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Unconditional generation of bright coherent non-Gaussian light from exciton-polariton condensates
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Exciton-polariton condensates are considered as a deterministic source of bright, coherent non-Gaussian light.
Exciton-polariton condensates emit coherent light via photoluminescence through the microcavity mirrors due
to the spontaneous formation of coherence. Unlike conventional lasers which emit coherent Gaussian light,
polaritons possess a natural nonlinearity due to the interaction of the excitonic component. This produces light
with a negative component to the Wigner function at steady-state operation when the phase is stabilized via a
suitable method such as injection locking. In contrast to many other proposals for sources of non-Gaussian light,
in our case, the light typically has an average photon number exceeding one and emerges as a continuous wave.
Such a source may have uses in continuous-variable quantum information and communication.
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The optical coherent state is one of the most fundamental
states of quantum optics, and has been studied from the-
oretical and application perspectives for half a century.1,2

Coherent states, and related optical states such as squeezed
coherent states, are characterized by a Wigner quasiprobability
distribution of a Gaussian form, containing no negative
regions.3 While such Gaussian states are fairly easily produced
and manipulated in the laboratory,4 the creation of general
non-Gaussian states is a more difficult task, due to the
lack of materials possessing strong nonlinearities. Current
experimental approaches to creating states with a negative
Wigner function are highly probabilistic.5,6 Even theoretically
deterministic single photon production schemes in practice
suffer from less than perfect efficiencies,7 and would still not
be capable of producing bright states with negative Wigner
functions. A more desirable way of generating non-Gaussian
light is a more “plug-and-play” style device, where the device
is simply switched on and bright non-Gaussian light emerges
deterministically.

One of the most promising applications of such non-
Gaussian light is for continuous-variable (CV) quantum
information tasks. CV quantum optics has been shown to
be a complementary approach to traditional discrete-variable
methods using qubits.8–12 While elementary quantum proto-
cols such as teleportation13 can be realized using Gaussian CV
states and Gaussian operations, a more advanced application
such as universal quantum computation is known to require
non-Gaussian elements.14–16 However, even those states that
are non-Gaussian but positive may be insufficient as resources
for quantum computation17,18 (for the discrete analog, see
Ref. 19). As a consequence, the occurrence of a negative
Wigner function can be seen as a prerequisite for a potential
quantum mechanical speedup20 (for related results on the dis-
crete case, see Ref. 21). While such negativities are necessary,
only small instances of it are sufficient for universality.20,22,23

In this Rapid Communication we describe a deterministic
method of producing non-Gaussian quantum states of light
with a negative Wigner function using exciton-polariton
condensates. Exciton-polaritons are bosonic quasiparticles in
semiconductor microcavities, corresponding to a coherent

superposition of an exciton and a cavity photon.24 Exciton-
polaritons have been observed to undergo a dynamical form of
Bose-Einstein condensation.25,26 One of the attractive features
of this system is that the state of the polaritons inside the
semiconductor can be directly imaged using the leakage of
photons through the imperfect microcavity mirrors. Thus the
spontaneous buildup of coherence, one of the signals of
Bose-Einstein condensation, can be directly measured simply
by analyzing the properties of the emerging light.

One of the principal differences between an exciton-
polariton condensate and a laser is the presence of, or
lack of, respectively, strong coupling between the excitons
and photons. Strong coupling leads to polariton-polariton
interactions, giving much richer physics than its noninteracting
counterpart.27 These interaction effects also lead to phenomena
such as superfluidity of the polaritons.28 In this Rapid
Communication, we take advantage of the polariton-polariton
interactions to propose a device for producing non-Gaussian
light. The key technological advance that has allowed for this
is the availability of high-Q cavities where polariton lifetimes
of the order of ∼100 ps are now possible.29 In addition,
exciton-polaritons may be confined spatially using trapping
techniques such as metal deposition on the surface of the
microcavity,30 increasing the self-interaction energy U . This
gives the possibility of energy scales of the self-interaction
U and the cavity decay h̄γ0 to be of the same order, leading
to the creation of non-Gaussian light in the steady state. One
of the attractive features of this method is that the light is
produced completely deterministically and continuously while
it emerges from the microcavity. This is in contrast to most
other existing methods which work either conditionally, or
with an efficiency that is typically less than 1 for deterministic
schemes.7 Moreover, the created quantum states have an
average photon number much greater than one, thus are much
brighter than those from other sources of non-Gaussian light
such as single photon emitters.

In the work of Schwendimann et al., a master equation
for exciton-polariton condensates was derived, where the
“system” is considered to be the k = 0 condensate, and the
“reservoir” is all the modes with k �= 0.31,32 The equations
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are essentially a variation of standard lasing equations, where
there are a combination of one and two polariton loss and
gain terms, which under suitable conditions gives rise to
a condensate population. In Ref. 33 the authors obtain the
Fokker-Planck equations for the Wigner functions, and solve
the equations numerically and analytically for the approxi-
mate case. The analytical form of the radial dependence of
the Wigner function showed no trace of negativity, thus based
on this alone it appears that exciton-polaritons cannot be used
to generate coherent non-Gaussian light that would be useful
for continuous variables.

There is, however, an aspect which was not discussed in
Ref. 33, which generally applies to all lasing master equations.
For simplicity let us first consider the standard lasing equa-
tions, with a hypothetical built-in nonlinearity which will be
clear that it is analogous to the polariton case. The Scully-Lamb
lasing equation34 with such a nonlinearity reads

dρ

dt
= − i

h̄
[Hint,ρ] − A

2
L[a†,ρ] − γ

2
L[a,ρ]

+ B

8
[ρ(aa†)2 + 3aa†ρaa† − 4a†ρaa†a + H.c.], (1)

where

Hint = U

2
a†a†aa (2)

is the nonlinear interaction term, and

L[O,ρ] ≡ ρO†O + O†Oρ − 2OρO† (3)

is a Lindblad loss or gain term, with O an arbitrary operator.
Here A is the gain coefficient, B is the self-saturation
coefficient, γ is the cavity loss rate, and U is the nonlinear
Kerr interaction (self-interaction for condensates). A similar
system for a χ (2), as opposed to the χ (3) nonlinearity as we
consider here, was analyzed in Refs. 35–37.

The steady-state solution of these equations can be obtained
by setting dρ

dt
= 0. From the structure of Eq. (1) it can be

deduced that in the steady-state limit only the diagonal com-
ponents are nonzero.2 This is most easily seen by calculating
the behavior of dPk

dt
, where Pk = ∑

n ρn,n+k . For diagonal
terms dP0

dt
= 0, so that P0 = 1 for all times. In contrast,

the off-diagonal terms decay away, and in the steady-state
limit tend to zero. Physically, this can be interpreted as the
effect of phase diffusion, where any initial coherence becomes
randomized in the long-time limit. Far above threshold, the
density matrix of such a state is

ρ = 1

2π

∫
dθ |reiθ 〉〈reiθ | = e−r2

∞∑
n=0

r2n

n!
|n〉〈n|, (4)

where |reiθ 〉 is a coherent state and |n〉 are Fock states.38 The
state is diagonal in the density matrix, and the Wigner function
has a “doughnut” shape with equal amplitude but a mixture of
all phases [see Fig. 1(a)]. The point is then that for the diagonal
components of the density matrix, the nonlinear term Hint is
completely ineffective, no matter how large U may be. This
can be seen by looking at the matrix elements

〈n|[Hint,ρ]|m〉 = U

2
[n(n − 1) − m(m − 1)] ρnm, (5)
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FIG. 1. (Color online) The steady-state Wigner function for (a) a
laser with no phase fixing K = 0 and (b) an injection locked laser
with nonlinear interaction U = 0.1 and K = 50. Parameters used are
A = 3, B = 1, γ = 1. The negativities N = ∫

d2α[W (α) −
|W (α)|]/2 are marked on the plots.

which disappear for diagonal components. Since diagonal
components only couple to other diagonal components in (1),
the distribution is independent of U .

How then is it possible to make use of the nonlinearity?
Clearly we must recover the off-diagonal terms in the density
matrix, instead of the completely phase-diffused state (4). This
can be achieved by employing a suitable phase fixing method
such as injection locking39 or feedback phase stabilization.40,41

The effect of such phase fixing is to take a completely mixed
state such as (4), which is immune to the interaction Hint, and
make it approach a pure state depending upon the strength of
the phase fixing. For a pure state it is well known that the
interaction Hint produces highly non-Gaussian states such as
Schrödinger cat states,42 and hence we may expect that the
interaction will produce non-Gaussian features to the state of
the light.

For simplicity, in this Rapid Communication we consider
injection locking to be the phase fixing mechanism. This
corresponds to adding a coherent term39

Hlock = ih̄K0(ba†e−i(ω−ω0)t − ab†ei(ω−ω0)t ) (6)

to the master equation (1), so that the first term is − i
h̄

[Hint +
Hlock,ρ]. Here ω0 is the frequency of the (slave) laser, and
we work in the rotating frame a ≡ aSe

−iω0t , where aS is the
operator in the stationary frame. b is the annihilation operator
for the injected laser, and ω is its frequency which has been
factored out. We assume that bright, on-resonant (ω0 = ω)
coherent light is used for the injected master laser, so that
we may replace b → Be−iψ , where B > 0 is a c number.
Assuming without loss of generality that the injection locking
laser has phase ψ = 0, and converting (1) into a Fokker-Planck
equation for the Wigner function, we obtain

dW

dt
= −K

(
cos θ − sin θ

r

)
∂W

∂r

+ U

h̄

[
(1 − r2)

∂W

∂θ
+ 1

16

(
1

r

∂2W

∂r∂θ
+ ∂3W

∂r2∂θ

+ 1

r2

∂3W

∂θ3

)]
− 1

2r

∂

∂r
[r2(A − γ − Br2)W ]

+ (A + γ )

8

[
1

r

∂

∂r

(
r
∂W

∂r

)
+ 1

r2

∂2W

∂θ2

]
, (7)
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FIG. 2. (Color online) (a) The schematic device configuration.
A standard exciton-polariton microcavity with distributed Bragg
reflectors (DBRs) is pumped to form a condensate in the quantum
wells (QWs). Here we show the example of an AlAs/AlGaAs structure
that could be used for the device, although other materials could be
used. An injection locking master laser is injected perpendicularly
in order to add a phase fixing term to the condensate. The results
of this Rapid Communication are concerned with light labeled as
“output” emerging from the microcavity. (b), (c) Typical steady-state
output of the injection locked polariton system. Parameters used are
D2/D1 = 10, G1/D1 = 1, G2 = 0, U/D1 = 10, K/D1 = 103.

where K = K0B. The steady-state solution of such an equation
is shown in Fig. 1(b). We see that the phase fixing combined
with an interaction U leads to a steady-state Wigner function
with non-Gaussian features, signaled by the presence of a
negative region. This negativity is very stable with respect
to initial conditions and remains a feature of the distribution
once the steady-state regime is reached. Of course, such a laser
with a built-in nonlinearity will in practice have exceedingly
small values of U , creating extremely small negativities in
the Wigner function. We shall, however, see that for exciton-
polaritons such nonlinearities are within experimental reach.

We first describe our proposed device configuration
[Fig. 2(a)]. A standard microcavity quantum well system is
used, where exciton-polaritons are pumped by an excitation
laser or electrical injection.43 A secondary injection locking
laser is introduced at normal incidence of variable intensity.
Metal deposition on the surface of the microcavity allows
for a trapping potential which confines the condensate area
A. Metal deposition is known to create an effective potential
which traps the exciton-polariton condensate.30 Alternatively,
the microcavity can be etched into either micropillars44 or
mesas45 in order to produce the spatial confinement. The
emerging photoluminescence is then used as the output light
with non-Gaussian properties.

To describe this system, our starting point is the theory
of Refs. 31 and 32, where a master equation for the po-
lariton condensate is derived. Including the injection locking
terms, the density matrix of the condensate evolves in time

according to

dρ

dt
= − i

h̄
[Hint + Hlock,ρ] − �2L[aa,ρ] − �2L[a†a†,ρ]

− (�1 + γ0)L[a,ρ] − �1L[a†,ρ]. (8)

Here a is the annihilation operator for a k = 0 polariton, and ω0

is its frequency (which may include a mean-field energy shift
due to interactions). �1,2 are one and two polariton loss terms
due to polariton scattering, �1,2 are one and two polariton gain
terms due to scattering, and γ0 is a loss rate due to leakage
through the microcavity mirrors. From (8) it is possible to
derive a Fokker-Planck equation for the Wigner function.33

Using standard techniques3 we obtain

∂W

dt
= −2K

(
cos θ − sin θ

1

r

)
∂W

∂r
− U

h̄
(r2 − 1)

∂W

∂θ

+ U

16h̄

(
1

r

∂2W

∂r∂θ
+ ∂3W

∂r2∂θ
+ 1

r2

∂3W

∂θ3

)

− (2G2 + 8G1r
2)W + (−G2 + 2D1 − 2G1r

2)r
∂W

∂r

+
(

D2

4
+ D1r

2 − G1

2

) [
1

r

∂W

∂r
+∂2W

∂r2
+ 1

r2

∂2W

∂θ2

]
,

where we have retained only derivatives up to second order
in the Lindblad terms in (8), since this gives a very small
correction to the overall dynamics. Here G1 = �1 − �1,
G2 = �2 − �2 − γ0, D1 = �1 + �1, D2 = �2 + �2 + γ0 are
the net gain and diffusion coefficients. The precise expressions
for Gi and Di may be calculated using the expressions in
Refs. 31–33. While different materials give rise to different
parameters, the integral expressions given in the above
references possess certain properties which are common to
all systems. As can be deduced from dimensional analysis, the
order of the parameters are approximately

�1,�1 ∼ V 2
0 A

4πh̄E0a2
, �2,�2 ∼ V 2

0 A2

8π3h̄E0a4
, (9)

where V0 = 6e2aB/4πεA is the polariton-polariton interaction
energy, A is the quantization area, a is a temperature length
scale set according to E0 = h̄2/2mexca

2 = kBT , where T is
the temperature, and aB is the exciton Bohr radius. We can
observe that the order O(�1/�2) ∼ O(�1/�2) ∼ 2π2a2/A is
typically a small parameter such that �1,�1 	 �2,�2. How-
ever, �1,�1 cannot be neglected as without these condensation
is unstable. Meanwhile the interaction can be estimated to be46

U ∼ 30e2aB |X|4
π3εA

, (10)

where X is the excitonic Hopfield coefficient. From the
expressions in Ref. 31 it can be deduced that G1 < 0 and
D1,2 > 0, but G2 can change sign, which can be taken to be
the criterion for condensation assuming �1 	 G2.31

In Figs. 2(b) and 2(c) we plot the typical Wigner distribution
for the steady-state operation of the injection locked polariton
BEC. The distribution typically consists of a bright peak
that is phase fixed due to the injection locking. Adjacent
to the peak, there is a region of negativity, approximately
in the direction of origin. The negativity appears as soon
as the injection locking is switched on, and at first grows
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FIG. 3. (Color online) Dependence of the total negativity N with
injection locking strength K for various interactions U (in units of D1)
for the polariton BEC. Steady-state values are taken for (a) estimated
experimental parameters D2/D1 = 100, (b) very high Q cavity/small
trap case D2/D1 = 10. Other parameters are G1/D1 = 1, G2 = 0.

with both injection locking strength K and interaction strength
U . For all parameters K > 0, U > 0 we see stable negativities
of the Wigner function, quantified by N = ∫

d2α[W (α) −
|W (α)|]/2. Figure 3(a) shows the behavior of the amount of
steady-state negativity with K . At large enough K , there is a
saturation of the negativity, beyond which the total negativity
no longer increases, and in fact decreases slowly beyond this
point. Although the overall negativity decreases for very large
K , the Wigner distribution tends to become more sharply
defined for large K . For smaller values of K , the negative
region tends to be shallower, but distributed over a larger area.
In Fig. 3(b) we plot the negativities for D2/D1 = 10, which
corresponds to very small (r = 0.16 μm) traps or very high-Q
cavities giving very long polariton lifetimes (1/γ0 = 1 ns). We
see that the reduced phase diffusion improves the negativity of

the Wigner function. We generally also observe that close to
threshold gives the largest negativities.

In conclusion, we have proposed a device for determinis-
tically producing bright coherent non-Gaussian light from an
exciton-polariton condensate. It was shown that steady-state
generation of such light is possible using currently accessible
experimental parameters when a suitable method of phase
fixing is imposed on the polariton condensate. Although
we have considered injection locking here, other methods such
as feedback control of the phase should accomplish the same
task. The phase fixing overcomes the phase diffusion which
tends to dephase the condensate and leads to a completely
mixed state; with phase fixing, non-Gaussian states are created
exploiting the natural nonlinearity of the polaritons. The
completely deterministic nature of the production of these non-
Gaussian states, as well as their brightness, is potentially useful
in the context of continuous-variable quantum information
processing, for which at least some resource states must
possess a negative Wigner function. On-demand sources will
save quantum memories and help scalability, while mean
photon numbers above unity allow for making use of larger
Hilbert spaces encoded into the infinite-dimensional space of
an optical mode.
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