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Correlation functions in the prethermalized regime after a quantum quench of a spin chain

Aditi Mitra
Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA

(Received 12 February 2013; revised manuscript received 22 April 2013; published 9 May 2013)

Results are presented for a two-point correlation function of a spin chain after a quantum quench for an
intermediate time regime where inelastic effects are weak. A Callan-Symanzik-like equation for the correlation
function is explicitly constructed which is used to show the appearance of three distinct scaling regimes. One is
for spatial separations within a light cone, the second is for spatial separations on the light cone, and the third is
for spatial separations outside the light cone. In these three regimes, the correlation function is found to decay
with power laws with nonequilibrium exponents that differ from those in equilibrium, as well as from those
obtained from quenches in a quadratic Luttinger liquid theory. A detailed discussion is presented on how the
existence of scaling depends on the properties of the initial state before the quench.

DOI: 10.1103/PhysRevB.87.205109 PACS number(s): 75.10.Jm, 05.70.Ln, 67.85.−d, 71.10.Pm

I. INTRODUCTION

Motivated by experiments in cold atomic gases1 and
ultrafast spectroscopy of strongly correlated materials,2,3 the
nonequilibrium dynamics of interacting quantum systems has
become a topic at the forefront of research. In this context,
dynamics arising due to a quantum quench, where a system
is prepared in the ground state of an initial Hamiltonian Hi

and then time-evolved with respect to a final Hamiltonian Hf ,
is of particular interest because of its potential for addressing
several fundamental questions.4 Some of these are the mecha-
nisms and time scales for thermalization,5–11 the possibility of
an intermediate time prethermalized regime,12–15 dynamical
phase transitions associated with nonanalytic behavior during
the time evolution16,17, dynamics of integrable models,18–25

and the possibility of describing their steady state in terms of a
generalized Gibbs ensemble (GGE).26 Yet another important
question, which is related to the topic of this paper, is the
appearance of universal behavior in the dynamics with the
possibility of capturing such a behavior in a renormalization
group (RG) approach, even though the system is out of
equilibrium.

An RG approach has been actively used to study nonequi-
librium time evolution after a quench in classical field
theories.27,28 The aim of this paper is to develop an RG
approach to study nonequilibrium time evolution of correlation
functions in interacting quantum field theories. So far the
establishment of universal scaling functions in quantum
systems that are out of equilibrium either due to a sudden
quench or a “slow” quench that involves changing parameters
in a prescribed time-dependent way has been mainly explored
for exactly solvable or mean-field theories,29,30 or in numerical
studies of interacting field theories.31–33 In the present paper
on the other hand we present an analytical RG approach to
study how a correlation function evolves after a quantum
quench in an interacting field theory. In doing so a Callan-
Symanzik (CS)-like equation for a two-point correlation
function is derived which is used to explicitly show under
what conditions scaling holds out of equilibrium, and is used
to identify intrinsically nonequilibrium scaling regimes with
new exponents.

We study a quantum quench in a generic one-dimensional
spin chain H = ∑

i[S
x
i Sx

i+1 + S
y

i S
y

i+1 + �Sz
i S

z
i+1] + NNN

where NNN denotes additional next-nearest-neighbor cou-
plings. We study the dynamics in a continuum field theory
described by the quantum sine-Gordon model with the cosine
potential representing the underlying commensurate lattice
or periodic potential.34 In particular we study the time
evolution of the two-point correlation function of the staggered
spin component R(r,Tm) = (−1)r〈ψi |eiHf TmSz

0S
z
r e

−iHf Tm |ψi〉
where |ψi〉 is the ground state of the Hamiltonian Hi before
the quench, Hf is the Hamiltonian after the quench, Tm is
the time after the quench, and r is the spatial separation
between spin operators. We find that when the quench involves
the sudden switching on of the cosine potential, then in the
vicinity of the critical point where the cosine potential is a
marginal perturbation in equilibrium,35–37 out of equilibrium
three distinct scaling regimes appear for macroscopic distance
and time scales r,Tm � 1 [we have set the sound velocity
u = 1, and the distances and times are measured in units of
an ultraviolet (UV) cutoff]. One of the scaling regimes is for
spatial separations outside the light cone (r � 2Tm) where we
find R(r,Tm,r � 2Tm) ∼

√
ln Tm

r
. The second scaling regime is

for spatial separations inside the light cone r � 2Tm where we
find R(r,Tm,r � 2Tm) ∼

√
ln r
r

. The third scaling regime is for
spatial separations on the light cone r = 2Tm where we find
R(r,Tm,r = 2Tm) ∼ ln r

r
.

For more complicated quenches which involve not only a
sudden switching on of the cosine potential, but also a change
in the Luttinger interaction parameter from K0 → K , we find
that the scaling within the light cone survives, where the
correlation function is found to be R(r,Tm,r � 2Tm) ∼ (ln r)θ

r

where θ is a universal number that approaches 1/2 as K0 → K .
In addition we also find that the existence of scaling in the
other two regimes, one being outside the light cone (r � 2Tm),
and the second being on the light cone r = 2Tm, depends on
the initial wave function. In particular if the initial Luttinger
parameter K0 is such that the cosine potential is a relevant or
marginal perturbation, scaling holds on the light cone, whereas
scaling on the light cone is violated when the cosine potential
is an irrelevant perturbation for the initial state.

This paper is organized as follows. In Sec. II we introduce
the model, establish notation, and also briefly summarize the
results. The rest of the paper goes into more detail of how these
results are obtained. In Sec. III we briefly present results for
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an interaction quench in the quadratic theory (the Luttinger
liquid) in the language of Keldysh Green’s functions. These
results will be useful for later sections when we perform
perturbation theory in the cosine potential. In Sec. IV, we
perform perturbation theory in the cosine potential and derive
the β function to two loop. In Sec. V we present results for the
correlation function within perturbation theory to leading order
in the cosine potential. These results then set the stage for doing
renormalization improved perturbation theory which will be
explicitly carried out in Sec. VI where a CS-like differential
equation for the correlation function is derived. Results of the
solution of the CS equation are presented in Sec. VII for the
case where only the cosine or lattice potential is suddenly
switched on, while results for the correlation function for a
simultaneous lattice and interaction quench are presented in
Sec. VIII. Finally in Sec. IX we present our conclusions.

II. MODEL AND A BRIEF DISCUSSION OF RESULTS

We study a quantum quench in a generic one-dimensional
(1D) spin chain,

H =
∑

i

[
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

]+ NNN, (1)

where NNN denotes additional next-nearest-neighbor cou-
plings. If the NNN couplings are weak in comparison to
the NN couplings, the spin chain has two phases: a gapless
phase with linearly dispersing spin waves at long wavelengths,
and a gapped antiferromagnetic Ising phase. In equilibrium
and zero temperature the properties of the spin chain in its
gapless phase are captured very well by a continuum theory
that retains only the relevant operators, namely the Luttinger
liquid.34 In contrast, the effect of irrelevant operators can be
important both at finite temperature38–43 as well as out of
equilibrium following a quench.8,44 In this paper we study
the dynamics of the spin chain in a continuum theory by
retaining the effect of the leading irrelevant operator. For the
spin chain in its gapless phase, the leading irrelevant operator
is a commensurate periodic or lattice potential which gives
rise to umpklapp or backscattering. In this paper we study the
effect of this term on the dynamics; we expect its effect will
dominate over those of other irrelevant terms such as band
curvature.

Specifically we study a quench where initially the system
is in the ground state of a Luttinger liquid,

Hi = u0

2π

∫
dx

{
K0 [π�(x)]2 + 1

K0
[∂xφ(x)]2

}
. (2)

−∂xφ/π represents the density, � is the variable canonically
conjugate to φ, K0 is the dimensionless interaction parameter,
and u0 is the velocity of the sound modes. The system is driven
out of equilibrium via an interaction quench at t = 0 from
K0 → K , with the leading irrelevant operator corresponding to
a commensurate lattice or periodic potential Vsg also switched
on suddenly, at the same time as the interaction quench.
This triggers nontrivial time evolution from t > 0 due to the
quantum sine-Gordon model,

Hf = Hf 0 + Vsg, (3)

g

δ
gapless phase

gapped phase

0

FIG. 1. Ground-state phase diagram of the quantum sine-Gordon
model. A critical line separates a gapless phase where the cosine term
is irrelevant from a gapped phase where the cosine term is relevant.
The critical line is located at δ = 2πg, where δ = Keq − 2, with

Keq = γ 2K

4 .

where

Hf 0 = u

2π

∫
dx

{
K[π�(x)]2 + 1

K
[∂xφ(x)]2

}
(4)

Vsg = −gu

α2

∫
dx cos(γφ). (5)

Above,


 = u

α
(6)

is a short-distance UV cutoff, g is the strength of the
commensurate periodic potential. Note that both for the NN
spin chain as well as the NNN spin chain, the low-energy
theory is represented by Hf with γ = 4. However, the precise
values of the Luttinger parameter K and the strength of the
cosine potential g depends on the microscopic details. For
example, the point K = 1,g = 0 corresponds to the exactly
solvable NN XX chain. Switching on NNN interactions can
result in parameters where K 	= 1 but g = 0.45

The versatility of Hf is that it equally well applies to
interacting bosons in a commensurate periodic potential.46 For
this case, γ = 2, while the point K = 1 corresponds to NN
hard-core bosons or the Tonks-Girardeau gas. In this paper, in
all our analytic results, we keep γ general so that the obtained
results may be applied both to the spin chain as well as to
bosons in a commensurate periodic potential.

The ground-state phase diagram of the quantum sine-
Gordon model is shown in Fig. 1. A critical line defined by
δ = 2πg, where δ = Keq − 2, with Keq = γ 2K

4 , separates a
gapped phase where Vsg is a relevant perturbation, from a
gapless phase, where Vsg is an irrelevant perturbation. For the
spin chain the gapped phase corresponds to the Ising phase,
while for interacting bosons in a lattice, the gapped phase is
the Mott insulator.

In this paper we study the time evolution of the equal time
two-point correlation function of the staggered spin component
R(r,Tm) = (−1)r〈Sz

0(Tm)Sz
r (Tm)〉 where Tm is the time after the

quench. In the continuum, this correlator is given by47

R(x1Tm,x2Tm) = 4

〈
cos

(
γφ(x1Tm)

2

)
cos

(
γφ(x2Tm)

2

)〉
.

(7)
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In equilibrium, and in the gapless phase, but in the vicinity
of the critical line where Vsg is a marginal perturbation, loga-
rithmic corrections arise. In particular R near the equilibrium
critical point behaves as follows:35–37

Req(r) =
√

ln r

r
+ O

(
1

r2

)
, (8)

where r is the magnitude of the spatial separation x1 − x2. The
aim of this paper is to determine how the correlator R evolves
after a quantum quench. We will study R in the regime where
Vsg is irrelevant or marginally irrelevant, where the meaning
of these terms in a nonequilibrium situation will be clarified
below.

We now briefly outline how R is calculated for the
nonequilibrium problem. Denoting Ô(xt) = 2 cos( γφ(xt)

2 ), R

may be written as a Keldysh path integral representing the
time evolution from the initial pure state |ψi〉 (hence an initial
density matrix ρ = |ψi〉〈ψi |) corresponding to the ground state
of Hi ,

R(x1Tm,x2Tm) = T r[ρ(Tm)O(x10)O(x20)] (9)

which may be written as

R(x1Tm,x2Tm) = Tr[e−iHf Tm |ψi〉〈ψi |eiHf TmÔ(x1)Ô(x2)]

=
∫

D[φcl,φq]ei(S0+Ssg)ÔI (x1Tm)ÔI (x2Tm),

(10)

where ÔI is the operator in the interaction representation of
Hf 0, S0 describes the nonequilibrium Luttinger liquid (g = 0),

S0 = 1

2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ Tm

0
dt1

∫ Tm

0
dt2(φcl(1)φq(1))

×
(

0 G−1
A (1,2)

G−1
R (1,2) − [G−1

R GKG−1
A

]
(1,2)

)(
φcl(2)

φq(2)

)

(11)

and

Ssg = gu

α2

∫ ∞

−∞
dx1

∫ Tm

0
dt1[cos{γφ−(1)} − cos{γφ+(1)}]

(12)

Above, 1(2) = (x1(2),t1(2)), φcl,q = φ−±φ+√
2

with −/+ repre-
senting fields that are time/antitime ordered on the Keldysh
contour.48

We derive a CS-like differential equation for R by splitting
the fields φ into slow and fast fields φ = φ< + φ> where
the fast fields have a large weight at short wavelengths,
and therefore oscillate rapidly in time. We integrate out
the fast fields, and rescale the cutoff, position, and time.
Such a procedure within the real-time Keldysh approach has
been employed for the quantum sine-Gordon model both
for steady-state8,9,33 and transient behavior,17 where in each
case the β function was derived. Here we generalize this
approach to the study of a two-point correlation function by
performing a microscopic derivation of a CS-like differential
equation for the correlation function. This approach reveals
the conditions under which scaling holds after a quantum
quench, and identifies different scaling regimes. So far such

a treatment has only been employed for quenches in classical
field theories where intermediate time nonequilibrium scaling
regimes with new exponents have been identified.27,28 Here we
will show that similar new nonequilibrium scaling regimes can
arise for quantum quenches of 1D systems. While interaction
quenches in Luttinger liquids and related quadratic theories
have been studied extensively,18,20,22,49–53 and predict new
nonequilibrium exponents as well, in this paper we show that
these exponents are further modified by the presence of the
commensurate periodic potential Vsg. For example when Vsg

is marginal, as briefly stated in the introduction, Vsg gives rise
to logarithmic corrections.

In a global quench like the one we study, the system is
translationally invariant in space, so that R(x1Tm,x2Tm) =
R(r = x1 − x2,Tm). We define the following three exponents
which play an important role in the dynamics,

Keq = γ 2K

4
; Kneq = γ 2

8
K0

(
1 + K2

K2
0

)
,

(13)

Ktr = γ 2

8
K0

(
1 − K2

K2
0

)
.

Keq governs the power-law decay of the correlator R in
the ground state of Hf 0 (i.e., the Luttinger liquid with
interaction parameter K0 and Vsg = 0), Kneq determines the
power-law decay of R at long times after an interaction
quench in the Luttinger liquid (Vsg = 0),8,49 Ktr determines
the crossover from a short-time behavior determined primarily
by the initial Luttinger parameter Kneq + Ktr = γ 2K0

4 , to the
long-time behavior determined by Kneq.17

One of the results of our study is that the dynamics of equal-
time correlation functions after a quench has qualitatively
different features in the three regimes shown in Fig. 2. One is
the region outside the light cone where the spatial separation
r is much larger than the time after the quench (r � 2Tm

setting the velocity u = 1); here the behavior of the correlator
is primarily determined by the initial wave function. The
second is an intrinsically nonequilibrium regime where the
separation r lies on the light cone (r = 2Tm) and where
we will identify universal behavior of the correlator R with
new exponents. The third is a nonequilibrium steady-state
regime where the spatial separation lies within the light cone

mT

2Tmr <

2Tmr =

2Tmr >

r

FIG. 2. The equal-time correlator shows distinctly different be-
havior for the following three cases: spatial separations outside the
light cone (r > 2Tm), spatial separations on the light cone (r = 2Tm),
and spatial separations within the light cone (r < 2Tm). The present
paper gives results for correlation functions in these three regimes
under the additional constraint that Tm < 1/η where η is an inelastic
scattering rate.
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(r � 2Tm). Here R is independent of time and shows scaling
behavior in position with new nonequilibrium exponents which
differ from those in the first two regimes just discussed. This
qualitative change in the behavior of the correlators at r = 2Tm

is known as the “horizon effect”54 where at time Tm = r/2
left- and right-moving excitations originating from the same
spatial region reach the two local observables, thus maximally
entangling them.

The presence of these three regimes is already apparent in
the behavior of R for an interaction quench in a Luttinger liquid
(Vsg = 0). Here (writing r,Tm in units of 
) for r,Tm � 1 and
far from the light cone (|r ± 2Tm| � 1) one finds17,49

R(0)(r,Tm,g = 0) =
[(

1

r2

)γ 2K0/4(∣∣∣∣ r2 − (2Tm)2

r2(2Tm)2

∣∣∣∣
)−Ktr

]1/4

.

(14)

R shows the “horizon effect” where outside the light cone
r � 2Tm, the correlator depends only on the initial wave
function (and hence the initial Luttinger parameter K0) albeit
with a time-dependent prefactor T

Ktr/2
m . However, within the

light cone r � 2Tm, the correlator reaches a steady state
characterized by the nonequilibrium exponent Kneq. Moreover,
on the light cone the correlator is found to decay as R(0)(r =
2Tm) ∼ r−(γ 2K0/8)+3(Ktr/4). When Vsg 	= 0, using RG improved
perturbation theory, we will show that this distinct behavior of
R outside, on, and inside the light cone survives with exponents
that differ from the ones above. It is interesting to contrast
this behavior with that of a correlator in a quench from an
initially gapped state.24,54 For the latter the horizon effect is
more pronounced as R is exponentially suppressed in position
outside the light cone. In contrast for our case, where the
quench is from an initially gapless state, the change in the
behavior of R from outside the light cone to inside is less
dramatic as the correlators both outside the light cone and
inside decay as power laws in position.

Before we give results for the correlator, we first discuss
the β function obtained from gradually lowering the cutoff
from the bare value of 
0 to 
0/l. The actual derivation is
presented in Sec. IV. Integrating out the fast modes generates
corrections not only to the Luttinger liquid parameters of
the Hamiltonian after the quench (Hf 0), but also generates
new terms whose physical meaning is inelastic scattering.
Moreover the β function depends in general on the time after
the quench because the strength of the corrections arising due
to the commensurate potential together with the effect of the
K0 → K quench depend on this time. Expressing time in units
of the cutoff, the β function is found to be17

dg

d ln l
= g

[
2 −

(
Kneq + Ktr

1 + 4T 2
m

)]
, (15)

dK−1

d ln l
= πg2γ 2

4
IK (Tm), (16)

dη

d ln l
= η + πg2γ 2K

2
Iη(Tm), (17)

d(ηTeff)

d ln l
= 2ηTeff + πg2γ 2K

4
ITeff (Tm), (18)

dTm

d ln l
= −Tm. (19)

Above Tm is the rescaled time after the quench where the
rescaling with the changing cutoff in Eq. (19) is similar to the
rescaling of position or frequency, the latter applicable for a
system in steady state. Moreover Eq. (19) implies that Tm is
related to the bare physical time Tm0 as Tm = Tm0

l
. This relation

suggests that the time after the quench qualitatively acts as an
inverse UV cutoff so that the larger is the time after the quench,
the more important is the role of the long-wavelength modes
on the dynamics.55

Equation (16) represents the usual corrections to the
Luttinger parameter that arise even in the equilibrium theory.
Equation (15) shows that there is a crossover from a short-time
regime where the scaling dimension of Vsg is Kneq + Ktr −
2 = γ 2K0

4 − 2 and therefore depends on the initial Luttinger
parameter K0, to a long-time steady-state regime where the
periodic potential Vsg has a nonequilibrium scaling dimension
Kneq − 2. In the ground state of Hf , the scaling dimension of
Vsg is Keq − 2, and since Keq < Kneq, the periodic potential at
long times is always more irrelevant for the nonequilibrium
problem. Thus the location of the critical point at steady
state (Tm = ∞) shifts from Keq = 2 to Kneq = 2. Physically
this is because the interaction quench K0 → K gives rise to
a highly excited state of bosons which cannot be localized
by the periodic potential as easily as when they are in the
zero-temperature ground state. A consequence of the change
in the scaling dimension with time from Kneq + Ktr − 2 to
Kneq − 2 is a qualitative change in the two-point correlation
function from outside the light cone to inside the light cone,
an effect which will be discussed in detail later.

Equations (17) and (18) show that the notion of relevance
or irrelevance should not be taken literally out of equilibrium
as even when the cosine potential is irrelevant, it can cause
the generation of new terms after a quantum quench. These
terms are an inelastic scattering rate η which can be identified
by the generation of quadratic corrections to the Luttinger
liquid theory of the form η(Tm)φq∂Tm

φcl(Tm). The second
new term is a noise for the long-wavelength modes of
strength η(Tm)Teff(Tm) which corresponds to the generation
of corrections to the Luttinger liquid theory of the form
η(Tm)Teff(Tm)φ2

q . Note that for Tm = 0, all the corrections
IK,η,Teff vanish as the effect of Vsg vanishes, while for Tm � 1,
IK,η,Teff take steady-state values implying that the dissipation
and noise reach steady-state values. Thus at long times, the
low-energy effective theory is a classical theory characterized
by an effective-temperature Teff , and a classical fluctuation-
dissipation theorem is obeyed with a dissipation strength
of8 η.

An interaction quench in a Luttinger liquid (Vsg = 0)
generates a highly nonequilibrium occupation of the bosonic
modes which does not relax. However, in the presence of Vsg,
the occupation probability of these bosonic modes is no longer
conserved, and a nonzero η represents the rate at which the
occupation probability of the long-wavelength modes relax.
Here by η we imply the dissipation strength at long times
(Tm � 1). Thus 1/η is a natural time scale associated with
the quench, which is the time after which inelastic scattering
events become strong and cause a significant deviation of the
bosonic occupation probabilities. Thus the β function implies
that the dynamics after a quench has three regimes shown
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mT0
universal prethermalized regime thermal regime

1/Λ 1/η

FIG. 3. The dynamics after a quench is characterized by three
different regimes: a short-time regime that depends on microscopic
parameters (Tm � 1/
), an intermediate-time regime (1/
 � Tm �
1/η) where inelastic effects are weak and the correlator shows
universal scaling behavior, and a long-time thermal regime (Tm �
1/η) where inelastic-scattering effects are strong and cause the system
to thermalize.

in Fig. 3. A short-time regime Tm � 1 where the dynamics
depends on microscopic details and can be easily treated
within perturbation theory. The second is an intermediate-time
prethermalized regime where the time is long as compared
to microscopic time scales, while short as compared to
the dissipation rate 1 � Tm � 1/η. In this regime inelastic
effects are weak. Using RG improved perturbation theory,
we will show that the two-point correlation function R

shows universal behavior in this intermediate-time regime,
where the precise universal behavior also depends on the
magnitude of the spatial separation relative to the time after
the quench (horizon effect). Finally there is a third regime
which we label the thermal regime Tm � 1/η where inelastic
effects are strong and lead to eventual thermalization. For
small quenches (|K0 − K| � 1), η ∼ g2(K0 − K)4 � 1,9 the
intermediate-time prethermalized regime can be quite large.
In this paper we will give results for the correlation function
in this intermediate-time regime where universal dynamics
characterized by a CS-like differential equation will emerge.
The dynamics in the thermal regime is also interesting to
explore, and will be discussed elsewhere.

Note that in the nonequilibrium problem, the term irrelevant
simply implies that the strength of the perturbation decreases
under RG transformations so that perturbation theory in g

is valid. In addition, the meaning of the leading irrelevant
operator in the nonequilibrium problem is the same as in
equilibrium in that it is the coupling constant that decreases
under RG the slowest. For example, under RG (and at long
times), the coupling strength g for the potential cos(γφ),
according to Eq. (15), decreases as l2−Kneq . This is a slower
decrease than that for the perturbation of the form cos(2γφ)
which decreases as l2−4Kneq . Under RG transformation, the
coupling constant for the band curvature (∂xφ)3 will also
decrease faster than that of Vsg for the values of Kneq that we are
concerned with in this paper. Thus while these other irrelevant
terms will also give rise to additional inelastic scattering, these
will only be small corrections to the inelastic-scattering rate
already produced by Vsg.

Equation (15) shows that in the prethermalized regime,
there is a crossover from an intermediate time dynamics where
the physics is determined by the initial wave function (and
hence the initial Luttinger parameter K0) and a long-time time
dynamics determined by Kneq. This can result in a situation
where perturbation theory in g is violated at intermediate times
when γ 2K0

4 < 2, i.e., when g is a relevant perturbation in the
initial state. In Secs. V and VIII we show how this happens and
what it implies. Throughout this paper we will present results

close to the critical point defined by

Kneq = 2 + δ, ∀ 0 < δ � 1, (20)

where Vsg is marginal and can give rise to logarithmic
corrections to scaling.

We now outline how the CS-like differential equation is
derived; this is a summary of the more detailed calculations
presented in Sec. VI. We derive the CS-like differential
equation for R by integrating out fast modes gradually and
in the process lowering the cutoff from 
 → 
/l = 
 − d
.
This leads to a relation of the form

R = R<

[
1 − d




(· · · )

]
, (21)

where R< is the correlator for the slow modes while R is
the correlator for all the modes. To get an idea for what to
expect, let us carry out this exercise for the quadratic theory
after the quench (g = 0). Here for time Tm after the quench
the following relation between the correlator for the full and
the slow modes emerges:

R(0)(r,Tm) = R(0)
< (r,Tm)

[
1 − d




γan,0(r,Tm)

]
. (22)

The above expression implies the following differential equa-
tion: [ ∂

∂ ln l
− γan,0(r,Tm)]R(0)( r
0

l
, Tm0
0

l
) = 0, where (in units

of 
)

γan,0(r,Tm) = 1

2

[
Kneq

r2

1 + r2
+ Ktr

1 + (2Tm)2

− Ktr

2

{
1

1 + (2Tm + r)2
+ 1

1 + (2Tm − r)2

}]
.

(23)

Equation (23) shows that there are three scaling limits where
γan,0 becomes independent of r,Tm. One is within the light cone
2Tm � r � 1 where γan,0 = Kneq/2. The second is outside the
light cone r � 2Tm � 1 where also γan,0 = Kneq/2, while
the third is on the light cone r = 2Tm,r � 1 where γan,0 =
(Kneq − Ktr/2)/2. We now discuss the correction to R to next
order in g where logarithmic corrections arise in the vicinity
of the critical point.

At next order in the cosine potential [at O(g)], in terms of
slow and fast fields, we find

R(1)(r,Tm)

= R(1)
< (r,Tm)

[
1 + 2

d




− 2Kneq

d




+ γan,0(r,Tm)

d





]

+ 2gπIC(r,Tm)
d




R0

<(r,t), (24)

where IC is discussed below. To quadratic order, the correction
R(2) leads to the β function which has been discussed above.
Equations (22), (24), and the β function imply the following
CS-like differential equation for R:[

∂

∂ ln l
+ β(gi)

∂

∂gi

− γan,0 + 2πgIC

]

×R

[
r
0

l
,

0Tm0

l
,gi(l)

]
= 0; (25)
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above Tm0 is the time after the quench, while r is the spatial
separation between the local operators. gi = g,δ,η,Teff , are
coupling constants while γan,0 − 2πgIC is the anomalous
scaling dimension of the correlator. For macroscopic lengths
and times where r
0

l
� 1, Tm0
0

l
� 1, IC,γan,0 are constants

independent of position and time.
We make a simplifying assumption of being in the prether-

malized regime 1 � Tm0 � 1/η. Here the new coupling
constants related to dissipation and noise may be neglected
and the β function becomes much simpler. On integrating
Eq. (25) up to l∗ = 
0min(r,Tm0), one may relate the correlator
at long times and distances to the correlator at short times
and distances and a renormalized coupling gi(l∗), where
since g(l∗) � 1, the latter may be evaluated readily within
perturbation theory. The anomalous scaling dimension γan,0 −
2πgIC takes different values in the three regimes shown in
Fig. 2, and is responsible for the distinctly different scaling
behavior outside, on, and inside the light cone. We now present
results for the correlation function for two cases: one is for
the pure-lattice quench (K0 = K,g 	= 0), and the second is a
simultaneous lattice and interaction quench (K0 	= K,g 	= 0).

Pure lattice quench. This corresponds to K0 = K or Kneq =
Keq, but a periodic potential of strength g switched on suddenly
at Tm = 0. We are interested in the physics in the vicinity of the
critical point where Keq = Kneq = 2 + δ ∀ 0 < δ � 1. Here
we find

IC(r,Tm) = r2 + 1

4 + r2
−
(

1 + r2

1 + T 2
m

)

×
[

r2 − 4T 2
m + 4 − 8T 2

m{
r2 − 4T 2

m + 4
}2 + 64T 2

m

]
. (26)

Note that IC(Tm = 0) = 0 as the lattice has not had time to
affect the correlator. Equation (26) shows the appearance of
scaling in three cases: one is outside the light cone, where

IC(r,Tm � 1,2Tm � r) = 1 + O
(

1

r2
,

1

T 2
m

)
; (27)

the second is within the light cone,

IC(r,Tm � 1,2Tm � r) = 1 + O
(

1

r2
,
r2

T 4
m

)
; (28)

and the third is on the light cone,

IC(r,Tm � 1,2Tm = r) = 3

2
+ O

(
1

r2

)
. (29)

Equations (23) and (26) also show that scaling is valid until
(restoring units) l ∼ min [
0r,
0Tm]. In the scaling limit,
IK in Eq. (16) is IK (Tm � 1) = π [1 − 7

8T 2
m

+ · · · ]. Thus the
solution of the CS equation (25) in the three scaling limits
where IC,γan,0,IK are constants in time and position is

R(
0r,
0Tm0,g0)

= e
− ∫ g(l)

g0
dg′[γan(g′)/β(g′)]

R

(
r
0

l
,
Tm0
0

l
,g(l)

)
, (30)

where γan = 1 + δ
2 − 2πgIC and the β function is dg

d ln l
=

−gδ, dδ
d ln l

= −(2πg)2. Note that the critical point correspond-
ing to the S = 1/2 Heisenberg chain corresponds to δ = 2πg.
Equation (30) is one of the main results of this paper. It

shows the existence of a scaling regime where the correlator
at large times or distances is related to the correlator at
shorter scales (r/ l,Tm0/l) and renormalized couplings g(l),
where since g(l � 1) � 1, the latter may be readily evaluated
within perturbation theory. We first discuss the behavior of the
correlator R at the critical point δ = 2πg, and then discuss its
behavior for slight deviations from this critical point such that
δ > 2πg.

The correlation function outside the light cone is deter-
mined by setting l = 
0Tm0 in Eq. (30), and using R( r

2Tm0
�

1,l = 
0Tm0,g = 0) ∼ Tm0
r

(see Sec. III). At the critical point
δ = 2πg this gives

R (r � 2Tm0) ∼
√

ln Tm0

r
. (31)

The correlation function within and inside the light cone is
obtained by setting l = 
0r in Eq. (30), Moreover noting that
R
(
l = r
0,

Tm0
r

� 1,g = 0
) ∼ O(1) this gives the following

correlator inside the light cone at the critical point:

R(r,2Tm0 � r) ∼
√

ln r

r
. (32)

In a similar way, using R(l = r
0,
2Tm0

r
= 1,g = 0) ∼ O(1),

the correlator on the light cone is found to be

R(r = 2Tm0) = ln r

r
. (33)

Equations (31)–(33) are the main results for the correlator
for a pure lattice quench at the critical point δ = 2πg.
Thus in the prethermalized regime the result Eq. (32) within
the light cone for a pure lattice quench is the same as
in the ground state of the Heisenberg chain.35–37 In contrast,
the quench leads to qualitatively new scaling behavior for
spatial separations outside the light cone [Eq. (31)] and on
the light cone [Eq. (33)]. Note that for a pure lattice quench,
no dissipative effects are generated to O(g2),9 extending the
regime of validity of the prethermalized regime.

For slight deviations δ > 2πg from the critical point, we
obtain the following correlator outside the light cone:

R (
0r,
0Tm0,g0,r � 2Tm0)

∼
(

1

r

)1+δ/2

(Tm0)δ/2−(
√

δ2−(2πg)2)/2 . (34)

Thus the correlator outside the light cone is primarily the one in
the initial state with a time-dependent prefactor which depends
on the strength g of the periodic potential. Eventually this time
dependence drops off at very long times, with the correlator
taking the following steady-state value inside the light cone:

R (
0r,
0Tm0,g0,r � 2Tm0) ∼ 1

r1+(1/2)
√

δ2−(2πg)2
. (35)

Unlike the case of the dynamics on the critical point, for
slight deviations from the critical point δ > 2πg, the leading
asymptote for the correlator on and inside the light cone is
the same. The expressions for the correlators in Eqs. (34)
and (35) are valid for (

√
δ2 − (2πg)2) ln (min[Tm0,r]) � 1,

whereas the universal logarithmic corrections discussed before
this in Eqs. (31)–(33) are valid for the opposite case of
(
√

δ2 − (2πg)2) ln (min[Tm0,r]) � 1.
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FIG. 4. Plot of IC for a simultaneous lattice and interaction
quench for points within the light cone and near the critical point

Kneq = 2 where Keq = γ 2K0
4

√
16

γ 2K0
− 1.

Simultaneous lattice and interaction quench. Now we turn
to the case where both the Luttinger interaction parameter
and the cosine potential are simultaneously quenched at
Tm = 0. Moreover we are interested in the physics close to the
nonequilibrium critical point defined by Kneq = 2 + δ,∀ 0 <

δ � 1. This quench corresponds to a final Hamiltonian whose
ground state can be in the gapped phase. However, due to
the quench, since Kneq > Keq, the periodic potential is more
irrelevant (though it can give rise to inelastic scattering). Thus
perturbation theory in the cosine potential may be valid for
the nonequilibrium problem, even though it may not hold for
determining the properties of the ground state.

For this general quench we find that IK in
Eq. (16) is IK (Tm,Kneq = 2) = π {c1 − c2 sin[π (Keq − Kneq)]
ln(min[Tm,1/η])} where c1,2 areO(1) and depend on the initial
Luttinger parameter K0. When K0 = K , c1 = 1. As before,
we are interested in the prethermalized regime where 1 �
Tm < 1/η. We will also assume a small quench where |Keq −
Kneq| ln Tm � 1. In this case, IK � πc1 is a constant in time.
The β function in the vicinity of Kneq = 2 + δ becomes dg

d ln l
=

−gδ, dδ
d ln l

= −g2B2, where B = π
√

c1
γ 2K0

4 ( 16
γ 2K0

− 1)3/4. In
addition, IC in Eq. (25) becomes a universal function of the
initial Luttinger parameter K0 and is plotted in Fig. 4.

Using Eq. (31) the correlation function inside the light cone
is found to be

R (
0r,r � 2Tm0 � 1/η,g0) � 1

(
0r)1+A/2

1√
1 − (r
0)−2A

[
1 − (
0r)−A

1 + (
0r)−A

]2πIC/B

, (36)

where A =
√

δ2 − g2B2. Thus for an interaction and lattice
quench, and for A ln r � 1, the correlators decay as a power
law with exponent (1 + A/2). This exponent is not the same as
in an interaction quench in a quadratic Luttinger liquid theory,
which would have been 1 + δ/2. Thus the lattice, even though
irrelevant, modifies the decay exponent. In the vicinity of the
nonequilibrium critical point A → 0, logarithmic corrections
are obtained for A � A ln r � 1, where

R(2Tm0 � r) ∼ 1

r
(ln r)2πIC/B−1/2 . (37)

This steady-state behavior in the vicinity of the nonequilibrium
critical point is significantly different from that near the
equilibrium critical point, which is35–37

√
ln r/r .

Let us briefly discuss scaling in the other two regimes: one
is on the light cone and the other is outside the lightcone. For
the former we find

IC(r = 2Tm0) ∼ rKtr/2, (38)

where Ktr = γ 2K0

4 − 2. Thus scaling is recovered only if Ktr �
0 where IC → 0 or to a constant at large distances, whereas
for Ktr > 0 scaling is lost as IC grows with distance, only to
be cut off at r ∼ 1/η where we expect the correlators to begin
decaying in a thermal manner.

In contrast to the above, outside the light cone we find

IC(r � 2Tm0) ∼
(

2Tm0

r

)Ktr

. (39)

Here when Ktr � 0, scaling holds outside the light cone as
IC is either a constant or decays to zero for sufficiently large
distances. On the other hand when Ktr < 0, IC grows with
distance. This behavior is opposite to what one finds on the
light cone, and is consistent with the fact that the behavior of
the correlator outside the light cone is primarily determined
by the initial wave function. Thus if the cosine potential is
a relevant perturbation in the initial state Ktr < 0, then the
perturbative corrections are large indicating that perturbation
theory may not be valid at large distances outside the light
cone, even though it may be valid inside the light cone. This
behavior is also consistent with the crossover in time of the
scaling dimension of Vsg discussed earlier in this section.

The remaining part of the paper outlines how the above
results were obtained. In Sec. III we reintroduce the model
and briefly present results for an interaction quench in the
quadratic theory (the Luttinger liquid) in the language of
Keldysh Green’s functions. These results will be used in
later sections when we do perturbation theory in the cosine
potential. In Sec. IV, we do perturbation theory in the cosine
potential and derive the β function to two loops. In Sec. V we
present results for the correlation function within perturbation
theory to leading order in the cosine potential. These results
set the stage for doing renormalization improved perturbation
theory which will be explicitly carried out in Sec. VI where
the CS equation for the correlation function is derived. Results
of solution of the CS equation are presented in Sec. VII for
the case where only the lattice potential is quenched, while
results for the correlation function for a simultaneous lattice
and interaction quench are presented in Sec. VIII. Finally in
Sec. IX we summarize our results and discuss open questions.

III. MODEL AND GREEN’S FUNCTIONS FOR THE
QUADRATIC THEORY

In order to study quench dynamics of the spin chain, we
employ a bosonization prescription where

φ(x) = −(NR + NL)
πx

L
− iπ

L

∑
p 	=0

(
L|p|
2π

)1/2

× 1

p
e−α|p|/2−ipx(b†p + b−p), (40)
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θ (x) = (NR − NL)
πx

L
+ iπ

L

∑
p 	=0

(
L|p|
2π

)1/2

× 1

|p|e
−α|p|/2−ipx(b†p − b−p). (41)

We choose the initial Hamiltonian for t � 0 to be a
Luttinger liquid,

Hi = u0

2π

∫
dx

[
K0{π�(x)}2 + 1

K0
{∂xφ(x)}2

]
=
∑
p 	=0

u0|p|η†
pηp, (42)

while the time evolution from t > 0 is due to the quantum
sine-Gordon model,

Hf = Hf 0 + Vsg, (43)

Hf 0 = u

2π

∫
dx

[
K{π�(x)}2 + 1

K
{∂xφ(x)}2

]
=
∑
p 	=0

u|p|γ †
pγp, (44)

Vsg = −gu

α2

∫
dx cos(γφ). (45)

We will make the assumption that the quench connects the
same zero-mode sectors of the initial and final Hamiltonian.
In this case, the zero modes corresponding to the first terms in
Eqs. (40) and (41) will not play a role in the dynamics.

We study a quench that preserves Galilean invariance,
i.e., u = vF /K,u0 = vF /K0. At the microscopic level, this
corresponds to a quench in the Luttinger model where the g2

and g4 interactions equal each other for both the initial and final
Hamiltonians (g2i = g4i ,g2f = g4f ).34 While this simplifies
the algebra, relaxing this requirement is straightforward, and
does not change the results in a qualitative way. The three
bosonic operators b,η,γ are related by a linear Bogoliubov
transformation,(

bp

b
†
−p

)
=
(

cosh β − sinh β

− sinh β cosh β

)(
γp

γ
†
−p

)
, (46)

(
bp

b
†
−p

)
=
(

cosh β0 − sinh β0

− sinh β0 cosh β0

)(
ηp

η
†
−p

)
, (47)

where e−2β0 = K0, e−2β = K .
Let us define the functions

f (pt) = cos(u|p|t) cosh β0

− i sin(u|p|t) cosh(2β − β0), (48)

g(pt) = cos(u|p|t) sinh β0

+ i sin(u|p|t) sinh(2β − β0), (49)

which determine the time evolution after the quench (t > 0)
for the quadratic theory (g = 0),

b†p(t) + b−p(t) = (f ∗(pt) − g(pt))η†
p(0)

+ (f (pt) − g∗(pt))η−p(0), (50)

b†p(t) − b−p(t) = (f ∗(pt) + g(pt))η†
p(0)

−(f (pt) + g∗(pt))η−p(0). (51)

Since the system is out of equilibrium, it is convenient to
study the problem using the Keldysh formalism. The Keldysh
action is

ZK = Tr[ρ(t)] = Tr[e−iHf t |ψi〉〈ψi |eiHf t ] (52)

=
∫

D[φcl,φq]ei(S0+Ssg), (53)

where S0 is the quadratic part which describes the physics in
the absence of the periodic potential which corresponds to an
interaction quench in a Luttinger liquid. In particular at a time
t after the quench (note that the fields φ are real),

S0 = 1

2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ t

0
dt1

∫ t

0
dt2(φcl(1)φq(1))

×
(

0 G−1
A (1,2)

G−1
R (1,2) − [G−1

R GKG−1
A

]
(1,2)

)(
φcl(2)

φq(2)

)
,

(54)

where 1 = (x1,t1), 2 = (x2,t2), and

φcl,q = φ− ± φ+√
2

, (55)

where GR,A,K are the retarded, advanced, and Keldysh Green’s
functions, with

[GR,A(1,2)]−1

= −δ(x1 − x2)δ(t1 − t2)
1

πKu

[
∂2
t1±iδ − u2∂2

x1

]
(56)

and

−i

〈(
φcl(1)

φq(1)

)
(φcl(2)φq(2))

〉
=
(

GK (1,2) GR(1,2)

GA(1,2) 0

)
,

(57)

whereas

Ssg = gu

α2

∫ ∞

−∞
dx

∫ t

0
dt1

× [cos{γφ−(1)} − cos{γφ+(1)}]. (58)

For the quadratic theory after the quench,

GR(x1t1,x2t2)

= −iθ (t1 − t2)〈[φ(x1t1),φ(x2t2)]〉
= −K

2
θ (t1 − t2)

∑
ε=±

tan−1

(
u(t1 − t2) + ε(x1 − x2)

α

)
,

(59)

GA(x1t1,x2t2)

= iθ (t1 − t2)〈[φ(x1t1),φ(x2t2)]

= K

2
θ (t2 − t1)

∑
ε=±

tan−1

(
u(t1 − t2) + ε(x1 − x2)

α

)
,

(60)
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and

GK (x1t1,x2t2) = −i〈{φ(x1t1),φ(x2t2)}〉 (61)

= −i
K0

4

(
1 + K2

K2
0

)∫ ∞

0

dp

p
e−αp

×
∑
ε=±

cos[up(t1 − t2) + εp(x1 − x2)]

− i
K0

4

(
1 − K2

K2
0

)∫ ∞

0

dp

p
e−αp

×
∑
ε=±

cos[up(t1 + t2) + εp(x1 − x2)].

(62)

Note that GK is logarithmically divergent, but in all phys-
ical quantities it is always the combination GK (1,2) −
1
2GK (1,1) − 1

2GK (2,2) that appears, which is finite.
Let us define

Cab,m(x1t1,x2t2)

= 〈eimγφa (x1t1)e−imγφb(x2t2)〉
= e−(γ 2m2/2)[iGK (11)/2+iGK (22)/2−iGK (12)+iaGA(1,2)+ibGR (12)],

(63)

where

−γ 2

2

[
iGK (1,1)

2
+ iGK (2,2)

2
− iGK (1,2)

]

= −Kneq

∑
ε=±

[
ln

√
α2 + {u(t1 − t2) + ε(x1 − x2)}2

α

]

−Ktr

[
ln

√
α2 + {u(t1 + t2) + (x1 − x2)}2

α2 + (2ut1)2

+ ln

√
α2 + {u(t1 + t2) − (x1 − x2)}2

α2 + (2ut2)2

]
, (64)

with the coefficients Keq,Kneq,Ktr defined in Eq. (13). The
above implies that the equal-time correlator is given by (setting
u = 1 and 
 = 1/α)

Cm=1(rt,0t) = 1

(
√

1 + 
2r2)2Kneq

×
[√

1 + 
2(2t + r)2
√

1 + 
2(2t − r)2

1 + (2
t)2

]−Ktr

.

(65)

At equal times Cab,m does not depend on the ab indices since
GR,A(t,t) = 0. Therefore we have dropped the ab indices.

At positions and times large as compared to the cutoff and
far from the light cone |r ± 2t | � 1 (with r,t measured in units
of 
)

Cm=1(rt,0t) =
[

1

r2

]γ 2K0/4[∣∣∣∣ r2 − (2t)2

r2(2t)2

∣∣∣∣
]−Ktr

. (66)

This agrees with Ref. 49 where it was pointed out that outside
the light cone (2t � r) the correlator decays in position in
the same way as in the initial state, but with a time-dependent
prefactor which goes as t2Ktr . Moreover within the light cone

r � 2t , the correlator reaches a steady-state value where it
decays in position with the new nonequilibrium exponent Kneq,
Cm=1(r � 2t) ∼ 1

r2Kneq . Exactly on the light cone Cm=1(r =
2t) � [ 1

r2 ]γ
2K0/4[ 1

r3 ]−Ktr .
In this paper we aim to calculate the correlator Rab =

〈eiγ φa (1)/2e−iγ φb(2)/2〉 = Cab,m=1/2 at equal times and unequal
positions in the presence of the cosine potential. In particular
we will derive a CS-like differential equation that will allow
us to relate the correlator at large scales of the bare theory
to the correlator at short scales and renormalized couplings,
where the latter is well approximated by the correlator of the
free theory. Three useful results for the free correlator at short
scales that will be used later are for points within the light cone
r � 2t,
r ∼ 1, points outside the light cone r � 2t,
t ∼ 1,
and points on the light cone r = 2t,
r ∼ 1. For these three
cases using Eq. (65) we find

Cm=1/2(r � 2t,
r = 1) ∼ O(1), (67)

Cm=1/2(r = 2t,
r = 1) ∼ O(1), (68)

Cm=1/2(r � 2t,
t = 1) ∼
(

t

r

)Kneq/2 ( r

t

)−Ktr/2
. (69)

IV. DERIVATION OF THE β FUNCTION
FROM THE ACTION

In this section we discuss how the β function is derived
from the Keldysh action. We split the fields into slow (φ<) and
fast (φ>) components where the fast components have a large
weight at high momentum, and therefore oscillate rapidly in
time,8,9,17,33

φ± = φ<
± + φ>

± . (70)

We integrate out the fast fields perturbatively in the cosine
potential. In doing so to O(g2), we obtain

S = S<
0 + δS<, (71)

where S<
0 is the quadratic action for the slow fields,

S<
0 =

∫ ∞

−∞
dR

∫ ut/
√

2

0
d(uTm)

1

2πK

[
φ<

q

(
∂2
R − ∂2

uTm

)
φ<

cl

+φ<
cl

(
∂2
R − ∂2

uTm

)
φ<

q + δu

u
φ<

q

(
∂2
R + ∂2

uTm

)
φ<

cl

+ δu

u
φ<

cl

(
∂2
R + ∂2

uTm

)
φ<

q

− 2
η

u
φ<

q ∂uTm
φ<

cl + i
4ηTeff

u2
(φ<

q )2

]
. (72)

Above δu represents corrections to the velocity, η represents
dissipation of the long-wavelength modes, and ηTeff denotes
the strength of the noise on the long-wavelength modes.
Initially, δu = Teff = η = 0, but in the first step of the RG,
as we show below, the cosine potential generates corrections
(contained in δS<) that not only renormalize the interaction
parameter K and the velocity u, but also generates the
dissipative term (φq∂Tm

φcl) and noise term (φ2
q).
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The corrections arising from integrating the fast fields are

δS< = g
2

u

∫ ∞

−∞
dx

∫ t

0
dt1

× [cos γφ<
−(1) − cos γφ<

+(1)]e− γ 2

4 〈(φ>
cl (1))2〉 (73)

+ ig2
4

2u2

∫ ∞

−∞
dx1

∫ t

0
dt1

∫ ∞

−∞
dx2

∫ t

0
dt2θ (t1 − t2)

× : cos[γφ<
−(1) − γφ<

− (2)] : e−(γ 2/2)〈[φ−(1)−φ−(2)]2〉

× [1 − e−γ 2〈φ>
− (1)φ>

− (2)〉] (74)

+ ig2
4

2u2

∫ ∞

−∞
dx1

∫ t

0
dt1

∫ ∞

−∞
dx2

∫ t

0
dt2

× θ (t2 − t1): cos[γφ<
+(1) − γφ<

+(2)]

× :e−(γ 2/2)〈[φ+(1)−φ+(2)]2〉[1 − e−γ 2〈φ>
+ (1)φ>

+ (2)〉] (75)

− ig2
4

2u2

∫ ∞

−∞
dx1

∫ t

0
dt1

∫ ∞

−∞
dx2

∫ t

0
dt2

×{θ (t1 − t2) + θ (t2 − t1)}: cos[γφ<
+(1) − γφ<

−(2)]

× :e−(γ 2/2)〈[φ+(1)−φ−(2)]2〉

× [1 − e−γ 2〈φ>
+ (1)φ>

− (2)〉]. (76)

Above we have used that cos(a) =: cos(a) : e−〈a2〉/2 where the
operators inside the symbol :: are normal ordered. Moreover,
all expectation values 〈· · · 〉 are with respect to the initial state,
and therefore depend on the quench. Since the correlators for
the full fields are related to the correlator for the slow and
fast fields as follows G = G< + G>, the correlator for the fast
fields may be related in a simple way to derivatives of the full
correlators,56

G> = d

dG

d

. (77)

Explicit expressions for the fast correlators at equal time
are

〈[φ>
cl (t)]

2〉 = d





[
K0

2

(
1 + K2

K2
0

)

+ K0

2

(
1 − K2

K2
0

){
1

1 + (2t
)2

}]
(78)

t�1/
−−−→ d




K0 (79)

t�1/
−−−→ d




K0
2

(
1 + K2

K2
0

)
. (80)

The short- and long-time limits of 〈[φ>
cl (t)]

2〉 reflect the fact
that at short times after the quench, it is the initial wave
function and hence the initial Luttinger parameter K0 that
determines the behavior of the correlators, while at long times,
a new nonequilibrium exponent related to Kneq determines the
behavior.

For the nonlocal fast correlators, we have

〈φ>
cl (1)φ>

cl (2)〉

= d





∑
ε=±

[
K0

4

(
1 + K2

K2
0

)
1

1 + 
2[(t1 − t2) + ε(x1 − x2)/u]2

+ K0

4

(
1 − K2

K2
0

)
1

1 + 
2[(t1 + t2) + ε(x1 − x2)/u]2

]
(81)

〈φ>
cl (1)φ>

q (2)〉 = −i
K

2

d




θ (t1 − t2)

×
∑
ε=±

[

[(t1 − t2) + ε(x1 − x2)/u]

1 + 
2[(t1 − t2) + ε(x1 − x2)/u]2

]
(82)

〈φ>
q (1)φ>

cl (2)〉 = i
K

2

d




θ (t2 − t1)

×
∑
ε=±

[

[(t1 − t2) + ε(x1 − x2)/u]

1 + 
2[(t1 − t2) + ε(x1 − x2)/u]2

]
.

(83)

In the next step we define new variables corresponding to
center of mass (R,Tm) and relative coordinates (r,τ ),

R = x1 + x2

2
, Tm = t1 + t2

2
, (84)

r = x1 − x2, τ = t1 − t2. (85)

Thus ∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 =

∫ ∞

−∞
dR

∫ ∞

−∞
dr, (86)

∫ t

0
dt1

∫ t

0
dt2 =

∫ t/
√

2

0
dTm

∫ 2Tm

−2Tm

dτ. (87)

Since quantities have a slower variation with respect to
the center-of-mass coordinates as compared to the relative
coordinates, we perform a gradient expansion in R,Tm and
obtain

δS< = δS<
g + δS<

0 + δS<
Teff

+ δS<
η , (88)

where

δS<
g = gu

α2

∫ ∞

−∞
dx1

∫ t

0
dt1[cos γφ<

− (1) − cos γφ<
+ (1)]

×e−(γ 2/4)〈[φ>
cl (1)]2〉 (89)

and

δS<
0 = g2
4γ 2

2u2

d





∫ ∞

−∞
dR

∫ ∞

−∞
dr

∫ t/
√

2

0
dTm

∫ 2Tm

−2Tm

dτ

× θ (τ )[(r∂Rφ<
cl )(r∂Rφ<

q ) + (τ∂Tm
φ<

cl )(τ∂Tm
φ<

q )]

× Im
[
e−(γ 2/2)〈[φ+(R+r/2,Tm+τ/2)−φ−(R−r/2,Tm−τ/2)]2〉

×F (r,Tm,τ )
]

(90)

while

δS<
Teff

= ig2
4γ 2

2u2

d





∫ ∞

−∞
dR

∫ ∞

−∞
dr

×
∫ t/

√
2

0
dTm

∫ 2Tm

−2Tm

dτ [φ<
q (R,Tm)]2

× Re
[
e−(γ 2/2)〈[φ+(R+r/2,Tm+τ/2)−φ−(R−r/2,Tm−τ/2)]2〉

×F (r,Tm,τ )
]

(91)
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and

δS<
η = g2
4γ 2

2u2

d





∫ ∞

−∞
dR

∫ ∞

−∞
dr

∫ t/
√

2

0
dTm

∫ 2Tm

−2Tm

dτ

×φ<
q (R,Tm)τ∂Tm

φ<
cl (R,Tm)

× Im
[
e−(γ 2/2)〈[φ+(R+r/2,Tm+τ/2)−φ−(R−r/2,Tm−τ/2)]2〉

×F (r,Tm,τ )
]
, (92)

where

F (r,Tm,τ )

= Kneq

[
1

1 + 
2 (τ + r/u)2 + 1

1 + 
2 (τ − r/u)2

]

+Ktr

[
1

1 + 
2 (2Tm + r/u)2 + 1

1 + 
2 (2Tm − r/u)2

]

− iKeq

[

(τ + r/u)

1 + 
2 (τ + r/u)2 + 
(τ − r/u)

1 + 
2 (τ − r/u)2

]
(93)

whereas

e−(γ 2/2)〈[φ+(R+r/2,Tm+τ/2)−φ−(R−r/2,Tm−τ/2)]2〉

=
[

1√
1 + 
2(τ + r/u)2

1√
1 + 
2(τ − r/u)2

]Kneq

×
[√

1 + 
2{2(Tm + τ/2)}2√
1 + 
2(2Tm + r/u)2

√
1 + 
2{2(Tm − τ/2)}2√
1 + 
2(2Tm − r/u)2

]Ktr

× e−iKeq[tan−1[
(τ+r/u)]+tan−1[
(τ−r/u)]] (94)

and Re[A] = (A + A∗)/2,Im[A] = (A − A∗)/(2i).
Collecting all terms we find

δS<
g = g
2

∫ ∞

−∞
d(R/u)

∫ t

0
dTm[cos γφ<

− (R,Tm)

− cos γφ<
+(R,Tm)]e−(γ 2/4)〈[φ>

cl (Tm)]2〉, (95)

δS<
0 = g2γ 2

2

d





∫ ∞

−∞
d(R/u)

∫ t/
√

2

0
dTm

× [−IR(Tm)(∂R/uφ
<
cl )(∂R/uφ

<
q )

− ITm
(Tm)

(
∂Tm

φ<
cl

) (
∂Tm

φ<
q

) ]
, (96)

δS<
Teff

= ig2γ 2
2

2

d





∫ ∞

−∞
d(R/u)

∫ t/
√

2

0
dTm

× (φ<
q )2ITeff (Tm), (97)

δS<
η = −g2γ 2


2

d





∫ ∞

−∞
d(R/u)

∫ t/
√

2

0
dTm

×φ<
q [∂Tm

φ<
cl ]Iη(Tm), (98)

where

IR(Tm) = −
4
∫ ∞

−∞
d(r/u)

∫ 2Tm

0
dτ (r/u)2

× Im
[
e−(γ 2/2)〈[φ+(R+r/2,Tm+τ/2)−φ−(R−r/2,Tm−τ/2)]2〉

×F (r,Tm,τ )
]
, (99)

ITm
(Tm) = −
4

∫ ∞

−∞
d(r/u)

∫ 2Tm

0
dττ 2

× Im
[
e−(γ 2/2)〈[φ+(R+r/2,Tm+τ/2)−φ−(R−r/2,Tm−τ/2)]2〉

×F (r,Tm,τ )
]
, (100)

ITeff (Tm) = 
2
∫ ∞

−∞
d(r/u)

∫ 2Tm

−2Tm

dτ

× Re
[
e−(γ 2/2)〈[φ+(R+r/2,Tm+τ/2)−φ−(R−r/2,Tm−τ/2)]2〉

×F (r,Tm,τ )
]
, (101)

Iη(Tm) = −
3
∫ ∞

−∞
d(r/u)

∫ 2Tm

−2Tm

dτ (102)

τ Im
[
e−(γ 2/2)〈[φ+(R+r/2,Tm+τ/2)−φ−(R−r/2,Tm−τ/2)]2〉F (r,Tm,τ )

]
,

(103)

IK = IR − ITm
, (104)

Iu = IR + ITm
. (105)

At the next step we rescale the cutoff back to the original
value of 
, and in the process rescale position and time to
R,Tm → 



′ (R,Tm), where 
′ = 
 − d
. This rescaling is
not necessary in expressions for δS<

0,Teff ,η
as they are already

of O( d




). We also express everything in dimensionless units
of R̄ = 
R/u,T̄ = T 
. Thus, to summarize, one obtains

S<
0 =

∫ ∞

−∞
dR̄

∫ (t/
√

2)
( 
′



)

0
dT̄m

1

2πK

[
φ<

q

(
∂2
R̄

− ∂2
T̄m

)
φ<

cl

+ φ<
cl

(
∂2
R̄

− ∂2
T̄m

)
φ<

q + δu

u
φ<

q

(
∂2
R̄

+ ∂2
T̄m

)
φ<

cl

+ δu

u
φ<

cl

(
∂2
R̄

+ ∂2
T̄m

)
φ<

q − 2η

(




′

)
φ<

q ∂T̄m
φ<

cl

+ i4ηTeff

(




′

)2

(φ<
q )2

]
(106)

and

δS<
g = g

(




′

)2 ∫ ∞

−∞
dR̄

∫ t
(
′/
)

0
dT̄m[cos γφ<

− (R,Tm)

− cos γφ<
+ (R,Tm)]e−(γ 2/4)〈[φ>

cl (Tm)]2〉, (107)

δS<
0 = g2γ 2

2

d





∫ ∞

−∞
dR̄

∫ t
/
√

2

0
dT̄m

× [−IR(Tm)(∂R̄φ<
cl )(∂R̄φ<

q )

− ITm
(Tm)

(
∂T̄m

φ<
cl

)(
∂T̄m

φ<
q

)]
, (108)

δS<
Teff

= ig2γ 2

2

d





∫ ∞

−∞
dR̄

∫ t
/
√

2

0
dT̄m(φ<

q )2ITeff (Tm),

(109)

δS<
η = −g2γ 2

2

d





∫ ∞

−∞
dR̄

∫ t
/
√

2

0
dT̄mφ<

q

[
∂T̄m

φ<
cl

]
Iη(Tm).

(110)
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δSη represents dissipation of the long-wavelength modes due
to the integrated out high momentum modes, and appears
as a term proportional to φq∂Tm

φcl , with the strength of the
dissipation η(Tm) depending on the time after the quench. δSTeff

represents terms that are proportional to φ2
q and represents the

noise on the long-wavelength modes due to the integrated out
modes. We denote the strength of this noise as η(Tm)Teff(Tm)
because in classical systems, the ratio of the noise and the dis-
sipation strength gives a temperature. Here too, this allows us
to define a time-dependent temperature. Defining ln l such that





′ = ed ln(l);

∣∣∣∣d





∣∣∣∣ = 
 − 
′



= d ln(l). (111)

Therefore the RG equations in terms of dimensionless
variables such as Tm → Tm
,η → η/
,Teff → Teff/
 are17

dg

d ln l
= g

[
2 −

(
Kneq + Ktr

1 + 4T 2
m

)]
, (112)

dK−1

d ln l
= πg2γ 2

4
IK (Tm), (113)

1

Ku

du

d ln l
= πg2γ 2

4
Iu(Tm), (114)

dη

d ln l
= η + πg2γ 2K

2
Iη(Tm), (115)

d(ηTeff)

d ln l
= 2ηTeff + πg2γ 2K

4
ITeff (Tm), (116)

dTm

d ln l
= −Tm. (117)

Note that the renormalization of the velocity in Eq. (114) is a
minor effect which will be neglected for the rest of the discus-
sion. In the Appendix, the expression for IK,u,η,Teff is presented
in dimensionless units. The physical meaning of the various
terms of the β function has been discussed in detail in Sec. II.

V. PERTURBATIVE EVALUATION OF EQUAL TIME
CORRELATION FUNCTION

We now turn to a perturbative evaluation of the correlator
R defined in Eq. (7) to O(g). This will set the stage for
the remaining sections where RG will be used to improve
on this result revealing interesting nonequilibrium scaling

regimes. Equation (112) shows that there is a crossover from an
intermediate time dynamics where the physics is determined
by the initial wave function (and hence the initial Luttinger
parameter K0) and a long-time dynamics determined by Kneq.
This can result in a situation where perturbation theory in g

is violated at intermediate times when γ 2K0

4 < 2 i.e., when Vsg

is a relevant perturbation in the initial state. We show below
what this implies for R.

Denoting

R(x1t,x2t) = R(0) + R(1) + · · · , (118)

where R(i) is the correlator to O(gi), and using results from
the previous section, we find

R(0)(x1t,x2t)

= 2e−(γ 2/8)[iGK (11)/2+iGK (22)/2−iGK (12)]

= 2

⎡
⎢⎣
⎛
⎝ 1√

1 + (x1−x2)2

α2

⎞
⎠2Kneq

×
⎛
⎝
√

1 + (2ut+x1−x2)2

α2

√
1 + (2ut−x1+x2)2

α2

1 + (2ut)2

α2

⎞
⎠

−Ktr
⎤
⎥⎦

1/4

.

(119)

The above gives Eq. (14) in the scaling limit (and setting
t = Tm).

To next order the equal time correlator is

R(1)(x1t,x2t)

= 4igu

α2

∫ ∞

−∞
dx ′

∫ t

0
dt ′
∑
c=±

sgn(−c)

×
〈
cos

[
γφc(x ′t ′)

]
cos

(γ

2
φ(x1t)

)
cos

(γ

2
φ(x2t)

)〉
= igu

α2

∫ ∞

−∞
dx ′

∫ t

0
dt ′
∑
c=±

sgn(−c)

×
〈
cos

(
γφc(x ′t ′) − γ

2
φ(x1t) − γ

2
φ(x2t)

)〉
. (120)

On evaluating the expectation value one finds

R(1)(x1t,x2t) =
(

2gu

α2

)
e(γ 2/8)[iGK (11)/2+iGK (22)/2−iGK (12)]

∫ ∞

−∞
dx ′

∫ t

0
dt ′

× sin

[
γ 2K

8

∑
ε=±

{
tan−1

(
u(t − t ′) + ε(x1 − x ′)

α

)
+ tan−1

(
u(t − t ′) + ε(x2 − x ′)

α

)}]

× e−(γ 2/4)[iGK (1′1′)/2+iGK (11)/2−iGK (1′1)+iGK (1′1′)/2+iGK (22)/2−iGK (1′2)]. (121)

The above expression shows that at microscopically short
times R(1)(
t � 1) ∝ 
t2.

The behavior of R(1) for several different quench protocols
is shown in Fig. 5. Since the initial state is gapless, the
correlator is nonzero outside the light cone (Tm < r/2).
Moreover, for a quench where the initial state is such that the

cosine potential is relevant ( γ 2K0

4 < 2; dashed line in Fig. 5),
R can be parametrically large at these initial times outside
the light cone indicating that at these initial times perturbation
theory in g is not valid. When the initial state is one where the
potential is irrelevant or marginally irrelevant ( γ 2K0

4 � 2, solid
and dotted line in Fig. 5), the correlator is most enhanced on

205109-12



CORRELATION FUNCTIONS IN THE PRETHERMALIZED . . . PHYSICAL REVIEW B 87, 205109 (2013)
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FIG. 5. The first-order correction to the equal-time correlation
function R(1)(r = 100,Tm) as a function of the time Tm after the
quench. Length and time are measured in units of the cutoff 
. Three
different quenches are considered: a pure lattice quench where K0 =
K = 2 (solid line), lattice and interaction quench corresponding to
K0 = 1,K = √

3 (dashed line), and K0 = 3,K = √
3 (dotted line).

The light cone is at Tm = r/2 = 50. We choose γ = 2 and all
quenches are to the critical point Kneq = 2.

the light cone (r = 2Tm). For all these cases, within the light
cone (Tm > r/2) the correlator reaches a steady state.

We now turn to an RG treatment for the correlator where a
CS-like equation will be derived.

VI. DERIVATION OF A CALLAN-SYMANZIK-LIKE
DIFFERENTIAL EQUATION OUT OF EQUILIBRIUM

In this section we carry out RG improved perturbation
theory and derive a CS-like differential equation for the
equal-time correlation function R. We split the fields φ into
slow and fast fields, and integrate over the fast fields. In doing
so, the leading-order (g = 0) correlator R(0) is found to be

R(0)(x1t,x2t) = R0
<(x1t,x2t)e

−(d
/
)γan,0(x1t,x2t), (122)

where R< is the correlator for the slow fields and R is the
correlator for all the fields, and

γan,0(x1t,x2t) = 1

2

[
Kneq

(x1 − x2)2
2/u2

1 + (x1 − x2)2
2/u2
+ Ktr

1 + (2t
)2

− Ktr

2

{∑
ε=±

1

1 + 
2[2t + ε(x1 − x2)/u]2

}]
.

(123)

Then we rescale the cutoff, and also rescale position and time.
These transformations do not change the above expression.
Expanding to O( d




), and noting that



R(0)(
) − R(0)

< (
 − d
)

d

= 


∂R(0)

∂

=−∂R(0)

∂ ln l
, (124)

we obtain the following CS-like equation to leading order:[
∂

∂ ln l
− γan,0(x1t,x2t)

]
R(0)

(

0

l

)
= 0, (125)

where 
0 is the bare cutoff.

Some limiting expressions for γan,0 are as follows: At long
distances and microscopically short times,

γan,0(|x1 − x2|
 � 1,t
 � 1) = 1

2
(Kneq + Ktr) = γ 2K0

8
.

(126)

At long distances and times and inside the light cone,

γan,0(|x1 − x2|
 � 1,t
 � 1,2t � |x1 − x2|) = Kneq

2
.

(127)

At long distances and times, and outside the light cone,

γan,0(|x1 − x2|
 � 1,t
 � 1,2t � |x1 − x2|) = Kneq

2
.

(128)

At long distances and times, and on the light cone,

γan,0(|x1 − x2|
 � 1,t
 � 1,2t = |x1 − x2|)
= 1

2

(
Kneq − Ktr

2

)
. (129)

The correlator at next order, R(1), may also be evaluated by
splitting it into slow and fast fields as follows:

R(1)(x1t,x2t)

= 4Tr

[
ei(S<

0 +S>
0 )iSsg(φ< + φ>)

× cos

(
γφ<(x1t) + γφ>(x1t)

2

)

× cos

(
γφ<(x2t) + γφ>(x2t)

2

)]

= igu

α2

∫ ∞

−∞
dx ′

∫ t

0
dt ′
∑
c=±

sgn(−c)

×
〈
cos

(
γφ<

c (x ′t ′) − γ

2
φ<(x1t) − γ

2
φ<(x2t)

)〉
×
〈
cos

(
γφ>

c (x ′t ′) − γ

2
φ>(x1t) − γ

2
φ>(x2t)

)〉
.

(130)

On integrating out the fast fields, we obtain

R(1)(x1t,x2t)

= igu

α2
e(d
/
)γan,0(x1,x2,t)

∫ ∞

−∞
dx ′

∫ t

0
dt ′

×
∑
c=±

sgn(−c)e−(d
/
)δ(x1,x2,t,x
′,t ′)

×
〈
cos

(
γφ<

c (x ′t ′) − γ

2
φ<(x1t) − γ

2
φ<(x2t)

)〉
,

(131)

205109-13



ADITI MITRA PHYSICAL REVIEW B 87, 205109 (2013)

where

δ(x1,x2,t,x
′,t ′)

=
[

2Kneq + Ktr

1 + (2t ′
)2
+ Ktr

1 + (2t
)2

− Kneq

2

∑
ε=±

{
1

1 + 
2[t − t ′ + ε(x1 − x ′)/u]2

}

− Ktr

2

∑
ε=±

{
1

1 + 
2[t + t ′ + ε(x1 − x ′)/u]2

}

− Kneq

2

∑
ε=±

{
1

1 + 
2[t − t ′ + ε(x2 − x ′)/u]2

}

− Ktr

2

∑
ε=±

{
1

1 + 
2[t + t ′ + ε(x2 − x ′)/u]2

}

− ic
Keq

2

∑
ε=±

{

[t − t ′ + ε(x1 − x ′)/u]

1 + 
2[t − t ′ + ε(x1 − x ′)/u]2

}

− ic
Keq

2

∑
ε=±

{

[t − t ′ + ε(x2 − x ′)/u]

1 + 
2[t − t ′ + ε(x2 − x ′)/u]2

}]
.

(132)

Rescaling the cutoff and correspondingly the position and time,
we obtain the following differential equation:

R(1)(x1 − x2,t) = R(1)
< (x1 − x2,t)

[
1 + 2

d




− 2Kneq

d





+ γan,0(x1 − x2,t)
d





]
+ 2gπIC(x1,x2,t)

× d




R0

<(x1 − x2,t). (133)

Rewriting the zero-order term Eq. (122) for convenience,

R(0)(x1 − x2,t)

= R(0)
< (x1 − x2,t)

[
1 − d




γan,0(x1 − x2,t)

]
, (134)

and combining Eqs. (133) and (134), we get

R = R(0)
<

[
1 − d




γan,0(x1 − x2,t)

+d




2gπIC(x1 − x2,t)

]
+ R(1)

<

[
1 + (2 − Kneq)

d





+ {−Kneq + γan,0(x1 − x2,t)}d





]
. (135)

The term in the first square brackets (γan,0 − 2πgIC) is the
anomalous scaling dimension of the correlator R. The (2 −
Kneq)d
/
 term in the second square brackets is simply the
renormalization of g which has been discussed before in the
context of the β function.

To next order in the cosine potential, we obtain the O(g2)
terms of the β function whose derivation is already discussed in
Sec. IV. Thus to O(g2) the following CS differential-equation
for R is obtained:[

∂

∂ ln l
+ β(gi)

∂

∂gi

− γan,0 + 2πgIC

]

×R

[
r
0

l
,

0Tm0

l
,gi(l)

]
= 0, (136)

where gi = g,K,η,Teff , and 
0,Tm0,gi0 denote bare values.
Moreover IC is given by

IC(r = x1 − x2,t,Kneq,Keq)

= −
(

1

2π

)
eKneq ln

√
1+(x1−x2)2

∫ ∞

−∞
dx ′

∫ t

0
dt ′ sin

[
Keq

2

∑
ε=±

{
tan−1[t ′ + ε(x ′ − x1)] + tan−1[t ′ + ε(x ′ − x2)]}

]

×e−(Kneq/2)
∑

ε=±[ln
√

1+[t ′+ε(x ′−x1)]2+ln
√

1+[t ′+ε(x ′−x2)]2]

×e−(Ktr/2)[ln
√

[1+(2t−t ′+x ′−x1)2]/(1+4t2)+ln
√

{1+[2t−t ′−(x ′−x1)]2}/[1+4(t−t ′)2]+ln
√

[1+(2t−t ′+x ′−x2)2]/(1+4t2)+ln
√

{1+[2t−t ′−(x ′−x2)]2}[1+4(t−t ′)2]]

×
[

Ktr

1 + 4t2
+ Ktr

1 + 4(t − t ′)2
− Kneq

2

∑
ε=±

{
1

1 + [t ′ + ε(x ′ − x1)]2 + 1

1 + [t ′ + ε(x ′ − x2)]2

}

−Ktr

2

∑
ε=±

{
1

1 + [2t − t ′ + ε(x ′ − x1)]2
+ 1

1 + [2t − t ′ + ε(x ′ − x2)]2

}]
(137)

+ 1

2π
eKneq ln

√
1+(x1−x2)2

∫ ∞

−∞
dx ′

∫ t

0
dt ′ cos

[
Keq

2

∑
ε=±

{tan−1[t ′ + ε(x ′ − x1)] + tan−1[t ′ + ε(x ′ − x2)]}
]

×e−(Kneq/2)
∑

ε=±[ln
√

1+[t ′+ε(x ′−x1)]2+ln
√

1+[t ′+ε(x ′−x2)]2]

×e−(Ktr/2)[ln
√

[1+(2t−t ′+x ′−x1)2]/(1+4t2)+ln
√

{1+[2t−t ′−(x ′−x1)]2}/[1+4(t−t ′)2]+ln
√

[1+(2t−t ′+x ′−x2)2]/(1+4t2)+ln
√

{1+[2t−t ′−(x ′−x2)]2}/[1+4(t−t ′)2]]

×Keq

2

∑
ε=±

[
[t ′ + ε(x ′ − x1)]

1 + [t ′ + ε(x ′ − x1)]2 + [t ′ + ε(x ′ − x2)]

1 + [t ′ + ε(x ′ − x2)]2

]
. (138)
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The usual CS equation encountered in equilibrium for the
Heisenberg chain35–37 may be obtained from above by setting
the time after the quench t = ∞, and by setting K0 = K and
by also being at the critical point Keq = 2. Here, noting that

−Im[e−i tan−1 x 1
1+ix

] = sin(tan−1 x)
1+x2 + x

1+x2 cos(tan−1 x), one may
write

IC = − [1 + (x1 − x2)2]

2π
Im

[ ∫ ∞

−∞
dx ′

∫ ∞

0
dt ′

× e−∑ε=± ln{1+i[t ′+ε(x ′−x1)]}+ln{1+i[t ′+ε(x ′−x2)]}

×
∑
ε=±

{
1

1 + i[t ′ + ε(x ′ − x1)]
+ 1

1 + i[t ′ + ε(x ′ − x2)]

}]
.

(139)

The above integral may be evaluated to give

IC = (x1 − x2)2 + 1

4 + (x1 − x2)2
. (140)

Thus for |x1 − x2| � 1,

IC

(
K0 = K,Keq = 2,t = ∞) = 1. (141)

In the next two sections we will solve the CS equation (136)
for two cases: one is when the Luttinger liquid interaction
parameter is held fixed, but the cosine or lattice potential is
suddenly switched on, and the second is when the Luttinger
parameter is changed at the same time as when the lattice
potential is switched on.

VII. CORRELATION FUNCTION FOR THE PURE
LATTICE QUENCH

In the previous section we showed that in order to determine
the correlation function at spatial separation r and a time Tm0

after a quench, we need to solve[
∂

∂ ln l
+ β(gi)

∂

∂gi

− γan,0 + 2πgIC

]

×R

[
r
0

l
,

0Tm0

l
,gi(l)

]
= 0, (142)

where gi = g,K,η,Teff , and 
0,gi0 denote bare values. In this
section we will solve Eq. (142) for the lattice quench K0 = K

and near the critical point Keq = 2 + δ,∀ 0 < δ � 1. For this
case, γan,0 has the following limiting forms:

γan,0(r
 � 1,Tm
 � 1) = 1

2
(Kneq + Ktr) = 1 + δ

2
,

(143)

γan,0(r
 � 1,Tm
 � 1,2Tm � r) = Kneq

2

= 1 + δ

2
, (144)

γan,0(r
 � 1,Tm
 � 1,2Tm � r) = Kneq

2

= 1 + δ

2
, (145)

γan,0(r
 � 1,Tm
 � 1,2Tm = r)

= 1

2

(
Kneq − Ktr

2

)
= 1 + δ

2
. (146)

Moreover for K0 = K and in the vicinity of the critical point,
the full expression for IC in Eqs. (137) and (138) reduces to

IC(r,Tm)

= r2 + 1

4 + r2
− r2 + 1

2π
Im

[
i

∫ ∞

−∞
dx

{
1

(1 + iTm)2 + x2

× 1

(1 + iTm)2 + (x − r)2

}]

= r2 + 1

4 + r2
− 1 + r2

1 + T 2
m

[
r2 − 4T 2

m + 4 − 8T 2
m{

r2 − 4T 2
m + 4

}2 + 64T 2
m

]
. (147)

IC has the following different limits already discussed in
Sec. II:

IC(r � 1,Tm � 1,2Tm � r) = 1 + O
(

1

r2
,
r2

T 4
m

)
, (148)

IC(r � 1,Tm � 1,2Tm � r) = 1 + O
(

1

T 2
m

,
1

r2

)
, (149)

IC(r � 1,Tm � 1,2Tm = r) = 3

2
+ O

(
1

r2

)
. (150)

In addition the β function for a pure lattice quench and using
Kneq = Keq = 2 + δ is (neglecting velocity renormalization)

dg

d ln l
= −gδ, (151)

dδ

d ln l
= −4πg2IK (Tm), (152)

dη

d ln l
= η + 4πg2Iη(Tm), (153)

d(ηTeff)

d ln l
= 2ηTeff + 2πg2ITeff (Tm), (154)

dTm

d ln l
= −Tm, (155)

where

IK (Tm,Kneq = Keq = 2)

= π − π

2

[
2 + 20T 2

m + 7 × 16T 4
m(

1 + 4T 2
m

)3

]
. (156)

The above shows that at short times, IK (Tm � 1) = 2πT 2
m +

· · · , while at long times IK reaches a steady state as follows:
IK (Tm � 1) = π [1 − 7

8T 2
m

+ · · · ]. Moreover,

Iη(Tm,Kneq = Keq = 2) = 4π
(2Tm)3

[1 + (2Tm)2]3
, (157)

ITeff (Tm,Kneq = Keq = 2) = 6πTm

[
1 − 4

3T 2
m(

1 + 4T 2
m

)3

]
. (158)

Note that the above expressions show that at long times (Tm →
∞) a pure lattice quench does not generate any dissipation and
noise, at least to O(g2). This extends the regime of validity of
the prethermalized regime which we defined as the regime
where time is larger than microscopic time scales, but smaller
than the steady-state inelastic scattering rate (Fig. 3).

Thus neglecting dissipative and thermal effects, and
at macroscopically long times, the β function simplifies
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considerably to

dg

d ln l
= −gδ;

dδ

d ln l
= −(2πg)2 (159)

with the anomalous dimension given by

γan = γan,0 − 2πgIC = 1 + δ

2
− 2πgIC. (160)

As discussed earlier in this section, IC = 1 inside (2Tm0 � r)
and outside (2Tm0 � r) the light cone, whereas IC = 3/2 for
points on the light cone r = 2Tm0. We will derive expressions
for the correlator for two cases separately. The first case is
when the final Hamiltonian is on the critical line δ = 2πg,
while the second is when the final Hamiltonian is slightly
away from the critical line δ > 2πg.

For the first case, i.e., on the critical line δ = 2πg, the β

function further simplifies to

dδ

d ln l
= −δ2 (161)

and the anomalous dimension of the correlator becomes

γan = 1 + δ

2
− δIC. (162)

The explicit forms of IC and γan,0 in Eqs. (23) and (26) show
that scaling stops when l∗ = min (
0r,
0Tm0). Thus there are
three interesting cases to consider: one for spatial separations
outside the light cone, r � 2Tm0, the second is for spatial
separations on the light cone, r = 2Tm0, and the third is for
spatial separations within a light cone, r � 2Tm0. These three
cases are shown pictorially in Fig. 2, and the corresponding
correlators are derived next.

Integrating the CS equation up to l∗ we obtain

R(
0r,
0Tm0,g0)

= e
− ∫ g(l∗)

g0
dg′[γan(g′)/β(g′)]

R

(
r
0

l∗
,
Tm0
0

l∗
,g(l∗)

)
. (163)

Integrating up to l∗, the solution of Eq. (161) is

1

δ(l∗)
− 1

δ0
= ln(l∗), (164)

whereas for evaluating the correlator we need∫ δ(l∗)

δ0

dδ
γan

β
= ln(l∗) +

(
IC − 1

2

)
ln

[
δ(l∗)

δ0

]
. (165)

For points outside the light cone, setting l∗ = 2
0Tm0, the
correlation function is found to be

R (
0r,
0Tm0,g0,2Tm0 � r)

∼
√

ln Tm0

Tm0
R

(
r

2Tm0
� 1,Tm0
0 = l∗,g(l∗)

)
. (166)

Since l∗ � 1, g(l∗) � g0, so that the short-distance correlator
may be evaluated perturbatively in the cosine potential. Using
the results from Eq. (69), where R( r

2Tm0
,Tm0
0 = l∗,g = 0) ∼

Tm0/r , we find that the correlator outside the light cone behaves
as

R (
0r,g0,2Tm0 � r) ∼
√

ln Tm0

r
. (167)

The second interesting case is the behavior of the correlator
inside the light cone where 2Tm0 � r . Here integrating up to
l∗ = 
0r , we get

R (
0r,2Tm0 � r,g0)

= e
− ∫ g(
0r)

g0
dg′[γan(g′)/β(g′)]

R

(
r
0

l∗
= 1,2Tm0 � r,g(l∗)

)
.

(168)

From Eq. (67), R (l∗ = 
0r,2Tm0 � r,g = 0) = O(1), while
using the result that IC = 1 within the light cone we obtain

R (
0r,2Tm0 � r,g0) ∼
√

ln r

r
. (169)

At these long times, the explicit dependence on the time after
the quench drops out and the correlator reaches a steady-state
value. Moreover this result is the same as in the ground state
of the final Hamiltonian. Later when we study an interaction
and lattice quench, we will see that within the light cone,
a steady-state behavior again arises, however the logarithmic
corrections are different than those obtained for a system which
is in equilibrium, and near the critical point.

The third interesting case is for spatial separations on the
light cone where r = 2Tm0. Here integrating up to l∗ = 
0r

R(
0r,2Tm0 = r,g0)

= e
− ∫ g(
0r)

g0
dg′[γan(g′)/β(g′)]

R

(
r
0

l∗
= 1,2Tm0 = l∗,g(l∗)

)
.

(170)

Using Eq. (68) and the fact that IC = 3/2 on the light cone we
find

R(
0r,2Tm0 = r,g0) ∼ ln r

r
. (171)

On the light cone (r = 2Tm0) the correlator decays somewhat
slower than within and outside the light cone.

We now turn to the case where δ > 2πg. Here the solution
of Eq. (159) on integrating up to a scale l∗ [defining A1 =√

δ2 − (2πg)2] is∫ g(l∗)

g0

γ (g′)
β(g′)

dg′

= ln l∗ + 1

2
ln

[
sinh

(
A1 ln l∗ + tanh−1 A1

δ0

)
sinh

(
tanh−1 A1

δ0

)
]

− ICA1 ln

[
tanh

(
A1
2 ln l∗ + 1

2 tanh−1 A1
δ0

)
tanh

(
1
2 tanh−1 A1

δ0

)
]

. (172)

The correlation function therefore is found to be

R (
0r,
0Tm0,g0)

� 1

(l∗)1+A1/2

√
1

1 − (l∗)−2A1

[
1 − (l∗)−A1

1 + (l∗)−A1

]IC

. (173)

For points outside the light cone we set l∗ = 
0Tm0 in
Eq. (173), and using Eq. (69) we obtain

R (
0r,
0Tm0,g0,r � 2Tm0)

∼
(

1

r

)1+δ/2

(Tm0)δ/2−(
√

δ2−(2πg)2)/2 . (174)
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For points on the light cone, or inside the light cone we set
l∗ = 
0r in Eq. (173) to obtain

R (
0r,
0Tm0,g0,r � 2Tm0) ∼ 1

r1+A1/2
. (175)

Note that for small deviations away from the critical point such
that A1 ln r � 1, the correlator on the light cone and inside the
light cone have the same leading behavior in position. This is
however not the case for quenches to the critical point where
A1 ln r � 1. Here Eqs. (169) and (171) show that differences
arise even in the leading asymptote.

VIII. CORRELATION FUNCTION FOR THE LATTICE
AND INTERACTION QUENCH

The β function shows that an interaction quench K0 	= K

changes the location of the critical point to Kneq = 2. Since
Kneq > Keq, this implies that the ground state of the final
Hamiltonian can be in the gapped phase, however the quench
results in a highly excited and more delocalized state of bosons.
In this section we are interested in evaluating the correlator R

in the vicinity of this new nonequilibrium critical point. Setting
Kneq = 2 implies the following relation between K0 and K:

K = K0

√
16

γ 2K0
− 1. (176)

This implies the following:

Keq = γ 2K0

4

√
16

γ 2K0
− 1, (177)

Ktr = γ 2K0

4
− 2. (178)

When K0 	= K , dissipative effects are generated. However
in the prethermalized regime these effects are still weak and
may be neglected. Writing Kneq = 2 + δ, the RG equations in
the prethermalized regime (Tm < 1/η) are the following:

dg

d ln l
= −gδ, (179)

dδ

d ln l
= −πg2

(
γ 2K0

4

)2 (
16

γ 2K0
− 1

)3/2

IK (Tm), (180)

dTm

d ln l
= −Tm; (181)

above we have used that since Kneq = 2 + δ, dK = 4
γ 2

K0
K

dδ,
and Keq is given by Eq. (177). Moreover,

IK (Tm = ∞,Kneq = 2)

= −4
∫ ∞

0
du

u

(1 + u2)2
cos(Keq tan−1 u)

×
∫ u

0
dv

v

1 + v2
sin(Keq tan−1 v)︸ ︷︷ ︸

i1(u)

(182)

− 4
∫ ∞

0
du

u

1 + u2
cos(Keq tan−1 u)

×
∫ u

0
dv

v

(1 + v2)2
sin(Keq tan−1 v)︸ ︷︷ ︸

i2(u)

(183)

− 2Keq

∫ ∞

0
du

u

1 + u2
cos(Keq tan−1 u)

×
∫ u

0
dv

v2

(1 + v2)2
cos(Keq tan−1 v)︸ ︷︷ ︸

i3(u)

(184)

+ 2Keq

∫ ∞

0
du

u2

(1 + u2)2
sin(Keq tan−1 u)

×
∫ u

0
dv

v

1 + v2
sin(Keq tan−1 v)︸ ︷︷ ︸

i1(u)

. (185)

Note that Eqs. (183) and (184) are logarithmically divergent
(such a divergence does not arise for a pure lattice quench). The
reason for this divergence is because we have used leading-
order perturbation theory to evaluate the correlators that go into
IK , whereas we should have used the correlators from the full
theory which correspond to a nonzero dissipation η. Taking
this into account, the logarithmic divergence is cut off by
min(Tm,1/η). Denoting the well-behaved terms in Eqs. (182)
and (185) as πc1, and using i2(∞) = − 1

K2
eq−4 sin( πKeq

2 ) and

i3(∞) = (K2
eq−2)

Keq(K2
eq−4) sin( πKeq

2 ), we may write

IK (Tm,Kneq = 2)

= π

[
c1 − 2c′

2 sin

(
πKeq

2

)

×
∫ min(Tm,1/η)

0
du

u

1 + u2
cos

(
Keq tan−1 u

)]
(186)

� π{c1 − c2 sin(πKeq) ln[min(Tm,1/η)]}, (187)

where c1,2 are O(1) and depend on Keq and hence K0. When
K0 = K , c1 = 1.

In what follows we will consider a prethermalized regime
where Tm < 1/η, and also weak quenches such that |Keq −
Kneq| ln Tm � 1. In this case, IK � πc1 and is independent
of time. We will solve the RG equations in a regime where
the periodic potential is marginally irrelevant, geff = gB < δ,
where

B = π
√

c1

(
γ 2K0

4

)(
16

γ 2K0
− 1

)3/4

. (188)

The RG flow equations dgeff

d ln l
= −geffδ,

dδ
d ln l

= −g2
eff are char-

acterized by the constant of motion,

A =
√

δ2 − g2
eff, (189)

in terms of which the solution of the RG equations are

δ(l) = A coth

[
A ln l + tanh−1

(
A

δ0

)]
, (190)

geff(l) = A

sinh
[
A ln l + tanh−1

(
A
δ0

)] . (191)

In the vicinity of the nonequilibrium critical point Kneq =
2 + δ,∀ δ � 1, and inside the light cone, IC is found to be

IC(r � 1,Tm � 1,2Tm � r)

= Keq

2
+
[

1 −
(

Keq

2

)2
]

L(Keq), (192)
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where

L(Keq) = lim
|r|�1

(
r2

4π

∫ ∞

0
du

∫ u

−u

dv sin

[
Keq

2
{tan−1 u + tan−1 v + tan−1(u + r) + tan−1(v − r)}

]
1√

1 + u2

1√
1 + v2

× 1√
1 + (u + r)2

1√
1 + (v − r)2

[
1

1 + u2
+ 1

1 + v2
+ 1

1 + (u + r)2
+ 1

1 + (v − r)2

])
+ (r → −r) . (193)

L(Keq) is a universal function of Keq and hence the initial Luttinger parameter. This results in a universal expression for IC which
is plotted in Fig. 4 for different initial states.

The solution of the CS equation is

R (
0r,
0Tm0,g0) = e
− ∫ g(l)

g0
dg′[γan(g′)/β(g′)]

R

(
r
0

l
,
Tm0
0

l
,g(l)

)
. (194)

We will solve this first for points within the light cone 1/η � Tm0 � r . For this case, dissipative effects are neglected and the
RG equations are integrated up to l = 
0r to give

R (
0r,r � Tm0 � 1/η,g0) = e
− ∫ g(
0r)

g0
dg′[γan(g′)/β(g′)]

R

(
r
0

l
= 1,

Tm0

r
� 1,g(l)

)
. (195)

On the right-hand side, R being a short-distance correlator, is O(1). Note that

γan(r � 2Tm0) = 1 + δ

2
− 2πgIC. (196)

Then, ∫ g(l)

g0

γ (g′)
β(g′)

dg′ = ln l + 1

2
ln

[
sinh

(
A ln l + tanh−1 A

δ0

)
sinh

(
tanh−1 A

δ0

)
]

− 2πICA

B
ln

[
tanh

(
A
2 ln l + 1

2 tanh−1 A
δ0

)
tanh

(
1
2 tanh−1 A

δ0

)
]

, (197)

where B = π
√

c1( γ 2K0

4 )( 16
γ 2K0

− 1)3/4.
The correlation function within the light cone is given by setting l = 
0r which gives

R (
0r,r � 2Tm0 � 1/η,g0) � 1

(
0r)1+A/2

√
1

1 − (
0r)−2A

[
1 − (
0r)−A

1 + (
0r)−A

]2πIC/B

. (198)

For A ln r � 1, we obtain the following logarithmic correction to scaling:

R ∼ 1

r
(ln r)2πIC/B−1/2. (199)

In the above expression the exponent θ = 2πIC

B
− 1

2 approaches 1/2 as K0 approaches K .
Let us now discuss how IC behaves for spatial separations on the light cone. Simplifying the full expression for IC in Eqs. (137)

and (138) by noting that for r � 1,t � 1,r = 2t ,√
1 + (2t − t ′ + x ′)2

1 + 4t2
� 1,

√
1 + (2t − t ′ − x ′)2

1 + 4(t − t ′)2
� 1,

√
1 + (2t − t ′ + x ′ − r)2

1 + 4t2
=
√

1 + (t ′ − x ′)2

1 + 4t2
,

√
1 + (2t − t ′ − x ′ + r)2

1 + 4(t − t ′)2
� 2,

one may write

IC(r = 2t,r � 1,Kneq = 2) = 2−Ktr/2Ltr→∞
r2+Ktr/2

2π

∫ ∞

−∞
dx ′

∫ r/2

0
dt ′

× sin

[
Keq

2
{tan−1(t ′ + x ′) + tan−1(t ′ − x ′) + tan−1(t ′ + x ′ − r) + tan−1(t ′ − x ′ + r)}

]

× 1√
1 + (t ′ + x ′)2

(
1√

1 + (t ′ − x ′)2

)1+Ktr/2
1√

1 + (t ′ + x ′ − r)2

1√
1 + (t ′ − x ′ + r)2

×
{

1

1 + (t ′ + x ′)2 +
(
1 + Ktr

2

)
1 + (t ′ − x ′)2 + 1

1 + (t ′ + x ′ − r)2 + 1

1 + (t ′ − x ′ + r)2

}
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+ 2−Ktr/2Ltr→∞
r2+Ktr/2

2π

(
Keq

2

)∫ ∞

−∞
dx ′

∫ r/2

0
dt ′

× cos

[
Keq

2
{tan−1(t ′ + x ′) + tan−1(t ′ − x ′) + tan−1(t ′ + x ′ − r) + tan−1(t ′ − x ′ + r)}

]

× 1√
1 + (t ′ + x ′)2

(
1√

1 + (t ′ − x ′)2

)1+Ktr/2 1√
1 + (t ′ + x ′ − r)2

1√
1 + (t ′ − x ′ + r)2

×
[

(t ′ + x ′)
1 + (t ′ + x ′)2

+ (t ′ − x ′)
1 + (t ′ − x ′)2

+ (t ′ + x ′ − r)

1 + (t ′ + x ′ − r)2
+ (t ′ − x ′ + r)

1 + (t ′ − x ′ + r)2

]
. (200)

The above implies that

IC(r = 2t,r � 1) ∼ rKtr/2. (201)

Thus the scaling for spatial separations on the light cone which we found for a pure lattice quench is lost for a simultaneous lattice
and interaction quench when Ktr > 0 (i.e., γ 2K0

4 > 2). This corresponds to a situation where the cosine potential is an irrelevant
perturbation in the initial state. However, scaling holds when Ktr � 0 where IC either approaches zero at large distances or is a
constant. This case of Ktr � 0 corresponds to the cosine potential being a marginal or a relevant perturbation in the initial state.

We now turn to the behavior of the correlator for points outside the light cone. In the previous section we found that for a
pure lattice quench, scaling holds outside the light cone. We would like to explore whether this continues to be the case for a
simultaneous lattice and interaction quench. We make the following approximations in Eqs. (137) and (138) by noting that for
r � 1,t � 1,r � 2t , √

1 + (2t − t ′ + x ′)2

1 + 4t2
� 1,

√
1 + (2t − t ′ − x ′)2

1 + 4(t − t ′)2
� 1,√

1 + (2t − t ′ + x ′ − r)2

1 + 4t2
� r

2t
,

√
1 + (2t − t ′ − x ′ + r)2

1 + 4(t − t ′)2
� r

2t

to obtain

IC(r,t � 1; r � 2t,Kneq = 2) � r2

2π

(
2t

r

)Ktr
∫ ∞

−∞
dx ′

∫ t

0
dt ′

× sin

[
Keq

2
{tan−1(t ′ + x ′) + tan−1(t ′ − x ′) + tan−1(t ′ + x ′ − r) + tan−1(t ′ − x ′ + r)}

]

× 1√
1 + (t ′ + x ′)2

1√
1 + (t ′ − x ′)2

1√
1 + (t ′ + x ′ − r)2

1√
1 + (t ′ − x ′ + r)2

×
{

1

1 + (t ′ + x ′)2 + 1

1 + (t ′ − x ′)2 + 1

1 + (t ′ + x ′ − r)2 + 1

1 + (t ′ − x ′ + r)2

}

+ r2

2π

(
2t

r

)Ktr
(

Keq

2

)∫ ∞

−∞
dx ′

∫ t

0
dt ′

× cos

[
Keq

2
{tan−1(t ′ + x ′) + tan−1(t ′ − x ′) + tan−1(t ′ + x ′ − r) + tan−1(t ′ − x ′ + r)}

]

× 1√
1 + (t ′ + x ′)2

1√
1 + (t ′ − x ′)2

1√
1 + (t ′ + x ′ − r)2

1√
1 + (t ′ − x ′ + r)2

×
[

(t ′ + x ′)
1 + (t ′ + x ′)2

+ (t ′ − x ′)
1 + (t ′ − x ′)2

+ (t ′ + x ′ − r)

1 + (t ′ + x ′ − r)2
+ (t ′ − x ′ + r)

1 + (t ′ − x ′ + r)2

]
. (202)

The above implies that outside the light cone,

IC (r � 2t,r � 1,t � 1) ∼
(

2t

r

)Ktr

. (203)

Thus outside the light cone, we find that if Ktr > 0, i.e., the
cosine potential is an irrelevant perturbation in the initial state,

then IC goes to zero with distance as a power law. However, if
Ktr < 0, then IC grows with distance, and the perturbative
correction to the correlation function becomes large. This
result is expected as the cosine potential for Ktr < 0 is a
relevant perturbation in the initial state. Thus perturbation
theory at initial times outside the light cone is violated. An
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example of this was also discussed in Sec. V and shown in
Fig. 5.

IX. SUMMARY AND CONCLUSIONS

We have studied quench dynamics in a generic strongly
correlated one-dimensional system which is represented by the
quantum sine-Gordon model. We develop a time-dependent
renormalization-group approach which reveals that the dy-
namics after a quantum quench can be quite rich by being
characterized by several time scales (Fig. 3). One is a
perturbatively accessible short-time scale (Tm � 1/
), the
second is an intermediate-time prethermalized regime where
inelastic effects are small (1 � Tm � 1/η) and the system
can show universal scaling behavior, and the third is a longer
time scale (Tm � 1/η) where inelastic scattering is strong,
leading to thermal behavior. In this paper we explicitly derived
a CS-like differential equation (25) for a two-point correlation
function, and solved it in the prethermalized regime. This
CS equation shows that even in the universal prethermalized
regime, three distinctly different scaling regimes can exist that
are summarized in Fig. 2. One is for spatial separations of
the local operators outside the light cone, the other is for
spatial separations on the light cone and the third is for spatial
separations inside the light cone.

When only the cosine potential is quenched, and for a final
Hamiltonian Hf which is at the critical point, the results for the
correlator in the three scaling regimes are given in Eqs. (31)–
(33). Universal logarithmic corrections due to the marginal
cosine potential are found and, consistent with the horizon
effect, the correlator is most enhanced right on the light cone.
For a final Hamiltonian with parameters that correspond to
slight deviations away from the critical point, the result for the
correlation function outside the light cone is given in Eq. (34),
and inside the light cone is given in Eq. (35).

For more complicated quenches where the initial Luttinger
parameter is quenched at the same time as the cosine potential
is switched on, scaling holds within the light cone, and the
results are given in Eqs. (36) and (37). Whether scaling holds
on the light cone and outside it depends on the initial state
(or the initial Luttinger parameter). In particular when the
cosine potential is a relevant or marginal perturbation in
the initial state, scaling holds on the light cone, otherwise
it is violated. In contrast outside the light cone, if the
cosine potential is a relevant perturbation in the initial state,
the perturbative corrections grow with distance. The latter
behavior is consistent with our understanding that outside
the light cone the behavior is primarily determined by the
initial state. Thus even though the cosine potential may be a
marginal or irrelevant perturbation for the final Hamiltonian
(or the wave function at long times after the quench), if it is a
relevant perturbation for the initial Hamiltonian, perturbation
theory will be violated outside the light cone.

There are many interesting open questions. One is to
generalize the results of this paper to unequal time correlation
functions with the aim of studying issues such as aging.28,30

The current paper focuses on the prethermalized regime where
the main assumption is that inelastic effects being weak, the
nonequilibrium boson distribution function generated due to
the quench hardly changes in time. The dynamics in the

thermal regime, and in particular how the boson distribution
function evolves in time due to strong inelastic scattering is
also very interesting to study. If the time scale 1/η is very short
(i.e., the quench amplitude is large), so that the prethermalized
regime is almost absent, a quantum kinetic equation may be
employed to study how the boson distribution function evolves
in time.57 When 1/η is large resulting in a long prethermalized
regime, understanding the difficult problem of how the
crossover in time from the prethermalized to the thermalized
regime occurs, and observing this in numerical studies58 is also
an important open question. It is also interesting to study the
regime where the cosine potential is a relevant perturbation
either in the initial or final state or both. When the cosine
potential is irrelevant in the initial state, but relevant in the
final state after the quench, RG may be used to identify a
critical time after the quench when perturbation theory breaks
down.17 Studying the time evolution of two-point correlation
functions and also quantities such as the Loschmidt echo when
the cosine potential is relevant are important open questions.
Finally an interesting direction to pursue is to employ the
approach of this paper to study quench dynamics in quantum
field theories in higher spatial dimensions.
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APPENDIX: EXPRESSIONS FOR Iu,K,η,Teff

ITeff (Tm
) =
∫ ∞

−∞
dr̄

∫ 2Tm


−2Tm


dτ̄Re [B(r̄ ,Tm
,τ̄ )] , (A1)

Iη(Tm
) = −
∫ ∞

−∞
dr̄

∫ 2Tm


−2Tm


dτ̄ τ̄ Im [B(r̄ ,Tm
,τ̄ )] , (A2)

Iu(Tm
) = −
∫ ∞

−∞
dr̄

∫ 2Tm


0
dτ̄ (r̄2 + τ̄ 2)

× Im[B(r̄ ,Tm
,τ̄ )], (A3)

IK (Tm
) = −
∫ ∞

−∞
dr̄

∫ 2Tm


0
dτ̄ (r̄2 − τ̄ 2)

× Im[B(r̄ ,Tm
,τ̄ )], (A4)

where Re[B] = (B + B∗)/2, Im[B] = (B − B∗)/(2i), and

B(r̄ ,Tm
,τ̄ ) = C+−,1(r̄ ,Tm
,τ̄ )F (r̄ ,Tm
,τ̄ ) (A5)

with C+−,1(r̄ ,Tm
,τ̄ ) = 〈eiφ+(r̄ ,τ̄+Tm
/2)e−iφ−(0,τ̄−Tm
/2)〉. This
quantity within leading order in perturbation theory is

C+−,1(r̄ ,Tm
,τ̄ )

=
[

1√
1 + (τ̄ + r̄)2

1√
1 + (τ̄ − r̄)2

]Kneq

×
[√

1 + {2(Tm
+ τ̄ /2)}2√
1 + (2Tm
+ r̄)2

√
1 + {2(Tm
− τ̄ /2)}2√

1 + (2Tm
− r̄)2

]Ktr

× e−iKeq[tan−1(τ̄+r̄)+tan−1(τ̄−r̄)] (A6)
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while F is given by

F (r̄ ,Tm
,τ̄ ) = Kneq

[
1

1 + (τ̄ + r̄)2 + 1

1 + (τ̄ − r̄)2

]
+ Ktr

[
1

1 + (2Tm
 + r̄)2 + 1

1 + (2Tm
 − r̄)2

]

− iKeq

[
τ̄ + r̄

1 + (τ̄ + r̄)2 + τ̄ − r̄

1 + (τ̄ − r̄)2

]
. (A7)
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