techniques. In line with this need the goal of the present
work is to report a systematic and reproducible study of the
quasiparticle band structures of all four A2B3 semiconducting
metal chalcogenides of the stibnite family. An emphasis
is placed on convergence tests and on the sensitivity of
the quasiparticle corrections to the structural parameters,
the inclusion of semicore d states in the calculations, and
relativistic effects.

Our calculated band gaps are 1.5 eV (Sb2S3), 1.3 eV
(Sb2Se3), 1.4 eV (Bi2S3), and 0.9 eV (Bi2Se3). By inspection
of the band structures we infer that all four compounds have
direct band gaps, although in most cases an indirect transition
just below the direct gap (within 0.1 eV) is also possible. The
inclusion of semicore electrons in the calculations is found to
modify the band gaps by 0.1–0.2 eV. In addition we find that
the gaps are rather sensitive to the lattice parameters, as they
change by up to 0.3 eV when the lattice parameters are taken
from experiment or fully optimized within DFT. Relativistic
corrections are found to be essentially negligible for Sb2S3 and
Sb2Se3, while in the case of Bi2S3 and Bi2Se3 the band gaps
decrease by 0.3–0.4 eV upon inclusion of spin-orbit coupling.

The paper is organized as follows. In Sec. II we describe
the computational methodology and the convergence tests for
the GW calculations. In Sec. III we present our main results,
including quasiparticle band structures and band gaps. In
Sec. IV we discuss our findings in relation to the photovoltaics

applications of the materials considered in this work. In Sec. V
we summarize our results and present our conclusions.

II. METHODOLOGY

A. DFT calculations

All DFT calculations are performed using the QUANTUM

ESPRESSO package.46 The calculations are based on the local
density approximation (LDA) to DFT.47,48

Only valence electrons are explicitly described, and the
core-valence interaction is taken into account by means of
Troullier-Martins scalar relativistic pseudopotentials49 gener-
ated using the FHI98 code.50 In the cases of S (Se) the 3s23p4

(4s24p4) electrons are included in the valence as usual. For
Sb and Bi we generate two sets of pseudopotentials, one set
with five electrons in the valence, i.e., 5s25p3 and 6s26p3,
respectively, and one set with additional semicore 4d10 and
5d10 electrons, respectively.

The electronic wave functions are expanded in plane-wave
basis sets with kinetic energy cutoffs of 70 Ry (Sb2Se3, Bi2Se3)
and 90 Ry (Sb2S3, Bi2S3) for the calculations without semicore
states, and 100 Ry (Bi2S3, Bi2Se3) and 130 Ry (Sb2S3,
Sb2Se3) when semicore states are included. In each case
considered the selected cutoff yields a total energy converged
to within 2 meV/atom. All self-consistent calculations are
carried out using a 8 × 8 × 8 Brillouin zone mesh centered
at �, corresponding to 170 irreducible points for Sb2S3 and
Bi2S3, and 260 points for Sb2Se3 and Bi2Se3.

We perform full geometry optimizations of the lattice
parameters and the atomic positions in each case, both with
or without semicore d states. All structural optimizations are
performed using 4 × 8 × 4 �-centered Brillouin zone meshes.

B. Crystal structure

Stibnite (Sb2S3), antimonselite (Sb2Se3), bismuthinite
(Bi2S3), and guanajuatite (Bi2Se3) all crystallize in the same
orthorhombic lattice and belong to the Pnma 62 space group.36

Each unit cell contains 20 atoms, whose coordinates can be
generated by applying the symmetry operations of the crystal-
lographic group to a set of 5 atomic coordinates. Figure 1 shows
a ball-and-stick representation of these A2B3 structures. The
structural parameters were measured in Refs. 27 and 51–53
and are reported in Ref. 36.

As the crystal structure consists of a bundle of relatively
well separated ribbons, it is convenient to separate the cohesive
energy into intra-ribbon and inter-ribbon components. The
intra-ribbon cohesive energy is calculated as the difference
between the total energy of one ribbon and the total energies
of its constituent atoms. The inter-ribbon cohesive energy is
evaluated as the difference between the total energy of the unit
cell and twice the total energy of one ribbon in isolation (each
unit cell contains two ribbons).

C. Quasiparticle calculations

We calculate the quasiparticle energies within many-body
perturbation theory using the GW method,44,54–57 as imple-
mented in the SAX code.58 The GW self-energy is evaluated in
the G0W0 approximation as � = iG0W0. Here G0 denotes
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the electron Green’s function defined by the Kohn-Sham
eigenstates ψnk(r) and eigenvalues εnk corresponding to the
band index n and the wave vector k, and W0 represents
the screened Coulomb interaction calculated in the random
phase approximation.54,59 The quasiparticle energies Enk are
obtained as54

Enk = εnk + Znk〈ψnk|�(εnk) − Vxc|ψnk〉, (1)

where Enk is the quasiparticle energy, Znk is the associated
quasiparticle renormalization, and Vxc is the exchange and
correlation potential.

The self-energy can be written as the sum of a bare
exchange contribution �x and a correlation contribution �c:
� = �x + �c. The exchange part does not depend explicitly
on the excitation energy and reads60

�x(r,r′) = −
∑

n∈occ,k

ψ∗
nk(r)ψnk(r′)v(r,r′), (2)

where the sum is over occupied states and v represents the bare
Coulomb interaction. This contribution to the quasiparticle
correction is sensitive to the overlap between Kohn-Sham wave
functions regardless of their energy. As a result the use of
semicore states can have significant effect on the calculations,
as shown in Refs. 61–63. This aspect will be discussed in detail
in Sec. III C.

The energy dependence of the correlation contribution �c

arising from the dynamically screened Coulomb interaction
is described via the Godby-Needs plasmon-pole model.64 We
use a plasmon-pole energy of 1 Ry for all materials, similar to
the energy of the peaks in the calculated electron energy loss
spectra.

Since the computational efforts for achieving convergence
in �c and �x are very different owing to the necessity of
evaluating unoccupied states for �c, we perform separate
convergence tests for these two components. For the exchange
contribution we use kinetic energy cutoffs of 75 Ry and
100 Ry for calculations without and with semicore electrons,
respectively. For the correlation contribution we perform
convergence tests by calculating the band gap at various kinetic
energy cutoffs up to 7 Ry for the polarizability. Figure 2(a)

shows that the band gap is converged within 0.05 eV already
for a cutoff of 5 Ry. The dependence of the band gap on
the polarizability cutoff shows the same trend for calculations
with or without semicore states. This is consistent with the
expectation that the effect of semicore states in �c should be
small.61 Based on the data of Fig. 2(a), in the following we
use a polarizability cutoff of 7 Ry for calculations without
semicore electrons, and of 6 Ry for the more demanding
calculations including semicore states. In Fig. 2(b) we show
the convergence of the band gap of antimonselite with respect
to the energy of the highest unoccupied state included in
the polarizability. Based on the trend in this figure we
set the number of unoccupied states to 224 and 264 for
calculations with and without semicore, corresponding to a
maximum energy denominator of 35 eV. Both G0 and W0 are
calculated on uniform and �-centered 2 × 6 × 2 Brillouin-zone
meshes.

In order to estimate the accuracy of our quasiparticle
corrections with respect to the above convergence parameters
we follow the approach of Ref. 65. In this approach the
dependence of the band gap on a given convergence parameter
is fitted by a simple function in order to extract a “best-
guess” asymptotic limit. This asymptotic limit is then taken
to represent the converged gap. In this work we tenta-
tively approximate gap vs cutoff curves using the following
function:

EQP
gap = a0 + a1(x − a2)−1/a3 , (3)

where EQP
gap is the quasiparticle band gap, x is the convergence

parameter (i.e., the polarizability cutoff or the largest energy
denominator), and a0, . . . ,a3 are fitting parameters. While
Eq. (3) is largely arbitrary, this choice reflects the expectation
that the gap will converge faster than 1/x owing to the
damping introduced by the matrix elements in the Adler-
Wiser polarizability.66,67 Figure 2 shows that the fitting curves
obtained for stibnite describe rather accurately the calculated
data points; therefore it is reasonable to assume that the
parameter a0 obtained from the fit should provide a good
estimate of the converged gap. By repeating this procedure for

FIG. 2. (Color online) Convergence tests for the quasiparticle band gap of antimonselite. (a) Calculated G0W0 band gap as a function of the
polarizability cutoff, for calculations without (red circles) or with (blue disks) semicore states. The solid lines correspond to the fits obtained
from Eq. (3). We find a0 = 1.33 eV and 1.16 eV for calculations without and with semicore electrons, respectively. (b) Same as in (a), with the
band gap reported as a function of the largest energy denominator used for calculating the polarizability. In this case we find a0 = 1.32/1.14 eV
for calculations without/with semicore electrons. All calculations were performed using optimized lattice parameters.

205125-3



FILIP, PATRICK, AND GIUSTINO PHYSICAL REVIEW B 87, 205125 (2013)

all four compounds Sb2S3, Sb2Se3, Bi2S3, and Bi2Se3 we find
that the convergence parameters described above yield band
gaps which differ by less than 0.05 eV from the corresponding
asymptotic values.

D. Spin-orbit coupling

Owing to the high atomic numbers of Bi and Sb, it is
important to check the role of spin-orbit coupling (SOC)
in the electronic structure of semiconductors of the stibnite
family. In this work we evaluate SOC effects at the DFT level,
by constructing a set of fully relativistic Troullier-Martins
pseudopotentials including semicore d states. The pseudopo-
tentials are generated using the LD1.X program of the QUANTUM

ESPRESSO package. We checked that the plane-wave cutoffs de-
scribed in Sec. II A for scalar-relativistic calculations are also
appropriate for these fully relativistic pseudopotentials. For S
and Se relativistic effects are not expected to be significant,
and scalar-relativistic pseudopotentials are used throughout.
We determine the spin-orbit corrections to the band gaps
by taking the differences between self-consistent calculations
using the fully relativistic pseudopotentials with or without
noncollinear magnetism.68 We then apply these differences
as scissor corrections to the corresponding quasiparticle band
gaps obtained from scalar relativistic calculations.

III. RESULTS

A. Structural parameters

Table I shows the comparison between our calculated lattice
parameters and experiment. As expected the use of the local
density approximation leads to a general underestimation
of the experimental parameters. Interestingly, while such
underestimation does not exceed 1.1% along the direction
of the (A4B6)n ribbons (b parameter in Table I; cf. Fig. 1),
the deviation can reach up to 4.2% in the direction perpen-
dicular to the ribbons (a and c parameters in Table I). We
tentatively assign this behavior to the fact that inter-ribbon
forces are likely to include nonnegligible van der Waals
components, and hence are not described correctly within
the LDA.

Inspection of the calculated cohesive energies seems
to support this possibility. Indeed we obtain intra-ribbon
cohesive energies of 3.9 eV/atom (Sb2S3), 3.5 eV/atom
(Sb2Se3), 3.6 eV/atom (Bi2S3), and 3.3 eV/atom (Bi2Se3).
The inter-ribbon cohesive energies are one order of magnitude
smaller, 0.2 eV/atom (Sb2S3 and Sb2Se3) and 0.3 eV/atom
(Bi2S3 and Bi2Se3).

We also performed additional calculations of the structural
parameters using the van der Waals functional of Ref. 69.
The lattice parameters calculated using the vdW functional
overestimate the experimental values by up to 6.9% along
the directions perpendicular to the ribbons, while along the
ribbons the calculated parameters are in agreement with
experiment (within 0.3%). Similar trends have been observed
in calculations on graphite and boron nitride in Ref. 70. These
results indicate that for semiconductors of the stibnite family
the use of a van der Waals functional does not improve
the agreement of the calculated structural parameters with
experiment.

In order to take into account the differences between cal-
culated and experimental lattice parameters, in the following
we report quasiparticle calculations obtained using either the
DFT/LDA structure or the experimental structure.

B. DFT/LDA band structures

Figure 3 shows the DFT/LDA band structures calculated
using experimental lattice parameters and without semicore
electrons. Calculations including the semicore states yield
very similar band structures. For clarity we only show the
dispersions along the Z-�-X path and along the Y -� segment
running along the axis of the (A4B6)n ribbons. The top of
the valence band is found to be predominantly of S-3p or
Se-4p character, while the bottom of the conduction band
comprises Sb-5p or Bi-6p states, consistently with previous
calculations.36,42

The band structures shown in Fig. 3 exhibit several extrema
in proximity of the fundamental gap, making the direct and
indirect transitions almost degenerate. Table II shows that
the energy separation between direct and indirect DFT/LDA
band gaps falls within 0.15 eV in all cases. The data in the

TABLE I. Comparison between the calculated DFT/LDA lattice parameters of stibnite, antimonselite, bismuthinite, and guanajuatite and
experiment (all values are given in Å). The percentile deviation from experiment is indicated in each case.

Experiment Calc. w/o semicore Calc. with semicore

a b c a b c a b c

Sb2S3 11.311a 3.836a 11.229a 11.036 3.795 10.753 11.087 3.838 10.834
−2.4% −1.1% −4.2% −2.0% 0.1% −3.5%

Sb2Se3 11.794b 3.986b 11.648b 11.609 3.952 11.213 11.646 3.989 11.287
−1.6% −0.9% −3.7% −1.3% 0.1% −3.1%

Bi2S3 11.305c 3.981c 11.147c 11.227 3.999 11.001 11.030 3.949 10.853
−0.7% 0.5% −1.3% −2.4% −0.8% −2.6%

Bi2Se3 11.830d 4.090d 11.620d 11.767 4.141 11.491 11.609 4.099 11.374
−0.5% 1.3% −1.1% −1.9% 0.2% −2.1%

aReference 51.
bReference 52.
cReference 53.
dReference 27.
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FIG. 3. (Color online) Band structures of (a) stibnite, (b) antimonselite, (c) bismuthinite, and (d) guanajuatite calculated using DFT/LDA,
experimental lattice parameters, and without semicore electrons (black solid lines), as well as corresponding density of states (DOS, black
dashed lines). The contributions to the DOS from the p states of S and Se (Sb and Bi) are indicated by the green (blue) shaded areas in each
case. The GW quasiparticle energies of the band extrema at high-symmetry points are also shown, with blue squares and red circles indicating
calculations with or without semicore electrons, respectively. The connecting lines are guides to the eye. The coordinates of the high-symmetry
points in reciprocal lattice units are as follows: Z: (0,0,0.5), X: (0.5,0,0), Y : (0,0.5,0).

table suggest that in these compounds the direct transition will
most likely dominate over the indirect one, apart from a very
narrow onset of 0.1–0.2 eV. This observation is consistent with
experimental evidence showing a weak absorption onset just
below the threshold for direct absorption.11,30 Therefore for
practical purposes, and in particular for photovoltaics appli-
cations, stibnite, antimonselite, bismuthinite, and guanajuatite
can be considered as “effectively direct gap” semiconductors.

TABLE II. Comparison between the minimum band gaps and
the direct band gaps of stibnite, antimonselite, bismuthinite, and
guanajuatite, as obtained from DFT/LDA. In these calculations we
use the experimental lattice parameters. All values are in units of eV.

Mimimum gap Direct gap

w semicore w/o semicore w semicore w/o semicore

Sb2S3 1.19 1.21 1.26 1.27
Sb2Se3 0.84 0.86 0.84 0.86
Bi2S3 1.25 1.24 1.28 1.27
Bi2Se3 0.85 0.86 0.99 0.99

C. Quasiparticle corrections

Figure 3 shows that GW quasiparticle corrections lead to a
moderate increase of the band gaps in all cases, while generally
preserving the shape of the band extrema. From this figure we
deduce that a simple scissor operator should be able to capture
the most important effects of the GW corrections.

A detailed analysis of the quasiparticle corrections at the
high-symmetry points �, X, and Z is given in Fig. 4 and
Table III. In Fig. 4 we report the quasiparticle corrections as a
function of the corresponding Kohn-Sham eigenvalues around
the band extrema. In the cases of stibnite and antimonselite
we observe that in the calculations with semicore electrons
the valence bands are slightly upshifted (by about 0.1 eV)
as compared to calculations without semicore, while the
corrections to the conduction bands are essentially the same.
In the cases of bismuthinite and guanajuatite the effect of
semicore is to shift the valence bands up and the conduction
bands down by a similar amount (∼0.1 eV). As a result of
these small changes, the quasiparticle corrections to the band
gaps calculated with or without semicore electrons can differ
by up to 0.2 eV (cf. Table III).

Semicore electrons appear to slightly reduce the quasi-
particle corrections as compared to calculations without the
semicore. This finding is consistent with previous calculations
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FIG. 4. (Color online) Quasiparticle corrections as a function of the corresponding DFT/LDA eigenvalues for (a) stibnite, (b) antimonselite,
(c) bismuthinite, and (d) guanajuatite. Only eigenvalues at the high-symmetry points �, X, and Z are considered. Blue disks and red
circles indicate calculations with and without semicore electrons, respectively. All calculations were performed using experimental lattice
parameters.

and can be rationalized as follows.61–63 The semicore d states
introduce additional contributions �SC

x and �SC
c to the GW

self-energy. Of these contributions, while the correlation part
�SC

c is small owing to the large energy separation between
semicore states and conduction states, the exchange part �SC

x

can be large since it does not contain energy denominators but
is sensitive to the overlap between the band edge states and
the semicore states. This interpretation is confirmed by Fig. 5,
where we can see that the inclusion of semicore electrons does
indeed affect the exchange part of the GW corrections, while
at the same time the correlation component remains almost
unchanged.

Table III reports the DFT/LDA eigenvalues and the cor-
responding quasiparticle corrections for the valence band top
and conduction band bottom at the high-symmetry points �, X,
and Z. From this table we see that the LDA band gaps at these

points are sensitive to the choice of the lattice parameters, and
this sensitivity is reflected in the corresponding quasiparticle
energies. Calculations performed using optimized lattice pa-
rameters or experimental parameters can differ by up to 0.3 eV.
This observation may explain the lack of consensus between
previous computational investigations of the band structures
of these compounds.8,36,39,43

Taken together the sensitivity of the quasiparticle energies
to the presence of semicore electrons and to the choice
of lattice parameters leads to nonnegligible variations in
the calculated band gaps. This suggests that it is important
to use some care when comparing the quasiparticle band
structures of stibnite and related compounds with experimental
data.

In the remainder of this paper we will focus on calculations
using experimental lattice parameters and including semicore
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TABLE III. Quasiparticle energies of stibnite, antimonselite, bismuthinite, and guanajuatite at the high-symmetry points �, X, Z vs the
corresponding DFT/LDA eigenvalues. We report both sets of results obtained using optimized or experimental lattice parameters. The columns
labeled “S” and “w/o S” indicate calculations with and without semicore electrons, respectively. For each high-symmetry point we consider
the energies at the valence band top (e.g., �v) and the conduction band bottom (e.g., �c). All values are in units of eV.

Optimized parameters Expt. parameters

LDA GW LDA GW

w/o S S w/o S S w/o S S w/o S S

Stibnite
�v 0.00 0.00 0.10 0.20 0.00 0.00 0.06 0.17
�c 1.15 1.11 1.58 1.52 1.33 1.29 1.81 1.77
Xv −0.05 −0.03 −0.03 0.09 0.00 −0.01 −0.02 0.06
Xc 1.40 1.39 1.90 1.88 1.46 1.43 2.01 1.99
Zv −0.16 −0.14 −0.14 −0.04 −0.06 −0.06 −0.08 0.01
Zc 1.17 1.17 1.65 1.65 1.22 1.20 1.75 1.74

Antimonselite

�v −0.12 −0.12 0.07 0.18 −0.11 −0.11 0.11 0.20
�c 0.97 0.91 1.40 1.32 1.09 1.07 1.54 1.52
Xv 0.00 0.00 0.19 0.29 0.00 0.00 0.15 0.23
Xc 1.05 1.00 1.53 1.46 1.10 1.08 1.62 1.60
Zv −0.23 −0.24 −0.06 0.02 −0.09 −0.09 0.04 0.14
Zc 0.92 0.91 1.37 1.35 0.94 0.93 1.42 1.42

Bismuthinite

�v −0.10 −0.04 −0.04 0.08 −0.14 −0.12 −0.14 −0.04
�c 1.14 1.14 1.57 1.48 1.28 1.30 1.76 1.68
Xv 0.00 0.00 0.02 0.09 0.00 0.00 −0.03 0.04
Xc 1.50 1.67 2.04 2.09 1.61 1.63 2.18 2.09
Zv −0.15 −0.11 −0.13 −0.04 −0.08 −0.07 −0.11 −0.04
Zc 1.43 1.51 1.89 1.93 1.41 1.45 1.93 1.89

Guanajuatite

�v −0.02 −0.02 0.18 0.30 −0.07 −0.04 0.11 0.26
�c 0.95 0.89 1.39 1.24 1.17 1.16 1.63 1.54
Xv 0.00 0.00 0.19 0.28 0.00 0.00 0.18 0.27
Xc 1.07 1.18 1.61 1.58 1.04 1.06 1.59 1.45
Zv −0.24 −0.19 −0.06 0.05 −0.14 −0.12 0.04 0.12
Zc 1.17 1.25 1.63 1.65 1.16 1.18 1.64 1.57

electrons, which we consider our best estimates for the
quasiparticle energies in these compounds.

D. Relativistic corrections

We calculate the relativistic corrections within DFT/LDA
for all four structures using the experimental structure. The
corrections to the band edges at the high-symmetry points �,
X, and Z are reported in Table IV.

In all four semiconductors the inclusion of spin-orbit
coupling does not alter the top of the valence band. This is
consistent with the observation that the states at the valence
band top are predominantly associated with S or Se p states.
On the other hand the bottom of the conduction bands are of
Bi or Sb p character (see Fig. 3); hence a spin-orbit splitting
is expected in this case. We calculate indeed a very small
spin-orbit splitting for Sb2S3 and Sb2Se3, which has the effect
of lowering the conduction band minima by less than 0.1 eV.
In the case of Bi2S3 and Bi2Se3 the spin-orbit splitting is as
large as 0.3–0.4 eV, consistent with the higher atomic number
of Bi.

E. Band gaps

Table V reports the quasiparticle band gaps calculated using
the experimental structures, including semicore electrons
and relativistic corrections. The band gaps are obtained by
considering the band extrema at �, X, and Z and we give both
the fundamental gap and the direct gap. While in antimonselite
and bismuthinite the calculated minimum gap is indirect, the
difference between direct and indirect gaps is within 0.1 eV. In
guanajuatite and stibnite the fundamental gap is direct. These
results suggest that all four compounds can be considered
direct-gap semiconductors for practical applications, espe-
cially in the area of optoelectronics. The calculated direct gaps
are 1.54 eV (stibnite), 1.27 eV (antimonselite), 1.42 eV (bis-
muthinite), and 0.91 eV (guanajuatite). As shown in Table V
these values are in line with previous GW calculations where
available,37,43 and also rather close to measured optical gaps.

The comparison with experimental data is not straight-
forward since the experimental literature appears to only
report optical gaps (cf. literature review in Table V). However
our calculations refer to quasiparticle gaps and do not
include excitonic effects. Including excitonic effects using the
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FIG. 5. (Color online) Exchange (black disks and circles) and correlation (red filled and empty squares) contributions to the quasiparticle
corrections vs DFT/LDA eigenvalues for (a) stibnite, (b) antimonselite, (c) bismuthinite, and (d) guanajuatite. Only eigenvalues at the
high-symmetry points �, X, and Z are considered. Filled and empty symbols indicate calculations with and without semicore states, respectively.
All calculations were performed using experimental lattice parameters.

TABLE IV. Relativistic corrections calculated for stibnite, antimonselite, bismuthinite, and guanajuatite at high-symmetry points. The
column labeled “w/o SOC” indicates the scalar relativistic values of the band edges, while the column labeled “SOC” reports the corresponding
relativistic corrections. All calculations are performed using the experimental structures and including semicore d states. All values are in units
of eV.

Sb2S3 Sb2Se3 Bi2S3 Bi2Se3

w/o SOC SOC w/o SOC SOC w/o SOC SOC w/o SOC SOC

�v 0.00 0.00 −0.11 0.00 −0.12 −0.02 −0.04 −0.01
�c 1.29 −0.06 1.07 −0.05 1.30 −0.32 1.16 −0.38
Xv −0.01 0.00 0.00 0.00 0.00 −0.02 0.00 −0.02
Xc 1.43 −0.04 1.08 −0.03 1.63 −0.40 1.06 −0.27
Zv −0.06 0.00 −0.09 0.00 −0.07 −0.02 −0.12 −0.01
Zc 1.20 −0.02 0.93 −0.02 1.45 −0.31 1.18 −0.28
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TABLE V. Comparison between calculated and measured band gaps of stibnite, antimonselite, bismuthinite, and guanajuatite. We report
the direct band gaps calculated within DFT/LDA and GW after the SOC corrections, as well as the measured optical gaps. The direct gaps are
reported for the � point. The values in parentheses indicate the calculated indirect band gaps in each case. All values are in units of eV. Our
calculations include semicore electrons and are performed using the experimental structures.

Previous Present Previous Present Experiment
DFT DFT + SOC GW GW + SOC

Sb2S3 1.55a, 1.76b, 1.3c, 1.18d, 1.22e 1.23 1.67e 1.54 1.73f, 1.42–1.65g, 1.78h, 1.7i, 1.74j

Sb2Se3 1.14a, 0.99d, 0.79k, 0.89e 1.13 (0.91) 1.21k 1.27 (1.17) 1.55l, 1.2i, 1.0–1.2m

Bi2S3 1.47a, 1.32n, 1.63n, 1.45n, 1.67n 1.12 (1.00) 1.42 (1.34) 1.4o, 1.38p, 1.58q,j

Bi2Se3 0.9a, 1.1r 0.83 0.91

aReference 36.
bReference 42.
cReference 8.
dReference 39.
eReference 43.
fReference 11.
gReference 29.
hReference 30.
iReference 71.
jReference 35.
kReference 37.
lReference 31.
mReference 32.
nReference 41.
oReference 72.
pReference 33.
qReference 34.
rReference 40.

Bethe-Salpeter approach57 would be rather challenging owing
to the large size of these systems. To the best of our knowledge
no excitonic effects were measured or mentioned for any
of the four compounds studied. One exception is possibly
the absorption spectrum reported in Ref. 11, which exhibits
some sharp features resembling excitonic peaks; however the
authors assigned those peaks to defects or internal reflections.
The agreement between our calculated quasiparticle gaps
and the measured optical gaps can be seen a posteriori as
an indication that excitonic shifts are small in this class of
semiconductors.

Figure 6 provides a schematic view of our final calculated
band gaps (GW + SOC) compared to the Kohn-Sham band
gaps (DFT/LDA + SOC) and experiment.

IV. DISCUSSION

Taking the calculated quasiparticle band gaps of 0.9–1.5 eV
as representative of the optical gaps, the four semiconductors
considered here lie precisely in the range of the optimal
Shockley-Queisser performance.73 The Shockley-Queisser
analysis addresses the ultimate efficiency of a solar cell based
on a single material as light absorber and electron conductor,
e.g. silicon solar cells. In this analysis the optimum efficiency
results from a trade-off between maximizing the band gap in
order to increase the photovoltage, and minimizing the band
gap in order to increase the photocurrent.73

In the case of nanostructured solar cells based
on the donor/acceptor concept such as for instance

semiconductor-sensitized solar cells,1,7 the Shockley-Queisser
analysis needs to be modified in order to take into account
the energy-level alignment at the donor/acceptor interface. In
fact, while the photocurrent is still determined by the optical
gap of the absorber (typically the donor), at variance with
conventional bulk solar cells, the photovoltage is dictated by

FIG. 6. (Color online) Schematic summary of the band gaps of
stibnite, antimonselite, bismuthinite, and guanajuatite calculated in
this work: Kohn-Sham gaps (empty rectangles) and GW gaps (filled
rectangles) including relativistic corrections. The band gaps were
obtained by including semicore electrons and using the experimental
lattice parameters. The pink rectangles indicate the range of experi-
mental optical gaps reported in Table V.
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FIG. 7. (Color online) Ideal efficiency of nanostructured solar
cells based on semiconductors of the stibnite family. The theoretical
efficiency as a function of the band gap energy (black solid curve) is
calculated using the prescription of Ref. 74 with a loss in potential of
0.3 eV and a fill factor of 73%.

the difference between the lowest unoccupied states of the
acceptor and the highest occupied states of the donor. This
effect can be taken into account by introducing the concept of
“loss in potential,”74 which is the reduction of the photovoltage
resulting from the energy mismatch and additional losses.
Losses in potential estimated for actual devices can be as large
as ∼1 eV, and the most optimistic scenario would correspond
to losses as small as 0.3 eV.74 Figure 7 shows the theoretical
efficiency of semiconductor-sensitized solar cells based on
stibnite, antimonselite, bismuthinite, and guanajuatite, calcu-
lated using the prescription of Ref. 74 for a loss in potential of
0.3 eV. While these estimates are very crude and the projections
are possibly too optimistic, it is interesting to note that all
of these four materials cluster very near the optimum power
conversion efficiency of 20%–25%.

From Fig. 7 we infer that the four compounds studied here
are all promising candidates for nanostructured photovoltaic
applications, with antimonselite and bismuthinite slightly
superior to stibnite. In particular it cannot be excluded
that guanajuatite, even if unstable at room temperature in
bulk form, could be stabilized as a nanostructure. Given its
projected maximum efficiency in Fig. 7, it might be worthwhile
to attempt the synthesis of guanajuatite nanoparticles. In the
case of bismuthinite Refs. 8 and 9 showed that this material
does not work as a semiconductor sensitizer for TiO2, owing
to the incorrect energy-level alignment at the interface.
However it cannot be excluded that bismuthinite could still
reach the ideal efficiency when combined with an alternative
acceptor, e.g., SnO2 or ZnO.

V. CONCLUSIONS

In this work we report a systematic study of the quasi-
particle band structures of the four isostructural metal

chalcogenides stibnite (Sb2S3), antimonselite (Sb2Se3), bis-
muthinite (Bi2S3), and guanajuatite (Bi2Se3), within the GW
approximation.

In order to ensure reproducibility of our results we have
placed an emphasis on convergence tests and explored the
effects of various calculation parameters, such as the role of
semicore d electrons and lattice parameters. The inclusion of
semicore electrons in the calculations is found to modify the
band gaps by up to 0.2 eV, and the choice of experimental
vs optimized lattice parameters can lead to differences of up
to 0.3 eV in the calculated gaps. These findings indicate that
some caution should be used in discussing the theoretical band
gaps of these materials and in comparing with experiment.
Relativistic effects are found to lower the conduction bands
of all four materials. Spin-orbit coupling effects are important
in Bi2S3 and Bi2Se3, where they reduce the band gaps by
0.3–0.4 eV, while they are essentially negligible for Sb2S3

and Sb2Se3.
Our calculations indicate that all four compounds have

direct band gaps, barring indirect transitions marginally below
the direct gap. The calculated band gaps are 1.54 eV (stibnite),
1.27 eV (antimonselite), 1.42 eV (bismuthinite), and 0.91 eV
(guanajuatite). These values fall within the range of measured
optical gaps, although it must be observed that there is a
considerable scatter in the experimental data, possibly due
to different preparation conditions.

Using a modified Shockley-Queisser analysis,74 we esti-
mate the ultimate performance of solar cells based on these
compounds as light sensitizers. This analysis indicates that
all four materials have potential for high-efficiency nanos-
tructured solar cells. The highest theoretical efficiencies are
obtained for antimonselite and bismuthinite, followed closely
by stibnite and guanajuatite, the high-temperature polymorph
of the topological insulator Bi2Se3.

Future calculations should address the optical absorption
spectra of these compounds within the Bethe-Salpeter ap-
proach, in order to establish whether excitonic effects are as
small as our data appear to suggest. It will be also interesting to
extend the present study to the case of individual nanoribbons
of these metal chalcogenides, since liquid-phase exfoliation
techniques for van der Waals bonded materials are becoming
increasingly popular.75

We hope that the present study will contribute to the
ongoing research on new materials for energy applications,
and stimulate further efforts to understand and exploit these
fascinating and relatively unexplored compounds.
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